Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Therapeutic Potential and Pharmacological Activities of Bioflavonoid ‘Ochnaflavone’ in Medicine: Diverse Scaffolds and Promise Leads for Drug Discovery

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 22, Issue 4, 2024

Published on: 12 March, 2024

Article ID: e120324227909 Pages: 6

DOI: 10.2174/0122113525284912240221115753

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Biflavonoids are natural phytocompounds that received enormous attention in various remedies due to their diverse biological activities. Biflavonoids have antiinflammatory, anti-leishmanial, anti-plasmodial, anti-viral and β-secretase inhibitory activity in medicine. Ochnaflavone is a biflavone class natural phytochemical isolated from plants belonging to the Ochnaceae family.

Methods: Scientific information on ochnaflavone was collected and analyzed in the present investigation to investigate the biological activities of ochnaflavone. The present paper describes the pharmacological activities and bioanalytical aspects of ochnaflavone based on the available scientific research on ochnaflavone in research work, books and other literature databases. Scientific data on ochnaflavone were collected from various scientific databases (Google, Science Direct, Scopus and PubMed) in this paper in order to investigate the health-beneficial potential of ochnaflavone in medicine. Further, the pharmacological activity of ochnaflavone was also collected in a detailed manner and discussed here in order to know the health-beneficial aspects of ochnaflavone.

Results: The therapeutic importance of ochnaflavone has been summarized in the present paper through available literature data on ochnaflavone in the scientific fields. Ochnaflavone was found to be an active phytochemical of Campylospermum excavatum, Cespedesia spathulata, Godoya antioquiensis, Lonicera japonica, Lonicerae Japonicae, Ochna afzelii, Ochna beddomei, Ochna beddomi, Ochna integerrima, Ochna kibbiensis, Ochna pretoriensis, Ochna squarrosa Linn., Selaginella trichoclada and Triclisia gilletii. Scientific data revealed the biological importance of ochnaflavone for its effectiveness on inflammation, SARS-CoV-2, fungal arthritis, enzymes, mutagenic effect, lymphocyte proliferation, and inhibition of arachidonate release. However, its antimycobacterial activity, cytotoxic effect, anti-HIV-1 activity, and antioxidant potential were also presented in this work. Further, analytical data on ochnaflavone has also been described.

Conclusion: The present paper describes the therapeutic role of ochnaflavone in human disorders with their analytical aspects.

Keywords: Ochnaflavone, medicine, inflammation, SARS-CoV-2, fungal arthritis, enzymes, mutagenic, lymphocyte proliferation, arachidonate, antimycobacterial, cytotoxic, Anti HIV-1.

Graphical Abstract
[1]
Patel, D.K. Therapeutic potential of a bioactive flavonoids glycitin from glycine max: A review on medicinal importance, pharmacological activities and analytical aspects. Curr. Tradit. Med., 2023, 9(2), e130522204766.
[http://dx.doi.org/10.2174/2215083808666220513143957]
[2]
Indrayanto, G. The importance of method validation in herbal drug research. J. Pharm. Biomed. Anal., 2022, 214, 114735.
[http://dx.doi.org/10.1016/j.jpba.2022.114735] [PMID: 35344789]
[3]
Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(3), 273-282.
[http://dx.doi.org/10.2174/1871530322666220520162251] [PMID: 35619306]
[4]
Cheng, W.; Li, S.; Han, J.; Su, J.; Cai, W. Supermolecules as a quality markers of herbal medicinal products. Heliyon, 2022, 8(12), e12497.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12497] [PMID: 36568034]
[5]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[6]
Patel, K.; Patel, D.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr. Bioact. Compd., 2021, 17(9), e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[7]
Abazari, M.; Akbari, T.; Hasani, M.; Sharifikolouei, E.; Raoufi, M.; Foroumadi, A.; Sharifzadeh, M.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym., 2022, 294, 119808.
[http://dx.doi.org/10.1016/j.carbpol.2022.119808] [PMID: 35868768]
[8]
Patel, D.K.; Patel, K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Pharmacol. Res. -Mod. Chin. Med, 2022, 5, 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[9]
Patel, D.K. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol. Res. -Mod. Chin. Med, 2022, 5, 100176.
[10]
Sharma, R.R.; Deep, A.; Abdullah, S.T. Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J. Ayurveda Integr. Med., 2022, 13(1), 100500.
[http://dx.doi.org/10.1016/j.jaim.2021.07.016] [PMID: 34973886]
[11]
Ogino, M.; Yamada, K.; Sato, H.; Onoue, S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PharmaNutrition, 2022, 22, 100318.
[http://dx.doi.org/10.1016/j.phanu.2022.100318]
[12]
Mishra, Y.; Amin, H.I.M.; Mishra, V.; Vyas, M.; Prabhakar, P.K.; Gupta, M.; Kanday, R.; Sudhakar, K.; Saini, S.; Hromić-Jahjefendić, A.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Ã.; Bakshi, H.; Tambuwala, M.M. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed. Pharmacother., 2022, 153, 113413.
[http://dx.doi.org/10.1016/j.biopha.2022.113413] [PMID: 36076482]
[13]
Xiong, Y.; Li, M.; Sun, P.; Liang, W.; Hornbeck, R.G.; Che, X.; Rao, C.; Zhao, Y.; Guo, L.; Huang, Y.; Yang, H.; Li, P.; Kroes, B.H.; Cui, X.; Franz, G.; Wang, M. Market access for Chinese herbal medicinal products in Europe—A ten-year review of relevant products, policies, and challenges. Phytomedicine, 2022, 103, 154237.
[http://dx.doi.org/10.1016/j.phymed.2022.154237] [PMID: 35688101]
[14]
Khalil, M.; Rita Caponio, G.; Diab, F.; Shanmugam, H.; Di Ciaula, A.; Khalifeh, H.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential healthy food ingredient. J. Funct. Foods, 2022, 90, 104993.
[http://dx.doi.org/10.1016/j.jff.2022.104993]
[15]
Nascimento, I.J.S.; Cavalcanti, M.A.T.; de Moura, R.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur. J. Med. Chem., 2023, 258, 115550.
[http://dx.doi.org/10.1016/j.ejmech.2023.115550] [PMID: 37336067]
[16]
da Silva-Júnior, E.F.; dos Santos, N.I.J. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen., 2022, 25(14), 2317-2340.
[http://dx.doi.org/10.2174/1386207324666210715165943] [PMID: 34269666]
[17]
Lan, H.N.; Liu, R.Y.; Liu, Z.H.; Li, X.; Li, B.Z.; Yuan, Y.J. Biological valorization of lignin to flavonoids. Biotechnol. Adv., 2023, 64, 108107.
[http://dx.doi.org/10.1016/j.biotechadv.2023.108107] [PMID: 36758651]
[18]
Li, N.; Shou, Z.; Yang, S.; Cheng, X.; Chen, C.; Zheng, S.; Shi, Y.; Tang, H. Subtle distinction in molecular structure of flavonoids leads to vastly different coating efficiency and mechanism of metal-polyphenol networks with excellent antioxidant activities. Colloids Surf. B Biointerfaces, 2023, 229, 113454.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113454] [PMID: 37499546]
[19]
Dey, S.; Biswas, B.; Ballav, S.; Sahu, V.K.; Ranjan, A.; Basu, S. Dietary flavonoids as modulators of non-coding RNAs in hormone-associated cancer. Food Chemist. Adv., 2023, 2, 100321.
[http://dx.doi.org/10.1016/j.focha.2023.100321]
[20]
Zheng, Z.X.; Liu, E.Y.; Wu, Q.Y.; Wu, J.H.; Dong, T.T.X.; Tsim, K.W.K. The flavonoids induce the transcription of mRNA encoding erythropoietin in cultured embryonic stem cells via the accumulation of hypoxia-inducible factor-1α. Chem. Biol. Interact., 2023, 382, 110609.
[http://dx.doi.org/10.1016/j.cbi.2023.110609] [PMID: 37348668]
[21]
Meng, Y.; Wei, Z.; Xue, C. Deciphering the interaction mechanism and binding mode between chickpea protein isolate and flavonoids based on experimental studies and molecular simulation. Food Chem., 2023, 429, 136848.
[http://dx.doi.org/10.1016/j.foodchem.2023.136848] [PMID: 37454615]
[22]
Han, H.; Dong, L.; Zhang, W.; Liao, Y.; Wang, L.; Wang, Q.; Ye, J.; Xu, F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. J. Plant Physiol., 2023, 287, 154054.
[http://dx.doi.org/10.1016/j.jplph.2023.154054] [PMID: 37487356]
[23]
Zhou, Q.; Wang, X.J.; Li, J.; Wu, Y.R.; Wang, W.; Yu, Z.Y.; Xiao, Y.Q.; Liu, Y.N.; Li, S.Y.; Zheng, M.M.; Zhou, Y.B.; Liu, K. Self-assembly and interaction mechanisms of edible dock protein and flavonoids regulated by the phenolic hydroxyl position. Food Chem., 2023, 424, 136383.
[http://dx.doi.org/10.1016/j.foodchem.2023.136383] [PMID: 37207603]
[24]
Barragán-Longoria, M.F.; Hinojosa-Alvarez, S.; Hernandez-Perez, J.; Gonzalez-Cobian, L.N.; Fabian-Ortiz, E.; Garcia-Roche, A.; Chavez-Santoscoy, R.A. Supplementation of flavonoids and inulin in Totoaba macdonaldi: Microbiota, liver gene expression and growth performance responses. Aquacult. Rep., 2023, 31, 101654.
[http://dx.doi.org/10.1016/j.aqrep.2023.101654]
[25]
Xie, Y.; Zhou, X.; Li, J.; Yao, X.; Liu, W.; Xu, P.; Tan, G. Cytotoxic effects of the biflavonoids isolated from Selaginella trichoclada on MCF-7 cells and its potential mechanism. Bioorg. Med. Chem. Lett., 2022, 56, 128486.
[http://dx.doi.org/10.1016/j.bmcl.2021.128486] [PMID: 34875389]
[26]
Menezes, J.C.J.M.D.S.; Diederich, M.F. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol. Res., 2021, 167, 105525.
[http://dx.doi.org/10.1016/j.phrs.2021.105525] [PMID: 33667686]
[27]
Ndoile, M.M.; van Heerden, F.R. Total synthesis of ochnaflavone. Beilstein J. Org. Chem., 2013, 9, 1346-1351.
[http://dx.doi.org/10.3762/bjoc.9.152] [PMID: 23946830]
[28]
Kim, H.P.; Park, H.; Son, K.H.; Chang, H.W.; Kang, S.S. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Arch. Pharm. Res., 2008, 31(3), 265-273.
[http://dx.doi.org/10.1007/s12272-001-1151-3] [PMID: 18409037]
[29]
Lee, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of arachidonate release from rat peritoneal macrophage by biflavonoids. Arch. Pharm. Res., 1997, 20(6), 533-538.
[http://dx.doi.org/10.1007/BF02975207] [PMID: 18982255]
[30]
Goossens, J.F.; Goossens, L.; Bailly, C. Hinokiflavone and related C–O–C-type biflavonoids as anti-cancer compounds: Properties and mechanism of action. Nat. Prod. Bioprospect., 2021, 11(4), 365-377.
[http://dx.doi.org/10.1007/s13659-021-00298-w] [PMID: 33534099]
[31]
Lee, J.H. Involvement of T-cell immunoregulation by ochnaflavone in therapeutic effect on fungal arthritis due to Candida albicans. Arch. Pharm. Res., 2011, 34(7), 1209-1217.
[http://dx.doi.org/10.1007/s12272-011-0720-0] [PMID: 21811929]
[32]
Makhafola, TJ; Samuel, BB; Elgorashi, EE Eloff, JN Ochnaflavone and ochnaflavone 7-O-methyl ether two antibacterial biflavonoids from ochna pretoriensis (Ochnaceae). Nat Prod Commun, 2012, 7, 1934578X1200701.
[33]
Moon, T.C.; Hwang, H.S.; Quan, Z.; Son, K.H.; Kim, C.H.; Kim, H.P.; Kang, S.S.; Son, J.K.; Chang, H.W. Ochnaflavone, naturally occurring biflavonoid, inhibits phospholipase A2 dependent phosphatidylethanolamine degradation in a CCl4-induced rat liver microsome. Biol. Pharm. Bull., 2006, 29(12), 2359-2361.
[http://dx.doi.org/10.1248/bpb.29.2359] [PMID: 17142963]
[34]
Kim, S.S.; Vo, V.A.; Park, H. Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE 2 Production. Bull. Korean Chem. Soc., 2014, 35(11), 3219-3223.
[http://dx.doi.org/10.5012/bkcs.2014.35.11.3219]
[35]
Su, X.; Zhu, Z.; Zhang, L.; Wang, Q.; Xu, M.; Lu, C.; Zhu, Y.; Zeng, J.; Duan, J.A.; Zhao, M. Anti-inflammatory property and functional substances of Lonicerae Japonicae Caulis. J. Ethnopharmacol., 2021, 267, 113502.
[http://dx.doi.org/10.1016/j.jep.2020.113502] [PMID: 33189843]
[36]
Bandyopadhyay, S.; Abiodun, O.A.; Ogboo, B.C.; Kola-Mustapha, A.T.; Attah, E.I.; Edemhanria, L.; Kumari, A.; Jaganathan, R.; Adelakun, N.S. Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein. J. Biomol. Struct. Dyn., 2022, 40(22), 11467-11483.
[http://dx.doi.org/10.1080/07391102.2021.1959401 ] [PMID: 34370622]
[37]
Hong, L.; He, M.; Li, S.; Zhao, J. Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chin. Med., 2022, 17(1), 84.
[http://dx.doi.org/10.1186/s13020-022-00637-0 ] [PMID: 35799189]
[38]
Han, T.; Luo, Z.; Ji, L.; Wu, P.; Li, G.; Liu, X.; Lai, Y. Identification of natural compounds as SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation. Front. Microbiol., 2023, 13, 1095068.
[http://dx.doi.org/10.3389/fmicb.2022.1095068] [PMID: 36817101]
[39]
Chang, H.W.; Baek, S.H.; Chung, K.W.; Son, K.H.; Kim, H.P.; Kang, S.S. Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun., 1994, 205(1), 843-849.
[http://dx.doi.org/10.1006/bbrc.1994.2741] [PMID: 7999121]
[40]
Chen, J.; Chang, H.W.; Kim, H.P.; Park, H. Synthesis of phospholipase A2 inhibitory biflavonoids. Bioorg. Med. Chem. Lett., 2006, 16(9), 2373-2375.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.117 ] [PMID: 16504502]
[41]
Oliveira, D.R.D.E.; DA, Silva M.R.; Otavio, A.C.; Rosane, N.C.; DE Oliveira, M.C.C.; Braz-Filho, R.; DE Carvalho, M.C. Phytochemical profile of Cespedesia spathulata leaves (Ochnaceae) and its effect on tyrosinase enzyme. An. Acad. Bras. Cienc., 2021, 93(4), e20200443.
[42]
Son, M.J.; Moon, T.C.; Lee, E.K.; Son, K.H.; Kim, H.P.; Kang, S.S.; Son, J.K.; Lee, S.H.; Chang, H.W. Naturally occurring biflavonoid, ochanflavone, inhibits cyclo-oxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch. Pharm. Res., 2006, 29(4), 282-286.
[http://dx.doi.org/10.1007/BF02968571] [PMID: 16681032]
[43]
Lee, S.J.; Choi, J.H.; Son, K.H.; Chang, H.W. kang, S.S.; Kim, H.P. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci., 1995, 57(6), 551-558.
[http://dx.doi.org/10.1016/0024-3205(95)00305-P ] [PMID: 7623623]
[44]
Tiam, E.R.; Ngono Bikobo, D.S.; Abouem A Zintchem, A.; Mbabi Nyemeck, N., II; Moni Ndedi, E.D.F.; Betote Diboué, P.H.; Nyegue, M.A.; Atchadé, A.T.; Pegnyemb, E.D.; Bochet, C.G.; Koert, U. Secondary metabolites from Triclisia gilletii (De Wild) Staner (Menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis. Nat. Prod. Res., 2019, 33(5), 642-650.
[http://dx.doi.org/10.1080/14786419.2017.1402324 ] [PMID: 29144174]
[45]
Reutrakul, V.; Ningnuek, N.; Pohmakotr, M.; Yoosook, C.; Napaswad, C.; Kasisit, J.; Santisuk, T.; Tuchinda, P. Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Med., 2007, 73(7), 683-688.
[http://dx.doi.org/10.1055/s-2007-981538] [PMID: 17562490]
[46]
Benedek, B.; Weniger, B.; Parejo, I.; Bastida, J.; Arango, G.J.; Lobstein, A.; Codina, C. Antioxidant activity of isoflavones and biflavones isolated from Godoya antioquiensis. Arzneimittelforschung, 2006, 56(9), 661-664.
[PMID: 17063642]
[47]
Kakabi, M.H.D.; Deke, J.M.S.; Tamokou, J.D.D.; Matsuete, G.T.; Nago, R.D.T.; Bitchagno, G. Two new flavone glycosides from the leaves of Ochna afzelii Oliv. (Ochnaceae). Nat. Prod. Res., 2022, 38(3), 447-457.
[PMID: 36148610]
[48]
Njock, G.B.B.; Grougnet, R.; Efstathiou, A.; Smirlis, D.; Genta-Jouve, G.; Michel, S.; Mbing, J.N.; Kritsanida, M. A nitrile glucoside and biflavones from the leaves of Campylospermum excavatum (Ochnaceae). Chem. Biodivers., 2017, 14(11), e1700241.
[http://dx.doi.org/10.1002/cbdv.201700241 ] [PMID: 28695668]
[49]
Jayaprakasam, B.; Damu, A.G.; Rao, K.V.; Gunasekar, D.; Blond, A.; Bodo, B. 7-O-Methyltetrahydroochnaflavone, a new biflavanone from Ochna beddomei. J. Nat. Prod., 2000, 63(4), 507-508.
[http://dx.doi.org/10.1021/np9902993 ] [PMID: 10785425]
[50]
Jayakrishna, G.; Reddy, M.K.; Jayaprakasam, B.; Gunasekar, D.; Blond, A.; Bodo, B. A new biflavonoid from Ochna beddomei. J. Asian Nat. Prod. Res., 2003, 5(2), 83-87.
[http://dx.doi.org/10.1080/1028602021000034100 ] [PMID: 12765191]
[51]
Ismail, A.M.; Musa, A.M.; Nasir, T.; Magaji, M.G.; Jega, Y.A.; Ibrahim, I. Anti-proliferative study and isolation of Ochnaflavone from the ethyl acetate-soluble fraction of Ochna kibbiensis Hutch & Dalziel. Nat. Prod. Res., 2017, 31(18), 2149-2152.
[http://dx.doi.org/10.1080/14786419.2016.1274892 ] [PMID: 28032512]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy