Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Focussed Analysis of β-cyclodextrins for Quinoxaline Derivatives Synthesis

Author(s): Hena Khatoon* and Emilia Abdul Malek

Volume 28, Issue 5, 2024

Published on: 11 March, 2024

Page: [368 - 374] Pages: 7

DOI: 10.2174/0113852728295463240216074814

Price: $65

Abstract

Cyclodextrins (CDs), which are a type of cyclic oligosaccharides, are widely used in supramolecular chemistry. For example, they can be used to encapsulate volatile compounds, such as drugs, within their hydrophobic cavity. This encapsulation reduces the volatility of the compounds and helps to retain their desired properties. Due to its extraordinary properties, cyclodextrins have been utilized as catalysts in numerous organic synthesis processes. An intrinsic objective of organic chemists is to optimize the efficacy of organic synthesis through the mitigation of chemical waste and energy expenditure. Utilizing water as a green solvent is, therefore, economical, environmentally sustainable, and secure. It appears that employing water in conjunction with a recyclable catalyst is the most effective method for supramolecular catalysis. As a consequence, we focused this review on the use of water as a solvent and cyclodextrin as a polymer catalyst to produce quinoxaline derivatives in an environmentally friendly and sustainable manner.

Keywords: Cyclodextrins, organic synthesis, quinoxaline derivatives, inclusion complexes, polymer, QDO’s, biological properties.

Graphical Abstract
[1]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[2]
Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Fundamentals and applications of cyclodextrins. In: Cyclodextrin fundamentals, reactivity and analysis; Springer, 2018.
[3]
Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol., 2020, 104, 132-143.
[http://dx.doi.org/10.1016/j.tifs.2020.08.009]
[4]
Gentili, A. Cyclodextrin-based sorbents for solid phase extraction. J. Chromatogr. A, 2020, 1609, 460654.
[http://dx.doi.org/10.1016/j.chroma.2019.460654] [PMID: 31679713]
[5]
Terada, Y.; Yanase, M.; Takata, H.; Takaha, T.; Okada, S. Cyclodextrins are not the major cyclic α-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J. Biol. Chem., 1997, 272(25), 15729-15733.
[http://dx.doi.org/10.1074/jbc.272.25.15729] [PMID: 9188466]
[6]
Larsen, D.; Beeren, S.R. Building up cyclodextrins from scratch - templated enzymatic synthesis of cyclodextrins directly from maltose. Chem. Commun., 2021, 57(20), 2503-2506.
[http://dx.doi.org/10.1039/D1CC00137J] [PMID: 33554997]
[7]
Landy, D.; Mallard, I.; Ponchel, A.; Monflier, E.; Fourmentin, S. Remediation technologies using cyclodextrins: An overview. Environ. Chem. Lett., 2012, 10(3), 225-237.
[http://dx.doi.org/10.1007/s10311-011-0351-1]
[8]
Villiers, A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt. Rend. Acad. Sci, 1891, 112, 536-538.
[9]
French, D. The schardinger dextrins. Adv. Carbohydr. Chem., 1957, 12, 189-260.
[http://dx.doi.org/10.1016/S0096-5332(08)60209-X] [PMID: 13617118]
[10]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[11]
Almagro, L.; Pedreño, M.Á. Use of cyclodextrins to improve the production of plant bioactive compounds. Phytochem. Rev., 2020, 19(4), 1061-1080.
[http://dx.doi.org/10.1007/s11101-020-09704-6]
[12]
Dass, C.R.; Jessup, W. Apolipoprotein A-I, cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. A review. J. Pharm. Pharmacol., 2010, 52(7), 731-761.
[http://dx.doi.org/10.1211/0022357001774606] [PMID: 10933125]
[13]
Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem., 2004, 39(9), 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[14]
Braga, S.S. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules, 2019, 9(12), 801.
[http://dx.doi.org/10.3390/biom9120801] [PMID: 31795222]
[15]
Heredia, A.; Requena, G.; Sánchez, F.G. An approach for the estimation of the polarity of the β-cyclodextrin internal cavity. J. Chem. Soc. Chem. Commun., 1985, (24), 1814-1815.
[http://dx.doi.org/10.1039/C39850001814]
[16]
Kajtár, M.; Vikmon, M.; Morlin, E.; Szejtli, J. Aggregation of amphotericin B in the presence of γ‐cyclodextin. Biopolymers, 1989, 28(9), 1585-1596.
[http://dx.doi.org/10.1002/bip.360280908] [PMID: 2775849]
[17]
Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, natural compounds, and plant bioactives-A nutritional perspective. Biomolecules, 2021, 11(3), 401.
[http://dx.doi.org/10.3390/biom11030401] [PMID: 33803150]
[18]
Easton, C.J.; Lincoln, S.F. Modified cyclodextrins: Scaffolds and templates for supramolecular chemistry; World Scientific, 1999.
[http://dx.doi.org/10.1142/p124]
[19]
Zhou, J.; Ritter, H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem., 2010, 1(10), 1552-1559.
[http://dx.doi.org/10.1039/c0py00219d]
[20]
Cosola, A.; Conti, R.; Rana, V.K.; Sangermano, M.; Chiappone, A.; Levalois-Grützmacher, J.; Grützmacher, H. Synthesis of γ-cyclodextrin substituted bis(acyl)phosphane oxide derivative (BAPO-γ-CyD) serving as multiple photoinitiator and crosslinking agent. Chem. Commun., 2020, 56(35), 4828-4831.
[http://dx.doi.org/10.1039/D0CC01732A] [PMID: 32236208]
[21]
Gao, Y.A.; Li, Z.H.; Du, J.M.; Han, B.X.; Li, G.Z.; Hou, W.G.; Shen, D.; Zheng, L.Q.; Zhang, G.Y. Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chemistry, 2005, 11(20), 5875-5880.
[http://dx.doi.org/10.1002/chem.200500120] [PMID: 16038004]
[22]
Tian, B.; Xiao, D.; Hei, T.; Ping, R.; Hua, S.; Liu, J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int., 2020, 69(7), 597-603.
[http://dx.doi.org/10.1002/pi.5992]
[23]
Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll., 2009, 23(7), 1631-1640.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[24]
Narayanan, G.; Boy, R.; Gupta, B.S.; Tonelli, A.E. Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym. Test., 2017, 62, 402-439.
[http://dx.doi.org/10.1016/j.polymertesting.2017.07.023]
[25]
Lima, F. Selective synthesis of mono- and disubstituted quinoxalines via heteroaromatic nucleophilic substitution of 2,3-dichloro-6,7-dinitroquinoxaline (DCDNQX) with anilines and phenols. ChemistrySelect, 2018, 3(38), 10782-10786.
[http://dx.doi.org/10.1002/slct.201802582]
[26]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[27]
Aatif, M.; Raza, M.A.; Javed, K.; Nashre-ul-Islam, S.M.; Farhan, M.; Alam, M.W. Potential nitrogen-based heterocyclic compounds for treating infectious diseases: A literature review. Antibiotics, 2022, 11(12), 1750.
[http://dx.doi.org/10.3390/antibiotics11121750] [PMID: 36551407]
[28]
Meka, G.; Chintakunta, R. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. Results Chem., 2023, 5, 100783.
[http://dx.doi.org/10.1016/j.rechem.2023.100783]
[29]
Khatoon, H.; Abdulmalek, E. Novel synthetic routes to prepare biologically active quinoxalines and their derivatives: A synthetic review for the last two decades. Molecules, 2021, 26(4), 1055.
[http://dx.doi.org/10.3390/molecules26041055] [PMID: 33670436]
[30]
Gobouri, A.A. Synthesis and biological evaluation of some N-substituted quinoxaline derivatives as antitumor agents. Russ. J. Bioorganic Chem., 2020, 46(3), 409-416.
[http://dx.doi.org/10.1134/S1068162020030097]
[31]
Alanazi, M.M.; Elkady, H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Al-Hossaini, A.M.; Alharbi, M.A.; Eissa, I.H.; Dahab, M.A. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J. Mol. Struct., 2022, 1253, 132220.
[http://dx.doi.org/10.1016/j.molstruc.2021.132220]
[32]
Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline derivatives as antiviral agents: A systematic review. Molecules, 2020, 25(12), 2784.
[http://dx.doi.org/10.3390/molecules25122784] [PMID: 32560203]
[33]
El-Zahabi, H.S.A. Synthesis, Characterization, and biological evaluation of some novel quinoxaline derivatives as antiviral agents. Arch. Pharm., 2017, 350(5), 1700028.
[http://dx.doi.org/10.1002/ardp.201700028] [PMID: 28407276]
[34]
Khatoon, H.; Abdul Malek, E.; Mohd Faudzi, S.M.; Khan, T.; Shabbir Ahmed, O. (2024, January). Synthesis of quinoxaline derivatives using different solvent systems, their potent antibacterial activities and molecular docking. Resul. Chem., 2024, 7, 101389.
[http://dx.doi.org/10.1016/j.rechem.2024.101389]
[35]
Khatoon, H.; Abdul Malek, E.; Faudzi, S.M.; Rukayadi, Y. (2024, February 12). Synthesis of a series of quinoxaline derivatives and their antibacterial effectiveness against pathogenic bacteria. ChemistrySelect, 2024, 9(7)
[http://dx.doi.org/10.1002/slct.202305073]
[36]
Abulkhair, H.S.; Elmeligie, S.; Ghiaty, A.; El-Morsy, A.; Bayoumi, A.H.; Ahmed, H.E.A.; El-Adl, K.; Zayed, M.F.; Hassan, M.H.; Akl, E.N.; El-Zoghbi, M.S. In vivo‐ and in silico‐driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch. Pharm., 2021, 354(5), 2000449.
[http://dx.doi.org/10.1002/ardp.202000449] [PMID: 33559320]
[37]
El-Helby, A.G.A.; Ayyad, R.R.A.; El-Adl, K.; Elwan, A. Quinoxalin-2(1H)-one derived AMPA-receptor antagonists: Design, synthesis, molecular docking and anticonvulsant activity. Med. Chem. Res., 2017, 26(11), 2967-2984.
[http://dx.doi.org/10.1007/s00044-017-1996-5]
[38]
García-Marín, J.; Griera, M.; Alajarín, R.; Rodríguez-Puyol, M.; Rodríguez-Puyol, D.; Vaquero, J.J. A computer‐driven scaffold‐hopping approach generating new PTP1B inhibitors from the pyrrolo[1,2‐a]quinoxaline Core. ChemMedChem, 2021, 16(18), 2895-2906.
[http://dx.doi.org/10.1002/cmdc.202100338] [PMID: 34137509]
[39]
Missioui, M.; Mortada, S.; Guerrab, W.; Demirtaş, G.; Mague, J.T.; Ansar, M.; El Abbes Faouzi, M.; Essassi, E.M.; Mehdar, Y.T.H.; Aljohani, F.S.; Said, M.A.; Ramli, Y. Greener pastures in evaluating antidiabetic drug for a quinoxaline derivative: Synthesis, characterization, molecular docking, in vitro and HSA/DFT/XRD studies. Arab. J. Chem., 2022, 15(6), 103851.
[http://dx.doi.org/10.1016/j.arabjc.2022.103851]
[40]
More, S.V.; Sastry, M.N.V.; Wang, C.C.; Yao, C.F. Molecular iodine: A powerful catalyst for the easy and efficient synthesis of quinoxalines. Tetrahedron Lett., 2005, 46(37), 6345-6348.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.026]
[41]
Cho, C.S.; Ren, W.X.; Shim, S.C. Ketones as a new synthon for quinoxaline synthesis. Tetrahedron Lett., 2007, 48(27), 4665-4667.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.044]
[42]
Taylor, R.; Robinson, R. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 2005(6), 1003-1005.
[http://dx.doi.org/10.1055/s-2005-864830]
[43]
Raw, S.A.; Wilfred, C.D.; Taylor, R.J.K. Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chem. Commun., 2003, 18(18), 2286-2287.
[http://dx.doi.org/10.1039/b307177b] [PMID: 14518877]
[44]
More, S.V.; Sastry, M.N.V.; Yao, C.F. Cerium (iv) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem., 2006, 8(1), 91-95.
[http://dx.doi.org/10.1039/B510677J]
[45]
Surendra, K.; Krishnaveni, N.S.; Sridhar, R.; Rao, K.R. Synthesis of β-hydroxysulfides from alkenes under supramolecular catalysis in the presence of β-cyclodextrin in water. J. Org. Chem., 2006, 71(15), 5819-5821.
[http://dx.doi.org/10.1021/jo060805a] [PMID: 16839175]
[46]
Madhav, B.; Narayana Murthy, S.; Prakash Reddy, V.; Rama Rao, K.; Nageswar, Y.V.D. Biomimetic synthesis of quinoxalines in water. Tetrahedron Lett., 2009, 50(44), 6025-6028.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.033]
[47]
Jia, S.Y.; Hao, Y.Q.; Li, L.N.; Chen, K.; Wu, Y.; Liu, J.; Wu, L.; Ding, Y. High chiral discrimination of 2,2′-ditellurobis(2-deoxy-β-cyclodextrin) in recognition of dansyl-D/L-phenylalanine. Chem. Lett., 2005, 34(9), 1248-1249.
[http://dx.doi.org/10.1246/cl.2005.1248]
[48]
Schneider, H.J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev., 1998, 98(5), 1755-1786.
[http://dx.doi.org/10.1021/cr970019t] [PMID: 11848948]
[49]
Senra, J.D.; Malta, L.F.B.; Souza, A.L.F.; Aguiar, L.C.S.; Antunes, O.A.C. Palladium on calcium carbonate combined to 2‐hydroxypropyl‐α/β‐cyclodextrins: A selective catalytic system for aqueous heck coupling and hydroarylation. Adv. Synth. Catal., 2008, 350(16), 2551-2558.
[http://dx.doi.org/10.1002/adsc.200800472]
[50]
Senra, J.D.; Malta, L.F.B.; de Souza, A.L.F.; Medeiros, M.E.; Aguiar, L.C.S.; Antunes, O.A.C. Phosphine-free Heck reactions in aqueous medium using hydroxypropylated cyclodextrins as supramolecular hosts. Tetrahedron Lett., 2007, 48(46), 8153-8156.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.095]
[51]
Cassez, A.; Kania, N.; Hapiot, F.; Fourmentin, S.; Monflier, E.; Ponchel, A. Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction. Catal. Commun., 2008, 9(6), 1346-1351.
[http://dx.doi.org/10.1016/j.catcom.2007.11.031]
[52]
Cassez, A.; Ponchel, A.; Hapiot, F.; Monflier, E. Unexpected multifunctional effects of methylated cyclodextrins in a palladium charcoal-catalyzed Suzuki-Miyaura reaction. Org. Lett., 2006, 8(21), 4823-4826.
[http://dx.doi.org/10.1021/ol061836v] [PMID: 17020312]
[53]
Kakulapati, R.; Akkilagunta, V.; Reddy, V. Aqueous-phase aerobic oxidation of alcohols by Ru/C in the presence of cyclodextrin: One-pot biomimetic approach to quinoxaline synthesis. Synlett, 2010, 2010(17), 2571-2574.
[http://dx.doi.org/10.1055/s-0030-1258775]
[54]
Zi, J.; Gu, D.W.; Zhang, Y.; Hu, Z.Y.; Zhang, X.Q.; Guo, X.X. Synthesis of quinoxalines through iodine-catalyzed one-pot annulation of alkynes with o-phenylenediamines. Synth. Commun., 2018, 48(8), 915-920.
[http://dx.doi.org/10.1080/00397911.2018.1428752]
[55]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Bahatheg, G.A.A. Fused quinoline heterocycles X. First synthesis of new four heterocyclic ring systems 10-amino-6,9-disubstituted-[1,2,4]triazino[4′,3′:1,5]pyrazolo[4,3-c]quinoline derivatives. Synth. Commun., 2017, 47(11), 1052-1064.
[http://dx.doi.org/10.1080/00397911.2017.1293110]
[56]
Dailey, S.; Feast, W.J.; Peace, R.J.; Sage, I.C.; Till, S.; Wood, E.L. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J. Mater. Chem., 2001, 11(9), 2238-2243.
[http://dx.doi.org/10.1039/b104674h]
[57]
Shivhare, K.N.; Siddiqui, I.R. β-cyclodextrin mediated synthesis of indole derivatives: Reactions of isatins with 2-amino(or 2-thiole)anilines by supramolecular catalysis in water. Supramol. Chem., 2019, 31(1), 52-61.
[http://dx.doi.org/10.1080/10610278.2018.1529315]
[58]
Kulkarni, M.S.; Kumbhar, A.S.; Mohan, H.; Rao, B.S.M. Synthesis, characterization and redox chemistry of Ru(II) complexes of N-methyl pyridyl quinoxaline. Dalton Trans., 2009, (31), 6185-6191.
[http://dx.doi.org/10.1039/b903446c] [PMID: 20449115]
[59]
Singh, S.B.; Verma, P.K.; Tiwari, K.; Srivastava, M.; Ankit, P.; Singh, M.; Singh, J.; Tiwari, K.P. Supramolecular catalysis in the synthesis of polyfunctionalised pyrroles. Supramol. Chem., 2014, 26(10-12), 882-889.
[http://dx.doi.org/10.1080/10610278.2013.877136]
[60]
Ghorad, A.; Mahalle, S.; Khillare, L.D.; Sangshetti, J.N.; Bhosle, M.R. β-Cyclodextrin as a biomimetic catalyst for the efficient synthesis of 4-oxo-pyrido [1,2-a] pyrimidine-3-carbonitrile in aqueous medium. Catal. Lett., 2017, 147(3), 640-648.
[http://dx.doi.org/10.1007/s10562-017-1983-y]
[61]
Cheng, Y.; Wang, X.; Li, W.; Chang, D. DFT study on the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine. J. Mol. Model., 2016, 22(12), 292.
[http://dx.doi.org/10.1007/s00894-016-3161-3] [PMID: 27878682]
[62]
Kumar, V.P.; Reddy, V.P.; Sridhar, R.; Srinivas, B.; Narender, M.; Rao, K.R. Supramolecular synthesis of 3-indolyl-3-hydroxy oxindoles under neutral conditions in water. J. Org. Chem., 2008, 73(4), 1646-1648.
[http://dx.doi.org/10.1021/jo702496s] [PMID: 18211093]
[63]
Akondi, A.M.; Mekala, S.; Kantam, M.L.; Trivedi, R.; Raju Chowhan, L.; Das, A. An expedient microwave assisted regio- and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. New J. Chem., 2017, 41(2), 873-878.
[http://dx.doi.org/10.1039/C6NJ02869A]
[64]
Tseng, C.H.; Chen, Y.R.; Tzeng, C.C.; Liu, W.; Chou, C.K.; Chiu, C.C.; Chen, Y.L. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 108, 258-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.031] [PMID: 26686931]
[65]
Saravana Mani, K.; Murugesapandian, B.; Kaminsky, W.; Rajendran, S.P. Enantioselective approach towards the synthesis of spiro-indeno [1,2-b] quinoxaline pyrrolothiazoles as antioxidant and antiproliferative. Tetrahedron Lett., 2018, 59(30), 2921-2929.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.035]
[66]
Khan, M.S.; Munawar, M.A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A.M.; Kousar, S.; Khan, M.A. Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(3), 1195-1200.
[http://dx.doi.org/10.1016/j.bmc.2013.12.024] [PMID: 24398385]
[67]
Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Atochin, D.N.; Zanoza, S.O.; Gaidarzhy, N.M.; Lyakhov, S.A.; Kirpotina, L.N.; Quinn, M.T. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem., 2019, 161, 179-191.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.023] [PMID: 30347329]
[68]
Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Hanks, T.S.; Kochetkova, I.; Pascual, D.W.; Jutila, M.A.; Quinn, M.T. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol. Pharmacol., 2012, 81(6), 832-845.
[http://dx.doi.org/10.1124/mol.111.077446] [PMID: 22434859]
[69]
Ren, W.; Zhao, Q.; Yu, M.; Guo, L.; Chang, H.; Jiang, X.; Luo, Y.; Huang, W.; He, G. Design and synthesis of novel spirooxindole-indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol. Divers., 2020, 24(4), 1043-1063.
[http://dx.doi.org/10.1007/s11030-019-10011-2] [PMID: 31834547]
[70]
Obot, I.B.; Obi-Egbedi, N.O. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Mater. Chem. Phys., 2010, 122(2-3), 325-328.
[http://dx.doi.org/10.1016/j.matchemphys.2010.03.037]
[71]
Kumari, R.; Singh, M. Photocatalytic reduction of fluorescent dyes in sunlight by newly synthesized spiroindenoquinoxaline pyrrolizidines. ACS Omega, 2020, 5(36), 23201-23218.
[http://dx.doi.org/10.1021/acsomega.0c02976] [PMID: 32954171]
[72]
Liao, L.G.; Song, M.M.; Feng, J.F.; Tan, M.; Liu, F.; Qiu, Z.J.; Zhang, S.; Li, B.J. Green synthesis of indeno[1,2-b]quinoxalines using β-cyclodextrin as catalyst. Molecules, 2022, 27(2), 580.
[http://dx.doi.org/10.3390/molecules27020580] [PMID: 35056894]
[73]
Chouker, M.A.; Abdallah, H.; Zeiz, A.; El-Dakdouki, M.H. Host-quest inclusion complex of quinoxaline-1,4-dioxide derivative with 2-hydroxypropyl-β-cyclodextrin: Preparation, characterization, and antibacterial activity. J. Mol. Struct., 2021, 1235, 130273.
[http://dx.doi.org/10.1016/j.molstruc.2021.130273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy