Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

3D Printing Chitosan-based Nanobiomaterials for Biomedicine and Drug Delivery: Recent Advances on the Promising Bioactive Agents and Technologies

Author(s): Seyed Morteza Naghib*, Morteza Zarrineh and Mohammad Reza Mozafari

Volume 28, Issue 7, 2024

Published on: 18 March, 2024

Page: [510 - 525] Pages: 16

DOI: 10.2174/0113852728298168240222114449

Price: $65

Abstract

3D bioprinting is a novel technology that has gained significant attention recently due to its potential applications in developing simultaneously controlled drug delivery systems (DDSs) for administering several active substances, such as growth factors, proteins, and drug molecules. This technology provides high reproducibility and precise control over the fabricated constructs in an automated way. Chitosan is a natural-derived polysaccharide from chitin, found in the exoskeletons of crustaceans such as shrimp and crabs. Chitosan-based implants can be prepared using 3D bioprinting technology by depositing successive layers of chitosan-based bioink containing living cells and other biomaterials. The resulting implants can be designed to release drugs at a controlled rate over an extended period. The use of chitosan-based implants for drug delivery has several advantages over conventional drug delivery systems. Chitosan is biodegradable and biocompatible, so it can be safely used in vivo without causing any adverse effects. It is also non-immunogenic, meaning it does not elicit an immune response when implanted in vivo. Chitosan-based implants are also cost-effective and can be prepared using simple techniques. 3D bioprinting is an emerging technology that has revolutionized the field of tissue engineering by enabling the fabrication of complex 3D structures with high precision and accuracy. It involves using computer-aided design (CAD) software to create a digital model of the desired structure, which is then translated into a physical object using a 3D printer. The printer deposits successive layers of bioink, which contains living cells and other biomaterials, to create a 3D structure that mimics the native tissue. One of the most promising applications of 3D bioprinting is developing drug delivery systems (DDSs) to administer several active substances, such as growth factors, proteins, and drug molecules. DDSs are designed to release drugs at a controlled rate over an extended period, which can improve therapeutic efficacy and reduce side effects. Chitosan-based implants have emerged as a promising candidate for DDSs due to their attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. 3D bioprinting technology has emerged as a powerful tool for developing simultaneously controlled DDSs for administering several active substances. The rationale behind integrating 3D printing technology with chitosan-based scaffolds for drug delivery lies in the ability to produce customized, biocompatible, and precisely designed systems that enable targeted and controlled drug release. This novel methodology shows potential for advancing individualized healthcare, regenerative treatments, and the creation of cutting-edge drug delivery systems. This review highlights the potential applications of 3D bioprinting technology for preparing chitosan-based implants for drug delivery.

Keywords: Biomedicine, 3D printing, chitosan, biomaterial, drug delivery, bioprinting.

Graphical Abstract
[1]
Parhi, R. Drug delivery applications of chitin and chitosan: A review. Environ. Chem. Lett., 2020, 18(3), 577-594.
[http://dx.doi.org/10.1007/s10311-020-00963-5]
[2]
Li, S.; Wu, X.; Fan, G.; Du, K.; Deng, L. Exploring cantharidin and its analogues as anticancer agents: A review. Curr. Med. Chem., 2023, 30(18), 2006-2019.
[http://dx.doi.org/10.2174/0929867330666221103151537] [PMID: 36330637]
[3]
Keramat, A.; Kadkhoda, J.; Farahzadi, R.; Fathi, E.; Davaran, S. The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr. Med. Chem., 2022, 29(26), 4529-4546.
[http://dx.doi.org/10.2174/0929867329666220208092157] [PMID: 35135444]
[4]
Sahil, K.; Kaur, K.; Jaitak, V. Thiazole and related heterocyclic systems as anticancer agents: A review on synthetic strategies, mechanisms of action and SAR studies. Curr. Med. Chem., 2022, 29(29), 4958-5009.
[http://dx.doi.org/10.2174/0929867329666220318100019] [PMID: 35306982]
[5]
Farahani, G.S.; Naghib, S.M.; Jamal, N.M.R.; Seyfoori, A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci. Rep., 2021, 11(1), 17404.
[http://dx.doi.org/10.1038/s41598-021-97081-1] [PMID: 34465842]
[6]
Farahani, G.S.; Jamal, N.M.R.; Naghib, S.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review. Expert Opin. Drug Deliv., 2019, 16(1), 79-99.
[http://dx.doi.org/10.1080/17425247.2019.1556257] [PMID: 30514124]
[7]
Mazidi, Z.; Javanmardi, S.; Naghib, S.M.; Mohammadpour, Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem. Eng. J., 2022, 433, 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[8]
Garshasbi, H.R.; Naghib, S.M. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review. Curr. Pharm. Des., 2023, 29(44), 3546-3562.
[http://dx.doi.org/10.2174/0113816128283806231211073031] [PMID: 38115614]
[9]
Dehghani, N.; Haghiralsadat, F.; Yazdian, F.; Nodoushan, S.F.; Ghasemi, N.; Mazaheri, F.; Pourmadadi, M.; Naghib, S.M. Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: In vitro and in vivo studies. Int. J. Biol. Macromol., 2023, 238, 124078.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124078] [PMID: 36944378]
[10]
Garshasbi, H.; Salehi, S.; Naghib, S.M.; Ghorbanzadeh, S.; Zhang, W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front. Bioeng. Biotechnol., 2023, 10, 1126774.
[http://dx.doi.org/10.3389/fbioe.2022.1126774] [PMID: 36698640]
[11]
Shahidi, M.; Abazari, O.; Dayati, P.; Bakhshi, A.; Rasti, A.; Haghiralsadat, F.; Naghib, S.M.; Tofighi, D. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnol. Rev., 2022, 11(1), 2875-2890.
[12]
Sartipzadeh, O.; Naghib, S.M.; Haghiralsadat, F.; Shokati, F.; Rahmanian, M. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci. Rep., 2022, 12(1), 8382.
[http://dx.doi.org/10.1038/s41598-022-12031-9] [PMID: 35589742]
[13]
Farahani, G.S.; Naghib, S.M.; Jamal, N.M.R. A novel and inexpensive method based on modified ionic gelation for pH-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency. Fibers Polym., 2020, 21(9), 1917-1926.
[http://dx.doi.org/10.1007/s12221-020-1095-y]
[14]
Vahid, N.F.; Marvi, M.R.; Jamal, N.M.R.; Naghib, S.M.; Ghaffarinejad, A. X-Fe2O4-buckypaper-chitosan nanocomposites for nonenzymatic electrochemical glucose biosensing. Anal. Bioanal. Electrochem, 2019, 11, 930-942.
[15]
Taghizadeh, M.; Taghizadeh, A.; Yazdi, M.K.; Zarrintaj, P.; Stadler, F.J.; Ramsey, J.D.; Habibzadeh, S.; Rad, H.S.; Naderi, G.; Saeb, M.R.; Mozafari, M.; Schubert, U.S. Chitosan-based inks for 3D printing and bioprinting. Green Chem., 2022, 24(1), 62-101.
[http://dx.doi.org/10.1039/D1GC01799C]
[16]
Ian Gibson, I.G. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing; Springer, 2015.
[http://dx.doi.org/10.1007/978-1-4939-2113-3]
[17]
Yang, Y.; Wu, H.; Fu, Q.; Xie, X.; Song, Y.; Xu, M.; Li, J. 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mater. Des., 2022, 214, 110394.
[http://dx.doi.org/10.1016/j.matdes.2022.110394]
[18]
Mobbs, R.J.; Coughlan, M.; Thompson, R.; Sutterlin, C.E.; Phan, K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: Case report. J. Neurosurg. Spine, 2017, 26(4), 513-518.
[http://dx.doi.org/10.3171/2016.9.SPINE16371] [PMID: 28106524]
[19]
Ventola, C.L. Medical applications for 3D printing: Current and projected uses. P&T, 2014, 39(10), 704-711.
[PMID: 25336867]
[20]
Aimar, A.; Palermo, A.; Innocenti, B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5340616] [PMID: 31019667]
[21]
Qian, L.; Zhang, K.; Guo, X.; Yu, M. What happens when chitin becomes chitosan? A single-molecule study. RSC Advances, 2023, 13(4), 2294-2300.
[http://dx.doi.org/10.1039/D2RA07303J] [PMID: 36741137]
[22]
Sirajudheen, P.; Poovathumkuzhi, N.C.; Vigneshwaran, S.; Chelaveettil, B.M.; Meenakshi, S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water. A comprehensive review. Carbohydr. Polym., 2021, 273, 118604.
[http://dx.doi.org/10.1016/j.carbpol.2021.118604] [PMID: 34561004]
[23]
Naveed, M.; Phil, L.; Sohail, M.; Hasnat, M.; Baig, M.M.F.A.; Ihsan, A.U.; Shumzaid, M.; Kakar, M.U.; Khan, M.T.; Akabar, M.; Hussain, M.I.; Zhou, Q.G. Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol., 2019, 129, 827-843.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.192] [PMID: 30708011]
[24]
Wang, W.; Xue, C.; Mao, X. Chitosan: Structural modification, biological activity and application. Int. J. Biol. Macromol., 2020, 164, 4532-4546.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.042] [PMID: 32941908]
[25]
Nwe, N.; Furuike, T.; Tamura, H. The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from gongronella butleri. Materials, 2009, 2(2), 374-398.
[http://dx.doi.org/10.3390/ma2020374]
[26]
Khan, A.; Alamry, K.A. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr. Res., 2021, 506, 108368.
[http://dx.doi.org/10.1016/j.carres.2021.108368] [PMID: 34111686]
[27]
Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a potential natural compound to manage plant diseases. Int. J. Biol. Macromol., 2022, 220, 998-1009.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.08.109] [PMID: 35988725]
[28]
Pal, P.; Pal, A.; Nakashima, K.; Yadav, B.K. Applications of chitosan in environmental remediation: A review. Chemosphere, 2021, 266, 128934.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128934] [PMID: 33246700]
[29]
Tang, W.; Wang, J.; Hou, H.; Li, Y.; Wang, J.; Fu, J.; Lu, L.; Gao, D.; Liu, Z.; Zhao, F.; Gao, X.; Ling, P.; Wang, F.; Sun, F.; Tan, H. Review: Application of chitosan and its derivatives in medical materials. Int. J. Biol. Macromol., 2023, 240, 124398.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124398] [PMID: 37059277]
[30]
Shen, R.; Yuan, H. Achievements and bottlenecks of PEGylation in nano-delivery systems. Curr. Med. Chem., 2023, 30(12), 1386-1405.
[http://dx.doi.org/10.2174/0929867329666220929152644] [PMID: 36177626]
[31]
Di Filippo, L.D.; Duarte, J.; Fonseca-Santos, B.; Tavares Júnior, A.G.; Araújo, V.; Roque Borda, C.A.; Vicente, E.F.; Chorilli, M. Mucoadhesive nanosystems for nose-to-brain drug delivery in the treatment of central nervous system diseases. Curr. Med. Chem., 2022, 29(17), 3079-3110.
[http://dx.doi.org/10.2174/0929867328666210813154019] [PMID: 34391374]
[32]
da Leite, S.J.M.; Patriota, Y.B.G.; de Roca, L.M.F.; Sobrinho, S.J.L. New perspectives in drug delivery systems for the treatment of tuberculosis. Curr. Med. Chem., 2022, 29(11), 1936-1958.
[http://dx.doi.org/10.2174/0929867328666210629154908] [PMID: 34212827]
[33]
Shafabakhsh, R.; Yousefi, B.; Asemi, Z.; Nikfar, B.; Mansournia, M.A.; Hallajzadeh, J. Chitosan: A compound for drug delivery system in gastric cancer-a review. Carbohydr. Polym., 2020, 242, 116403.
[http://dx.doi.org/10.1016/j.carbpol.2020.116403] [PMID: 32564837]
[34]
González, G.Y.A.; Triviño, C.G. New chitosan-based chemo pharmaceutical delivery systems for tumor cancer treatment: Short-review. J. Chil. Chem. Soc., 2022, 67(1), 5425-5432.
[http://dx.doi.org/10.4067/S0717-97072022000105425]
[35]
Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol., 2021, 185, 832-848.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.023] [PMID: 34237361]
[36]
Manzoor, K.; Ahmad, S.; Soundarajan, A.; Ikram, S.; Ahmed, S. Chitosan based nanomaterials for biomedical applications. In: Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp. 543-562.
[37]
Devi, L.; Gaba, P.; Chopra, H. Tailormade drug delivery system: A novel trio concept of 3DP+ hydrogel+ SLA. J. Drug Deliv. Ther., 2019, 9(4-s), 861-866.
[http://dx.doi.org/10.22270/jddt.v9i4-s.3458]
[38]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[39]
Constantino, V.R.L.; Figueiredo, M.P.; Magri, V.R.; Eulálio, D.; Cunha, V.R.R.; Alcântara, A.C.S.; Perotti, G.F. Biomaterials based on organic polymers and layered double hydroxides nanocomposites: Drug delivery and tissue engineering. Pharmaceutics, 2023, 15(2), 413.
[http://dx.doi.org/10.3390/pharmaceutics15020413] [PMID: 36839735]
[40]
Hejazi, R.; Amiji, M. Chitosan-based gastrointestinal delivery systems. J. Control. Release, 2003, 89(2), 151-165.
[http://dx.doi.org/10.1016/S0168-3659(03)00126-3] [PMID: 12711440]
[41]
Li, Q.; Dunn, E.; Grandmaison, E.; Goosen, M.F. Applications and properties of chitosan; CRC Press, 2020, pp. 3-29.
[http://dx.doi.org/10.1201/9781003072812-2]
[42]
de Victor, S.R.; da Cunha Santos, M.A.; de Sousa, V.B.; de Neves, A.G.; de Santana, L.N.L.; Menezes, R.R. A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment. Materials, 2020, 13(21), 4995.
[http://dx.doi.org/10.3390/ma13214995] [PMID: 33171898]
[43]
Anwer, A.H.; Ahtesham, A.; Shoeb, M.; Mashkoor, F.; Ansari, M.Z.; Zhu, S.; Jeong, C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv. Colloid Interface Sci., 2023, 318, 102955.
[http://dx.doi.org/10.1016/j.cis.2023.102955] [PMID: 37467558]
[44]
Patton, J.S.; Byron, P.R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov., 2007, 6(1), 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[45]
Rubio, P.B.; Gomes, A.N.; Gutiérrez, F.M.; Rojo, L.; Suay, J.; Gurruchaga, M.; Goñi, I. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydr. Polym., 2019, 203, 331-341.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.064] [PMID: 30318220]
[46]
Islam, S.; Bhuiyan, M.A.R.; Islam, M.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ., 2017, 25(3), 854-866.
[http://dx.doi.org/10.1007/s10924-016-0865-5]
[47]
Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J., 2020, 138, 109984.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109984]
[48]
Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Sakib, N.M.; Rashid, T.U. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater., 2020, 5(1), 164-183.
[http://dx.doi.org/10.1016/j.bioactmat.2020.01.012] [PMID: 32083230]
[49]
Pérez, N.F.; Illana, M.A.; Luna, C.R.; Caro, R.R.; Veiga, M. Applications of chitosan in surgical and post-surgical materials. Mar. Drugs, 2022, 20(6), 396.
[http://dx.doi.org/10.3390/md20060396] [PMID: 35736199]
[50]
Campelo, C.S.; Chevallier, P.; Vaz, J.M.; Vieira, R.S.; Mantovani, D. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Mater. Sci. Eng. C, 2017, 72, 682-691.
[http://dx.doi.org/10.1016/j.msec.2016.11.133] [PMID: 28024638]
[51]
Saeedi, M.; Vahidi, O.; Moghbeli, M.R.; Ahmadi, S.; Asadnia, M.; Akhavan, O.; Seidi, F.; Rabiee, M.; Saeb, M.R.; Webster, T.J.; Varma, R.S.; Sharifi, E.; Zarrabi, A.; Rabiee, N. Customizing nano-chitosan for sustainable drug delivery. J. Control. Release, 2022, 350, 175-192.
[http://dx.doi.org/10.1016/j.jconrel.2022.07.038] [PMID: 35914615]
[52]
Gao, J.; Karp, J.M.; Langer, R.; Joshi, N. The future of drug delivery. Chem. Mater., 2023, 35(2), 359-363.
[53]
Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-based nanomaterials for drug delivery. Molecules, 2018, 23(10), 2661.
[http://dx.doi.org/10.3390/molecules23102661] [PMID: 30332830]
[54]
Sanyakamdhorn, S.; Agudelo, D.; Tajmir-Riahi, H.A. Encapsulation of antitumor drug Doxorubicin and its analogue by chitosan nanoparticles. Biomacromolecules, 2013, 14(2), 557-563.
[http://dx.doi.org/10.1021/bm3018577] [PMID: 23305154]
[55]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717.
[http://dx.doi.org/10.3390/polym13111717] [PMID: 34074020]
[56]
Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005, 26(31), 6176-6184.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.027] [PMID: 15885770]
[57]
Jiang, H.; Fang, D.; Hsiao, B.; Chu, B.; Chen, W. Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. J. Biomater. Sci. Polym. Ed., 2004, 15(3), 279-296.
[http://dx.doi.org/10.1163/156856204322977184] [PMID: 15147162]
[58]
Sabourian, P.; Tavakolian, M.; Yazdani, H.; Frounchi, M.; van de Ven, T.G.M.; Maysinger, D.; Kakkar, A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J. Control. Release, 2020, 317, 216-231.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.029] [PMID: 31778742]
[59]
dos Rodrigues, S.B.; Lakkadwala, S.; Sharma, D.; Singh, J. Chitosan for gene, DNA vaccines, and drug delivery. In: Materials for Biomedical Engineering; Elsevier, 2019; pp. 515-550.
[60]
Iacob, A.T.; Lupascu, F.G.; Apotrosoaei, M.; Vasincu, I.M.; Tauser, R.G.; Lupascu, D.; Giusca, S.E.; Caruntu, I.D.; Profire, L. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers. Pharmaceutics, 2021, 13(4), 587.
[http://dx.doi.org/10.3390/pharmaceutics13040587] [PMID: 33924046]
[61]
Wang, C.H.; Cherng, J.H.; Liu, C.C.; Fang, T.J.; Hong, Z.J.; Chang, S.J.; Fan, G.Y.; Hsu, S.D. Procoagulant and antimicrobial effects of chitosan in wound healing. Int. J. Mol. Sci., 2021, 22(13), 7067.
[http://dx.doi.org/10.3390/ijms22137067] [PMID: 34209202]
[62]
Bozkurt, Y.; Karayel, E. 3D printing technology; Methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol., 2021, 14, 1430-1450.
[http://dx.doi.org/10.1016/j.jmrt.2021.07.050]
[63]
Rajabi, M.; McConnell, M.; Cabral, J.; Ali, M.A. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr. Polym., 2021, 260, 117768.
[http://dx.doi.org/10.1016/j.carbpol.2021.117768] [PMID: 33712126]
[64]
Pugliese, L.; Marconi, S.; Negrello, E.; Mauri, V.; Peri, A.; Gallo, V.; Auricchio, F.; Pietrabissa, A. The clinical use of 3D printing in surgery. Updates Surg., 2018, 70(3), 381-388.
[http://dx.doi.org/10.1007/s13304-018-0586-5] [PMID: 30167991]
[65]
Wimpenny, D.I.; Pandey, P.M.; Kumar, L.J. Advances in 3D printing & additive manufacturing technologies; Springer, 2017.
[http://dx.doi.org/10.1007/978-981-10-0812-2]
[66]
Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf., 2019, 35, 1286-1296.
[http://dx.doi.org/10.1016/j.promfg.2019.06.089]
[67]
Thakar, C.M.; Parkhe, S.S.; Jain, A.; Phasinam, K.; Murugesan, G.; Ventayen, R.J.M. 3d Printing: Basic principles and applications. Mater. Today Proc., 2022, 51, 842-849.
[http://dx.doi.org/10.1016/j.matpr.2021.06.272]
[68]
Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng., 2018, 143, 172-196.
[http://dx.doi.org/10.1016/j.compositesb.2018.02.012]
[69]
Wickramasinghe, S.; Do, T.; Tran, P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 2020, 12(7), 1529.
[http://dx.doi.org/10.3390/polym12071529] [PMID: 32664374]
[70]
Long, J.; Etxeberria, A.E.; Nand, A.V.; Bunt, C.R.; Ray, S.; Seyfoddin, A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C, 2019, 104, 109873.
[http://dx.doi.org/10.1016/j.msec.2019.109873] [PMID: 31500054]
[71]
Quodbach, J.; Bogdahn, M.; Breitkreutz, J.; Chamberlain, R.; Eggenreich, K.; Elia, A.G.; Gottschalk, N.; Grabole, G.G.; Hoffmann, L.; Kapote, D. Quality of FDM 3D printed medicines for pediatrics: Considerations for formulation development, filament extrusion, printing process and printer design. Ther. Innov. Regul. Sci., 2021, 56(6), 910-928.
[PMID: 34826120]
[72]
Long, J.; Gholizadeh, H.; Lu, J.; Bunt, C.; Seyfoddin, A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr. Pharm. Des., 2017, 23(3), 433-439.
[http://dx.doi.org/10.2174/1381612822666161026162707] [PMID: 27784251]
[73]
Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci., 2019, 153, 35-44.
[http://dx.doi.org/10.1016/j.meatsci.2019.03.005] [PMID: 30878821]
[74]
Mohapatra, S.; Kar, R.K.; Biswal, P.K.; Bindhani, S. Approaches of 3D printing in current drug delivery. Sens Int, 2022, 3, 100146.
[http://dx.doi.org/10.1016/j.sintl.2021.100146]
[75]
Guo, Y.; Patanwala, H.S.; Bognet, B.; Ma, A.W.K. Inkjet and inkjet-based 3D printing: Connecting fluid properties and printing performance. Rapid Prototyping J., 2017, 23(3), 562-576.
[http://dx.doi.org/10.1108/RPJ-05-2016-0076]
[76]
Alamán, J.; Alicante, R.; Peña, J.; Somolinos, S.C. Inkjet printing of functional materials for optical and photonic applications. Materials, 2016, 9(11), 910.
[http://dx.doi.org/10.3390/ma9110910] [PMID: 28774032]
[77]
Boora, A.; Baral, A.K. Role and importance of print density in continuous inkjet (CIJ) & drop-on-demand (PIJ) inkjet print engines and identification of various factors to optimize ink density. J. Northeast. Univ., 2022, 25(4), 1875-1879.
[78]
Afsana; Jain, V.; Haider, N.; Jain, K. 3D printing in personalized drug delivery. Curr. Pharm. Des., 2019, 24(42), 5062-5071.
[http://dx.doi.org/10.2174/1381612825666190215122208] [PMID: 30767736]
[79]
Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. Inkjet bioprinting of biomaterials. Chem. Rev., 2020, 120(19), 10793-10833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00008] [PMID: 32902959]
[80]
Huang, J.; Qin, Q.; Wang, J. A review of stereolithography: Processes and systems. Processes, 2020, 8(9), 1138.
[http://dx.doi.org/10.3390/pr8091138]
[81]
Soleymani, S.; Naghib, S.M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon, 2023, 9(9), e19363.
[http://dx.doi.org/10.1016/j.heliyon.2023.e19363] [PMID: 37662765]
[82]
Healy, A.V.; Fuenmayor, E.; Doran, P.; Geever, L.M.; Higginbotham, C.L.; Lyons, J.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics, 2019, 11(12), 645.
[http://dx.doi.org/10.3390/pharmaceutics11120645] [PMID: 31816898]
[83]
Kumar, M.B.; Sathiya, P.; Varatharajulu, M. Selective laser sintering. In: Advances in Additive Manufacturing Processes; China Bentham Books: Beijing, China, 2021; p. 28.
[http://dx.doi.org/10.2174/9789815036336121010007]
[84]
Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm., 2017, 529(1-2), 285-293.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.082] [PMID: 28668582]
[85]
Gueche, Y.A.; Sanchez-Ballester, N.M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics, 2021, 13(8), 1212.
[http://dx.doi.org/10.3390/pharmaceutics13081212] [PMID: 34452173]
[86]
Kotta, S.; Nair, A.; Alsabeelah, N. 3D printing technology in drug delivery: Recent progress and application. Curr. Pharm. Des., 2019, 24(42), 5039-5048.
[http://dx.doi.org/10.2174/1381612825666181206123828] [PMID: 30520368]
[87]
Roopavath, U.K.; Kalaskar, D.M. Introduction to 3D printing in medicine. In: 3D printing in medicine; Elsevier, 2017, pp. 1-20.
[88]
Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D printing for drug delivery and biomedical applications. Drug Discov. Today, 2020, 25(9), 1668-1681.
[http://dx.doi.org/10.1016/j.drudis.2020.07.007] [PMID: 32687871]
[89]
Tan, Y.J.N.; Yong, W.P.; Kochhar, J.S.; Khanolkar, J.; Yao, X.; Sun, Y.; Ao, C.K.; Soh, S. On-demand fully customizable drug tablets via 3D printing technology for personalized medicine. J. Control. Release, 2020, 322, 42-52.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.046] [PMID: 32145267]
[90]
Elkasabgy, N.A.; Mahmoud, A.A.; Maged, A. 3D printing: An appealing route for customized drug delivery systems. Int. J. Pharm., 2020, 588, 119732.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119732] [PMID: 32768528]
[91]
Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv. Drug Deliv. Rev., 2021, 174, 406-424.
[http://dx.doi.org/10.1016/j.addr.2021.04.025] [PMID: 33951489]
[92]
Stewart, S.; Domínguez-Robles, J.; McIlorum, V.; Mancuso, E.; Lamprou, D.; Donnelly, R.; Larrañeta, E. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics, 2020, 12(2), 105.
[http://dx.doi.org/10.3390/pharmaceutics12020105] [PMID: 32013052]
[93]
Pravin, S.; Sudhir, A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed. Pharmacother., 2018, 107, 146-154.
[http://dx.doi.org/10.1016/j.biopha.2018.07.167] [PMID: 30086461]
[94]
Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W.A.W. Basit, 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 2015, 12(11), 4077-4084.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00510] [PMID: 26473653]
[95]
Kass, L.E.; Nguyen, J. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(2), e1756.
[http://dx.doi.org/10.1002/wnan.1756] [PMID: 34532989]
[96]
Fernández, M.S.; Barroso, N.; Álvarez, P.L.; Silván, U.; Vilela, V.J.L.; Mendez, L.S. 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. Int. J. Biol. Macromol., 2021, 188, 820-832.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.022] [PMID: 34371046]
[97]
Holmström, J.; Liotta, G.; Chaudhuri, A. Sustainability outcomes through direct digital manufacturing-based operational practices: A design theory approach. J. Clean. Prod., 2017, 167, 951-961.
[http://dx.doi.org/10.1016/j.jclepro.2017.03.092]
[98]
Promyoo, R.; Alai, S.; El-Mounayri, H. Innovative digital manufacturing curriculum for industry 4.0. Procedia Manuf., 2019, 34, 1043-1050.
[http://dx.doi.org/10.1016/j.promfg.2019.06.092]
[99]
Zhang, J.; Vo, A.Q.; Feng, X.; Bandari, S.; Repka, M.A. Pharmaceutical additive manufacturing: A novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech, 2018, 19(8), 3388-3402.
[http://dx.doi.org/10.1208/s12249-018-1097-x] [PMID: 29943281]
[100]
Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules, 2019, 24(10), 1960.
[http://dx.doi.org/10.3390/molecules24101960] [PMID: 31117310]
[101]
Ragelle, H.; Rahimian, S.; Guzzi, E.A.; Westenskow, P.D.; Tibbitt, M.W.; Schwach, G.; Langer, R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv. Drug Deliv. Rev., 2021, 178, 113990.
[http://dx.doi.org/10.1016/j.addr.2021.113990] [PMID: 34600963]
[102]
Shinn, M.; Lam, N.H.; Murray, J.D. A flexible framework for simulating and fitting generalized drift-diffusion models. eLife, 2020, 9, e56938.
[http://dx.doi.org/10.7554/eLife.56938] [PMID: 32749218]
[103]
Humayun, M.; Jhanjhi, N.Z.; Niazi, M.; Amsaad, F.; Masood, I. Securing drug distribution systems from tampering using blockchain. Electronics, 2022, 11(8), 1195.
[http://dx.doi.org/10.3390/electronics11081195]
[104]
Stevanović, M.; Djošić, M.; Janković, A.; Kojić, V.; Stojanović, J.; Grujić, S.; Bujagić, I.M.; Rhee, K.Y.; Stanković, M.V. The chitosan-based bioactive composite coating on titanium. J. Mater. Res. Technol., 2021, 15, 4461-4474.
[105]
Ballarre, J.; Aydemir, T.; Liverani, L.; Roether, J.A.; Goldmann, W.H.; Boccaccini, A.R. Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surf. Coat. Tech., 2020, 381, 125138.
[http://dx.doi.org/10.1016/j.surfcoat.2019.125138]
[106]
Guo, L.; Liang, Z.; Yang, L.; Du, W.; Yu, T.; Tang, H.; Li, C.; Qiu, H. The role of natural polymers in bone tissue engineering. J. Control. Release, 2021, 338, 571-582.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.055] [PMID: 34481026]
[107]
Zarif, M-E. A review of chitosan-, alginate-, and gelatin-based biocomposites for bone tissue engineering. Biomater. Tissue Eng. Bull, 2018, 5(3), 4.
[108]
Türk, S.; Altınsoy, I.; Efe, C.G.; İpek, M.; Özacar, M.; Bindal, C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyap-atite composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2018, 92, 757-768.
[http://dx.doi.org/10.1016/j.msec.2018.07.020] [PMID: 30184804]
[109]
Suzuki, S.; Ikada, Y. Poly(lactic acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life, 1st ed; Wiley, 2022, pp. 581-604.
[110]
Sukpaita, T.; Chirachanchai, S.; Pimkhaokham, A.; Ampornaramveth, R.S. Chitosan-based scaffold for mineralized tissues regeneration. Mar. Drugs, 2021, 19(10), 551.
[http://dx.doi.org/10.3390/md19100551] [PMID: 34677450]
[111]
Findik, F. Recent developments of metallic implants for biomedical applications. Period. Eng. Nat. Sci., 2020, 8(1), 33-57.
[112]
Sharifianjazi, F.; Khaksar, S.; Esmaeilkhanian, A.; Bazli, L.; Eskandarinezhad, S.; Salahshour, P.; Sadeghi, F.; Rostamnia, S.; Vahdat, S.M. Advancements in fabrication and application of chitosan composites in implants and dentistry: A review. Biomolecules, 2022, 12(2), 155.
[http://dx.doi.org/10.3390/biom12020155] [PMID: 35204654]
[113]
Gómez, J.C.P.; Cecilia, J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules, 2020, 25(17), 3981.
[http://dx.doi.org/10.3390/molecules25173981] [PMID: 32882899]
[114]
Kim, H.; Tator, C.H.; Shoichet, M.S. Chitosan implants in the rat spinal cord: Biocompatibility and biodegradation. J. Biomed. Mater. Res. A, 2011, 97A(4), 395-404.
[http://dx.doi.org/10.1002/jbm.a.33070] [PMID: 21465644]
[115]
Leedy, M.R.; Martin, H.J.; Norowski, P.A.; Jennings, J.A.; Haggard, W.O.; Bumgardner, J.D. Use of chitosan as a bioactive implant coating for bone-implant applications. In: Chitosan for Biomaterials II; Springer, 2011; pp. 129-165.
[116]
Ahmed, S.; Annu; Ali, A.; Sheikh, J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol., 2018, 116, 849-862.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.176] [PMID: 29730001]
[117]
Sivashankari, P.; Prabaharan, M. Chitosan/carbon-based nanomaterials as scaffolds for tissue engineering. In: Biopolymer-based composites; Elsevier, 2017; pp. 381-397.
[118]
Ku, S.H.; Lee, M.; Park, C.B. Carbon-based nanomaterials for tissue engineering. Adv. Healthc. Mater., 2013, 2(2), 244-260.
[http://dx.doi.org/10.1002/adhm.201200307] [PMID: 23184559]
[119]
Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater., 2009, 21(15), 3514-3520.
[http://dx.doi.org/10.1021/cm901247t]
[120]
Zhu, Y.; Liu, X.; Yeung, K.W.K.; Chu, P.K.; Wu, S. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Appl. Surf. Sci., 2017, 400, 14-23.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.158]
[121]
Rajendran, D.; Ramalingame, R.; Adiraju, A.; Nouri, H.; Kanoun, O. Role of solvent polarity on dispersion quality and stability of functionalized carbon nanotubes. J. Compos. Sci., 2022, 6(1), 26.
[http://dx.doi.org/10.3390/jcs6010026]
[122]
Montazeri, A.; Karjibani, M. Preparation and characterization of chitosan - double walled carbon nanotubes hydrogels. Int. J. Chemoinformatics Chem. Eng., 2017, 6(2), 21-30.
[http://dx.doi.org/10.4018/IJCCE.2017070102]
[123]
Boukari, Y.; Qutachi, O.; Scurr, D.J.; Morris, A.P.; Doughty, S.W.; Billa, N. A dual-application poly(DL-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. J. Biomater. Sci. Polym. Ed., 2017, 28(16), 1966-1983.
[http://dx.doi.org/10.1080/09205063.2017.1364100] [PMID: 28777694]
[124]
Zhao, H.; Tang, J.; Zhou, D.; Weng, Y.; Qin, W.; Liu, C.; Lv, S.; Wang, W.; Zhao, X. Electrospun icariin-loaded core-shell collagen, polycaprolactone, hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects. Int. J. Nanomedicine, 2020, 15, 3039-3056.
[http://dx.doi.org/10.2147/IJN.S238800] [PMID: 32431500]
[125]
Sundaram, N.M.; Deepthi, S.; Jayakumar, R. Chitosan-gelatin composite scaffolds in bone tissue engineering. In: Chitin and Chitosan for Regenerative Medicine; Springer, 2016; pp. 99-121.
[http://dx.doi.org/10.1007/978-81-322-2511-9_5]
[126]
Chen, S.; Shi, Y.; Zhang, X.; Ma, J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater. Sci. Eng. C, 2020, 112, 110893.
[http://dx.doi.org/10.1016/j.msec.2020.110893] [PMID: 32409051]
[127]
Bazli, L.; Yusuf, M.; Farahani, A.; Kiamarzi, M.; Seyedhosseini, Z.; Nezhadmansari, M.; Aliasghari, M.; Iranpoor, M. Application of composite conducting polymers for improving the corrosion behavior of various substrates: A Review. JCC, 2020, 2(5), 228-240.
[http://dx.doi.org/10.29252/jcc.2.4.7]
[128]
Fourie, J.; Taute, F.; du Preez, L.; De Beer, D. Chitosan composite biomaterials for bone tissue engineering-a review. Regen. Eng. Transl. Med., 2020, 8, 1-21.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy