Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Enantioselective Zirconium-catalyzed Transformations

Author(s): Hélène Pellissier*

Volume 28, Issue 5, 2024

Published on: 05 March, 2024

Page: [346 - 367] Pages: 22

DOI: 10.2174/0113852728293307240208160333

Price: $65

Abstract

The cheaper and less-toxic metals of group 4 compared with common metals used in catalysis are increasingly applied in catalysis, resulting in the development of many novel greener transformations. Zirconium is abundant, non-toxic, and exhibits a remarkably diversified chemical reactivity among these metals. Since the first asymmetric zirconium-catalyzed reaction disclosed by Nugent in 1992, a wide variety of chiral zirconium catalysts have been proven to be capable of promoting many types of highly enantioselective transformations, spanning from standard reactions, such as Friedel-Crafts reactions, cycloadditions, aldol reactions, Mannich reactions, epoxidations, nucleophilic additions to carbonyl compounds and derivatives, cyanations, ring-opening reactions, hydroxylations, hydroformylations, carboaluminations among others, to more modern and complex domino and tandem processes. This review aims to collect the major progress achieved in the field of enantioselective transformations of all types promoted by chiral zirconium catalysts, covering the literature since the beginning of 2003 and illustrating the power of these non-toxic catalysts to provide high enantioselectivity in almost all kinds of asymmetric organic reactions. It is divided into ten parts, focussing consecutively on enantioselective Friedel-Crafts reactions, cycloadditions, aldol reactions, Mannich reactions, epoxidations, additions of alkylzinc reagents to imines, cyanations, ring-opening reactions, hydroxylations, and domino/ tandem reactions. The diversity of these transformations well reflects that of the products synthesized. For example, chiral indole and pyrrole derivatives were prepared from Friedel-Crafts reactions; pyranones, pyridones and pyrazolidines from cycloadditions; β-hydroxy α-diazo carbonyl compounds, β- hydroxy (thio)esters and β-hydroxy-α-amino acid derivatives from aldol reactions; β-amino (thio)esters from Mannich reactions; functionalized epoxides from epoxidations; amines from additions of alkylzinc reagents to imines; amino nitriles from cyanations; 1,2-diamines and β-vinyloxy alcohols from ring-opening processes; 2- hydroxy 1-indanones from hydroxylations; various amines, 1,3-anti-diol monoesters, β-amino esters, α,β- dihydroxy acid derivatives, α-amino ketones, indoles, cyclopentane and aryl α-aminophosphonates from domino/ tandem reactions. Furthermore, the utility of these novel methodologies was demonstrated in the total synthesis of numerous essential bioactive products, such as (+)-prelactone C, (+)-9-deoxygoniopypyrone, (+)- coniine, vancomycin, (+)-fusarisetin A, mycolipenic acid, onchidin, indoxacarb, tachykinin receptor antagonists, cerebroprotecting agent MS-153, and L-erythro-sphingosine.

The advances achieved in the last three decades demonstrate that the non-toxicity, abundance, and efficiency of zirconium make its application in catalysis suiting the growing demand for more environmentally benign processes, offering the real opportunity to replace other toxic and expensive metals in the near future.

Keywords: Zirconium, asymmetric catalysis, transition metals, enantioselectivity, enantioselective transformations, chirality.

Graphical Abstract
[1]
(a) Noyori, R. Asymmetric Catalysts in Organic Synthesis; Wiley-VCH: New-York, 1994. ;
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998. I and II.
[http://dx.doi.org/10.1002/9783527619399];
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999. ;
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley-VCH: New-York, 2000.
[http://dx.doi.org/10.1002/0471721506];
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, 2002. ;
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New cascade and multiple cross-coupling reactions for the efficient construction of complex molecules. J. Organomet. Chem., 2002, 653(1-2), 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3];
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004. ;
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747]
[2]
(a) Lappert, M.F. In: Comprehensive organometallic chemistry. Pergamon: Oxford, 1995; pp. 213-632.;
(b) Pellissier, H. Recent developments in enantioselective titanium-catalyzed transformations. Coord. Chem. Rev., 2022, 463, 214537.
[http://dx.doi.org/10.1016/j.ccr.2022.214537]
[3]
Hart, D.W.; Schwartz, J. Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J. Am. Chem. Soc., 1974, 96(26), 8115-8116.
[http://dx.doi.org/10.1021/ja00833a048]
[4]
Cardin, D.J.; Lappert, M.F.; Raston, C.L.; Riley, P.I. In: Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F.; Abel, E.W., Eds.; Pergamon: New York, 1982, pp. 549-646.
[5]
Van Horn, D.E.; Negishi, E. Selective carbon-carbon bond formation via transition metal catalysts. 8. Controlled carbometalation. Reaction of acetylenes with organoalane-zirconocene dichloride complexes as a route to stereo- and regio-defined trisubstituted olefins. J. Am. Chem. Soc., 1978, 100(7), 2252-2254.
[http://dx.doi.org/10.1021/ja00475a058]
[6]
(a) Krohn, K.; Khambabaee, K.; Rieger, H. Transition-metal-catalyzed oxidations. 2. Titanium- or zirconium-catalyzed selective dehydrogenation of benzyl alcohols to aldehydes and ketones with tert-butyl hydroperoxide. Chem. Ber., 1990, 123(6), 1357-1364.
[http://dx.doi.org/10.1002/cber.19901230626];
(b) Krohn, K.; Vinke, I.; Adam, H. Transition-metal catalyzed oxidations. 7. zirconium-catalyzed oxidation of primary and secondary alcohols with hydroperoxides. J. Org. Chem., 1996, 61(4), 1467-1472.
[http://dx.doi.org/10.1021/jo9518720]
[7]
Sawaki, T.; Aoyama, Y. Immobilization of a soluble metal complex in an organic network. remarkable catalytic performance of a porous dialkoxyzirconium polyphenoxide as a functional organic zeolite analogue. J. Am. Chem. Soc., 1999, 121(20), 4793-4798.
[http://dx.doi.org/10.1021/ja9900407]
[8]
Froese, R.D.J.; Musaev, D.G.; Matsubara, T.; Morokuma, K. Theoretical studies of ethylene polymerization reactions catalyzed by zirconium and titanium chelating alkoxide complexes. J. Am. Chem. Soc., 1997, 119(31), 7190-7196.
[http://dx.doi.org/10.1021/ja970861g]
[9]
Nugent, W.A. Chiral lewis acid catalysis. Enantioselective addition of azide to meso epoxides. J. Am. Chem. Soc., 1992, 114(7), 2768-2769.
[http://dx.doi.org/10.1021/ja00033a090]
[10]
Kondakov, D.Y.; Negishi, E. Zirconium-catalyzed enantioselective methylalumination of monosubstituted alkenes. J. Am. Chem. Soc., 1995, 117(43), 10771-10772.
[http://dx.doi.org/10.1021/ja00148a031]
[11]
Hoveyda, A.H. Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley: Weinheim, 2002, p. 180.
[http://dx.doi.org/10.1002/3527600671.ch6]
[12]
Yamasaki, S.; Kanai, M.; Shibasaki, M. Zirconium alkoxides in catalysis. Chemistry, 2001, 7(19), 4066-4073.
[http://dx.doi.org/10.1002/1521-3765(20011001)7:19<4066::AIDCHEM4066>3.0.CO;2-K] [PMID: 11686584]
[13]
(a) Michon, C.; Abadie, M.A.; Medina, F.; Agbossou-Niedercorn, F. Recent metal-catalysed asymmetric hydroaminations of alkenes. J. Organomet. Chem., 2017, 847, 13-27.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.032];
(b) Xu, S.; Negishi, E. Zirconium-catalyzed asymmetric carboalumination of unactivated terminal alkenes. Acc. Chem. Res., 2016, 49(10), 2158-2168.
[http://dx.doi.org/10.1021/acs.accounts.6b00338] [PMID: 27685327];
(c) Notz, S.; Scharf, S.; Lang, H. Recent metal-catalysed asymmetric hydroaminations of alkenes. Molecules, 2003, 28, 2702-2737.
[http://dx.doi.org/10.3390/molecules28062702] [PMID: 36985673]
[14]
(a) Jørgensen, K.A. Asymmetric Friedel-Crafts reactions: Catalytic enantioselective addition of aromatic and heteroaromatic C-H bonds to activated alkenes, carbonyl compounds, and imines. Synthesis, 2003, 2003(7), 1117-1125.
[http://dx.doi.org/10.1055/s-2003-39176];
(b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. New catalytic approaches in the stereoselective Friedel-Crafts alkylation reaction. Angew. Chem. Int. Ed., 2004, 43(5), 550-556.
[http://dx.doi.org/10.1002/anie.200301679] [PMID: 14743405];
(c) Bandini, M.; Umani-Ronchi, A.; Melloni, A.; Tommasi, S. A journey across recent advances in catalytic and stereoselective alkylation of indoles. Synlett, 2005, 2005(8), 1199-1222.
[http://dx.doi.org/10.1055/s-2005-865210]
[15]
Blay, G.; Fernández, I.; Pedro, J.R.; Vila, C. Highly enantioselective Friedel- Crafts alkylations of indoles with simple enones catalyzed by zirconium(IV)-BINOL complexes. Org. Lett., 2007, 9(13), 2601-2604.
[http://dx.doi.org/10.1021/ol0710820] [PMID: 17523654]
[16]
Blay, G.; Cano, J.; Cardona, L.; Fernández, I.; Muñoz, M.C.; Pedro, J.R.; Vila, C. NMR spectroscopic characterization and DFT calculations of zirconium(IV)-3,3′-Br2-BINOLate and related complexes used in an enantioselective Friedel-Crafts alkylation of indoles with α,β-unsaturated ketones. J. Org. Chem., 2012, 77(23), 10545-10556.
[http://dx.doi.org/10.1021/jo3013594] [PMID: 23126442]
[17]
Blay, G.; Fernández, I.; Pedro, J.R.; Vila, C. Catalytic enantioselective Friedel-Crafts alkylation at the 2-position of indole with simple enones. Tetrahedron Lett., 2007, 48(38), 6731-6734.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.090]
[18]
Blay, G.; Fernández, I.; Monleón, A.; Muñoz, M.C.; Pedro, J.R.; Vila, C. Synthesis of functionalized indoles with an α-stereogenic ketone moiety through an enantioselective Friedel-Crafts alkylation with (E)-1,4-diaryl-2-butene-1,4-diones. Adv. Synth. Catal., 2009, 351(14-15), 2433-2440.
[http://dx.doi.org/10.1002/adsc.200900357]
[19]
(a) Blay, G.; Fernandez, I.; Carmen Munoz, M.; Pedro, J.R.; Vila, C. Synthesis of functionalized indoles with an α-stereogenic ketone moiety through an enantioselective Friedel-Crafts alkylation with (E)-1,4-diaryl-2-butene-1,4-diones. Chemistry, 2010, 16, 9117-9122.
[http://dx.doi.org/10.1002/chem.201000568] [PMID: 20583054];
(b) Pedro, J.; Blay, G.; Fernández, I.; Vila, C. Enantioselective synthesis of substituted indoles through zirconium(IV)-catalyzed Friedel-Crafts alkylation. Synthesis, 2012, 44(23), 3590-3594.
[http://dx.doi.org/10.1055/s-0032-1317161]
[20]
Blay, G.; Fernández, I.; Monleón, A.; Pedro, J.R.; Vila, C. Enantioselective zirconium-catalyzed Friedel-Crafts alkylation of pyrrole with trifluoromethyl ketones. Org. Lett., 2009, 11(2), 441-444.
[http://dx.doi.org/10.1021/ol802509m] [PMID: 19128193]
[21]
Blay, G.; Fernández, I.; Muñoz, M.C.; Pedro, J.R.; Recuenco, A.; Vila, C. Enantioselective synthesis of tertiary alcohols through a zirconium-catalyzed Friedel-Crafts alkylation of pyrroles with α-ketoesters. J. Org. Chem., 2011, 76(15), 6286-6294.
[http://dx.doi.org/10.1021/jo2010704] [PMID: 21682323]
[22]
(a) Boger, D.L. Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds.; Pergamon: New York, 1991, Vol. 5, p. 451.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00130-X];
(b) Tietze, L.F.; Kettschau, G. Hetero Diels-Alder reactions in organic chemistry. Top. Curr. Chem., 1997, 189, 1-120.
[http://dx.doi.org/10.1007/BFb0119240];
(c) Carmona, D.; Pilar Lamata, M.; Oro, L.A. Recent advances in homogeneous enantioselective Diels-Alder reactions catalyzed by chiral transitionmetal complexes. Coord. Chem. Rev., 2000, 200-202, 717-772.
[http://dx.doi.org/10.1016/S0010-8545(00)00355-6];
(d) Jørgensen, K.A. Catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Angew. Chem. Int. Ed., 2000, 39(20), 3558-3588.
[http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3558::AIDANIE3558>3.0.CO;2-I] [PMID: 11091406];
(e) Pellissier, H. Asymmetric hetero-Diels-Alder reactions of carbonyl compounds. Tetrahedron, 2009, 65(15), 2839-2877.
[http://dx.doi.org/10.1016/j.tet.2009.01.068];
(f) Foster, R.A.A.; Willis, M.C. Tandem inverse-electron-demand hetero/ retro-Diels-Alder reactions for aromatic nitrogen heterocycle synthesis. Chem. Soc. Rev., 2013, 42(1), 63-76.
[http://dx.doi.org/10.1039/C2CS35316D] [PMID: 23079670]
[23]
(a) Oppolzer, W. In: Comprehensive Organic Synthesis; Trost, B.; Fleming, I., Eds.; Pergamon: Oxford, 1991, p. 315.;
(b) Kagan, H.B.; Riant, O. Catalytic asymmetric diels alder reactions. Chem. Rev., 1992, 92(5), 1007-1019.
[http://dx.doi.org/10.1021/cr00013a013];
(c) Pindur, U.; Lutz, G.; Otto, C. Acceleration and selectivity enhancement of diels-alder reactions by special and catalytic methods. Chem. Rev., 1993, 93(2), 741-761.
[http://dx.doi.org/10.1021/cr00018a006];
(d) Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev., 1996, 96(1), 49-92.
[http://dx.doi.org/10.1021/cr950016l] [PMID: 11848744];
(e) Evans, D.A.; Johnson, J.S. In: Comprehensive Asymmetric Catalysis; Jacobsen, E.; Pfaltz, A., Eds.; Springer: New York, 1999, p. 3.;
(f) Maruoka, K. Catalytic Asymmetric Synthesis, 2nd ed; Ojima, I., Ed.; Wiley: New York, 2000, pp. 467-491.;
(g) Hayashi, Y. Cycloaddition Reactions in Organic Synthesis; Kobayashi, S.; Jørgensen, K.A., Eds.; Wiley-VCH: Weinheim, 2001, p. 5.
[http://dx.doi.org/10.1002/3527600256.ch1];
(h) Corey, E.J. Catalytic enantioselective Diels-Alder reactions: Methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed., 2002, 41(10), 1650-1667.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650::AIDANIE1650>3.0.CO;2-B] [PMID: 19750685];
(i) Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed., 2002, 41(10), 1668-1698.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1668::AIDANIE1668>3.0.CO;2-Z] [PMID: 19750686];
(j) Takao, K.; Munakata, R.; Tadano, K. Recent advances in natural product synthesis by using intramolecular Diels-Alder reactions. Chem. Rev., 2005, 105(12), 4779-4807.
[http://dx.doi.org/10.1021/cr040632u] [PMID: 16351062];
(k) Reymond, S.; Cossy, J. Copper-catalyzed diels-alder reactions. Chem. Rev., 2008, 108(12), 5359-5406.
[http://dx.doi.org/10.1021/cr078346g] [PMID: 18942879]
[24]
Kobayashi, S.; Komiyama, S.; Ishitani, H. The first enantioselective aza- Diels-Alder reactions of imino dienophiles on use of a chiral zirconium catalyst. Angew. Chem. Int. Ed., 1998, 37(7), 979-981.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<979::AIDANIE979>3.0.CO;2-5] [PMID: 29711477]
[25]
Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. Chiral hetero Diels- Alder products by enantioselective and diastereoselective zirconium catalysis. Scope, limitation, mechanism, and application to the concise synthesis of (+)-Prelactone C and (+)-9-deoxygoniopypyrone. J. Am. Chem. Soc., 2003, 125(13), 3793-3798.
[http://dx.doi.org/10.1021/ja028186k] [PMID: 12656612]
[26]
Seki, K.; Ueno, M.; Kobayashi, S. Storable, powdered chiral zirconium complex for asymmetric aldol and hetero Diels-Alder reactions. Org. Biomol. Chem., 2007, 5(9), 1347-1350.
[http://dx.doi.org/10.1039/B701466J] [PMID: 17464402]
[27]
Kobayashi, S.; Ueno, M.; Saito, S.; Mizuki, Y.; Ishitani, H.; Yamashita, Y. Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels-Alder, aldol, and hetero Diels-Alder reactions. Proc. Natl. Acad. Sci., 2004, 101(15), 5476-5481.
[http://dx.doi.org/10.1073/pnas.0307870101] [PMID: 15067139]
[28]
Yamashita, Y.; Mizuki, Y.; Kobayashi, S. Catalytic asymmetric aza Diels-Alder reactions of hydrazones using a chiral zirconium catalyst. Tetrahedron Lett., 2005, 46(11), 1803-1806.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.111]
[29]
Pellissier, H. Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 2007, 63(16), 3235-3285.
[http://dx.doi.org/10.1016/j.tet.2007.01.009]
[30]
Yamashita, Y.; Kobayashi, S. Zirconium-catalyzed enantioselective [3+2] cycloaddition of hydrazones to olefins leading to optically active pyrazolidine, pyrazoline, and 1,3-diamine derivatives. J. Am. Chem. Soc., 2004, 126(36), 11279-11282.
[http://dx.doi.org/10.1021/ja049498l] [PMID: 15355109]
[31]
Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619566]
[32]
Yao, W.; Wang, J. Direct catalytic asymmetric aldol-type reaction of aldehydes with ethyl diazoacetate. Org. Lett., 2003, 5(9), 1527-1530.
[http://dx.doi.org/10.1021/ol0343257] [PMID: 12713315]
[33]
Kobayashi, S.; Saito, S.; Ueno, M.; Yamashita, Y. An air-stable, storable chiral zirconium catalyst for asymmetric aldol reactions. Chem. Commun., 2003, (16), 2016-2017.
[http://dx.doi.org/10.1039/b305273g] [PMID: 12934889]
[34]
Kobayashi, J.; Nakamura, M.; Mori, Y.; Yamashita, Y.; Kobayashi, S. Catalytic enantio- and diastereoselective aldol reactions of glycine-derived silicon enolate with aldehydes: An efficient approach to the asymmetric synthesis of anti-β-hydroxy-α-amino acid derivatives. J. Am. Chem. Soc., 2004, 126(30), 9192-9193.
[http://dx.doi.org/10.1021/ja047597t] [PMID: 15281803]
[35]
Isoda, T.; Akiyama, R.; Oyamada, H.; Kobayashi, S. A 100 gram‐scale production of a key building block of antibacterial vancomycin: The use of an air‐stable chiral zirconium catalyst and complete recovery of a silicon source in catalytic asymmetric mukaiyama aldol reaction. Adv. Synth. Catal., 2006, 348(14), 1813-1817.
[http://dx.doi.org/10.1002/adsc.200606182]
[36]
Taddei, M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord. Chem. Rev., 2017, 343, 1-24.
[http://dx.doi.org/10.1016/j.ccr.2017.04.010]
[37]
Zhu, J.; Meng, X.; Liu, W.; Qi, Y.; Jin, S.; Huo, S. Regulated synthesis of Zr-metal-organic frameworks with variable hole size and its influence on the performance of novel MOF-based heterogeneous amino acid-thiourea catalysts. RSC Advances, 2022, 12(33), 21574-21581.
[http://dx.doi.org/10.1039/D2RA03747E] [PMID: 35975053]
[38]
Ishitani, H.; Ueno, M.; Kobayashi, S. Catalytic enantioselective mannich-type reactions using a novel chiral zirconium catalyst. J. Am. Chem. Soc., 1997, 119(30), 7153-7154.
[http://dx.doi.org/10.1021/ja970498d]
[39]
Ihori, Y.; Yamashita, Y.; Ishitani, H.; Kobayashi, S. Chiral zirconium catalysts using multidentate BINOL derivatives for catalytic enantioselective Mannich-type reactions; ligand optimization and approaches to elucidation of the catalyst structure. J. Am. Chem. Soc., 2005, 127(44), 15528-15535.
[http://dx.doi.org/10.1021/ja053524d] [PMID: 16262417]
[40]
Mouhtady, O.; Gaspard-Iloughmane, H.; Laporterie, A.; Roux, C.L. (R)-6,6′-Bis(trifluoromethanesulfonyl)-2,2′-dihydroxy-1,1′-binaphthyl: A new ligand for asymmetric synthesis. Tetrahedron Lett., 2006, 47(25), 4125-4128.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.069]
[41]
Saruhashi, K.; Kobayashi, S. Remarkably stable chiral zirconium complexes for asymmetric Mannich-type reactions. J. Am. Chem. Soc., 2006, 128(34), 11232-11235.
[http://dx.doi.org/10.1021/ja062776r] [PMID: 16925442]
[42]
Kobayashi, S.; Salter, M.M.; Yamazaki, Y.; Yamashita, Y. Chiral zirconium complex as Brønsted base catalyst in asymmetric direct-type Mannich reactions. Chem. Asian J., 2010, 5(3), 493-495.
[http://dx.doi.org/10.1002/asia.200900524] [PMID: 20099294]
[43]
(a) Yudin, A. Aziridines and Epoxides in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/3527607862];
(b) Pineschi, M. Asymmetric ring‐opening of epoxides and aziridines with carbon nucleophiles. Eur. J. Org. Chem., 2006, 2006(22), 4979-4988.
[http://dx.doi.org/10.1002/ejoc.200600384];
(c) Johnson, J.B. In: Science of Synthesis, Stereoselective Synthesis; De Vries, J. G.; Molander, G. A.; Evans, P. A., Eds.; Georg Thieme: Stuttgart, 2011, pp. 759-827.;
(d) Pellissier, H.; Lattanzi, A.; Dalpozzo, R. Asymmetric Synthesis of Three-Membered Rings; Wiley: Weinheim, 2017.
[http://dx.doi.org/10.1002/9783527802029];
(e) Dalpozzo, R.; Lattanzi, A.; Pellissier, H. Applications of chiral three-membered rings for total synthesis: A review. Curr. Org. Chem., 2017, 21(13), 1143-1191.
[http://dx.doi.org/10.2174/1385272821666170221151356]
[44]
Katsuki, T.; Sharpless, K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc., 1980, 102(18), 5974-5976.
[http://dx.doi.org/10.1021/ja00538a077]
[45]
(a) Jacobsen, E.N.; Wu, M.N. In: Comprehensive asymmetric catalysis I-III; Jacobsen, E.N.; Pfaltz, A., Eds.; Springer: Berlin, 1999, pp. 649-677.;
(b) Bäckvall, E.J. Modern oxidation methods; Wiley-VCH: Weinheim, 2004. ;
(c) Matsumoto, K.; Katsuki, T. In: Asymmetric Synthesis; Christmann, M.; Brase, S., Eds.; Wiley-VCH: Weinheim, 2009, pp. 123-127.;
(d) Burke, A.J.; Carreiro, E.P. Comprehensive Inorganic Chemistry II; Reedijk, J.; Poeppelmeier, K., Eds.; Elsevier: Amsterdam, 2013, pp. 309-382.
[http://dx.doi.org/10.1016/B978-0-08-097774-4.00614-8]
[46]
Ikegami, S.; Katsuki, T.; Yamaguchi, M. Asymmetric epoxidation of homoallylic alcohols using zirconium tetrapropoxide, dicyclohexyltartramide, and t-butyl hydroperoxide system. Chem. Lett., 1987, 16(1), 83-84.
[http://dx.doi.org/10.1246/cl.1987.83]
[47]
Okachi, T.; Murai, N.; Onaka, M. Catalytic enantioselective epoxidation of homoallylic alcohols by chiral zirconium complexes. Org. Lett., 2003, 5(1), 85-87.
[http://dx.doi.org/10.1021/ol027261t] [PMID: 12509897]
[48]
Kramer, R.; Berkenbusch, T.; Brückner, R. Stereocomplementary desymmetrizations of divinylcarbinols by zirconium(IV)‐ vs. Titanium(IV)‐mediated asymmetric epoxidations. Adv. Synth. Catal., 2008, 350(7-8), 1131-1148.
[http://dx.doi.org/10.1002/adsc.200700608]
[49]
Li, Z.; Yamamoto, H. Zirconium(IV)- and hafnium(IV)-catalyzed highly enantioselective epoxidation of homoallylic and bishomoallylic alcohols. J. Am. Chem. Soc., 2010, 132(23), 7878-7880.
[http://dx.doi.org/10.1021/ja100951u] [PMID: 20481541]
[50]
Kohyama, A.; Kanoh, N.; Kwon, E.; Iwabuchi, Y. An enantiocontrolled entry to the tricyclic polar segment of (+)-fusarisetin A. Tetrahedron Lett., 2016, 57(5), 517-519.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.049]
[51]
Jang, J.H.; Asami, Y.; Jang, J.P.; Kim, S.O.; Moon, D.O.; Shin, K.S.; Hashizume, D.; Muroi, M.; Saito, T.; Oh, H.; Kim, B.Y.; Osada, H.; Ahn, J.S. Fusarisetin A, an acinar morphogenesis inhibitor from a soil fungus, Fusarium sp. FN080326. J. Am. Chem. Soc., 2011, 133(18), 6865-6867.
[http://dx.doi.org/10.1021/ja1110688] [PMID: 21500849]
[52]
He, L.; Liu, W.J.; Ren, L.; Lei, T.; Gong, L.Z. Storable and air‐stable zirconium complex‐catalyzed highly enantioselective darzens reaction of diazoacetamide with aldehydes. Adv. Synth. Catal., 2010, 352(7), 1123-1127.
[http://dx.doi.org/10.1002/adsc.200900845]
[53]
Traverse, J.F.; Hoveyda, A.H.; Snapper, M.L. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines. Org. Lett., 2003, 5(18), 3273-3275.
[http://dx.doi.org/10.1021/ol035138b] [PMID: 12943405]
[54]
Fu, P.; Snapper, M.L.; Hoveyda, A.H. Catalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoimines. J. Am. Chem. Soc., 2008, 130(16), 5530-5541.
[http://dx.doi.org/10.1021/ja8001343] [PMID: 18376838]
[55]
(a) Gröger, H. Catalytic enantioselective Strecker reactions and analogous syntheses. Chem. Rev., 2003, 103(8), 2795-2828.
[http://dx.doi.org/10.1021/cr020038p] [PMID: 12914481];
(b) Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182];
(c) Taylor, M.S.; Jacobsen, E.N. Asymmetric catalysis by chiral hydrogenbond donors. Angew. Chem. Int. Ed., 2006, 45(10), 1520-1543.
[http://dx.doi.org/10.1002/anie.200503132] [PMID: 16491487];
(d) Shibasaki, M.; Kanai, M.; Mita, T. The catalytic asymmetric strecker reaction. Org. React., 2008, 70, 1-119.
[56]
(a) Khan, N.H.; Kureshy, R.I.; Abdi, S.H.R.; Agrawal, S.; Jasra, R.V. Metal catalyzed asymmetric cyanation reactions. Coord. Chem. Rev., 2008, 252(5- 7), 593-623.
[http://dx.doi.org/10.1016/j.ccr.2007.09.010];
(b) North, M.; Usanov, D.L.; Young, C. Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 2008, 108(12), 5146-5226.
[http://dx.doi.org/10.1021/cr800255k] [PMID: 19067648];
(c) North, M. A bimetallic titanium catalyst for the enantioselective cyanation of aldehydes based on cooperative catalysis. Angew. Chem. Int. Ed., 2010, 49(44), 8079-8081.
[http://dx.doi.org/10.1002/anie.201003014] [PMID: 20809557];
(d) Pellissier, H. Enantioselective titanium‐catalyzed cyanation reactions of carbonyl compounds. Adv. Synth. Catal., 2015, 357(5), 857-882.
[http://dx.doi.org/10.1002/adsc.201400939]
[57]
Ishitani, H.; Komiyama, S.; Kobayashi, S. Catalytic, enantioselective synthesis of α-aminonitriles with a novel zirconium catalyst. Angew. Chem. Int. Ed., 1998, 37(22), 3186-3188.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3186::AIDANIE3186>3.0.CO;2-E] [PMID: 29711328]
[58]
Chen, Y.J.; Chen, C. Enantioselective Strecker-type reaction of phosphinoyl ketimines catalyzed by a chiral Zr-bipyridyldiol catalyst. Tetrahedron Asymmetry, 2008, 19(18), 2201-2209.
[http://dx.doi.org/10.1016/j.tetasy.2008.09.011]
[59]
Jin, F.Z.; Zhao, C.C.; Ma, H.C.; Chen, G.J.; Dong, Y.B. Homochiral BINAPDA- Zr-MOF for heterogeneous asymmetric cyanosilylation of aldehydes. Inorg. Chem., 2019, 58(14), 9253-9259.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00963] [PMID: 31247830]
[60]
(a) Schneider, C. Synthesis of 1,2-difunctionalized fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides. Synthesis, 2006, 2006(23), 3919-3944.
[http://dx.doi.org/10.1055/s-2006-950348];
(b) Pastor, I.; Yus, M. Asymmetric ring opening of epoxides. Curr. Org. Chem., 2005, 9(1), 1-29.
[http://dx.doi.org/10.2174/1385272053369385];
(c) Jacobsen, E.N.; Wu, M.H. In: Comprehensive Asymmetric Catalyst; Jacobsen, E.N.; Pfaltz, A., Eds.; Springer: Berlin, 1999, p. 649.
[61]
(a) Schneider, C. Catalytic, enantioselective ring opening of aziridines. Angew. Chem. Int. Ed., 2009, 48(12), 2082-2084.
[http://dx.doi.org/10.1002/anie.200805542] [PMID: 19173352];
(b) Yudin, A.K. Aziridines and Epoxides in Organic Synthesis; Wiley-VCH: Weiheim, 2006.
[http://dx.doi.org/10.1002/3527607862]
[62]
Seki, K.; Yu, R.; Yamazaki, Y.; Yamashita, Y.; Kobayashi, S. Asymmetric meso-aziridine ring-opening reactions using a chiral zirconium catalyst. Chem. Commun., 2009, (38), 5722-5724.
[http://dx.doi.org/10.1039/b914271c] [PMID: 19774248]
[63]
Matt, C.; Orthaber, A.; Streuff, J. Catalytic asymmetric β ‐oxygen elimination**. Angew. Chem. Int. Ed., 2022, 61(22), e202114044.
[http://dx.doi.org/10.1002/anie.202114044] [PMID: 35263503]
[64]
Yang, F.; Zhao, J.; Tang, X.; Zhou, G.; Song, W.; Meng, Q. Enantioselective α-hydroxylation by modified salen-zirconium(IV)-catalyzed oxidation of β- keto esters. Org. Lett., 2017, 19(3), 448-451.
[http://dx.doi.org/10.1021/acs.orglett.6b03554] [PMID: 28078895]
[65]
Chen, J.; Gu, H.; Zhu, X.; Nam, W.; Wang, B. Zirconium‐salan catalyzed enantioselective α‐hydroxylation of β‐keto esters. Adv. Synth. Catal., 2020, 362(14), 2976-2983.
[http://dx.doi.org/10.1002/adsc.202000290]
[66]
(a) Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: A synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32(2), 131-163.
[http://dx.doi.org/10.1002/anie.199301313];
(b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
(c) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
(d) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118];
(e) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62(8), 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040];
(f) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
(g) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925];
(h) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236];
(i) Guillena, G.; Ramón, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18(6), 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002];
(j) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390];
(k) Grondal, C.; Jeanty, M.; Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem., 2010, 2(3), 167-178.
[http://dx.doi.org/10.1038/nchem.539] [PMID: 21124474];
(l) Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661];
(m) Ruiz, M.; López-Alvarado, P.; Giorgi, G.; Menéndez, J.C. Domino reactions for the synthesis of bridged bicyclic frameworks: fast access to bicyclo[n.3.1]alkanes. Chem. Soc. Rev., 2011, 40(7), 3445-3454.
[http://dx.doi.org/10.1039/c1cs15018a] [PMID: 21483949];
(n) Pellissier, H. Recent developments in asymmetric organocatalytic domino reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714];
(o) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840];
(p) Clavier, H.; Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2012, 354(18), 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254];
(q) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479];
(r) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
[http://dx.doi.org/10.1039/9781849737104];
(s) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304];
(t) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015.
[http://dx.doi.org/10.1002/9781118863992];
(u) Pellissier, H. Recent developments in enantioselective metal‐catalyzed domino reactions. Adv. Synth. Catal., 2016, 358(14), 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462];
(v) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016, Vol. 1-2., . ;
(w) Pellissier, H. Green copper catalysis in enantioselective domino reactions. Curr. Org. Chem., 2018, 22, 2670-2697.;
(x) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361(8), 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371];
(y) Pellissier, H. The use of domino reactions for the synthesis of chiral rings. Synthesis, 2020, 52(24), 3837-3854.
[http://dx.doi.org/10.1055/s-0040-1707905];
(z) Pellissier, H. Asymmetric organocatalytic tandem/domino reactions to access bioactive products. Curr. Org. Chem., 2021, 25(13), 1457-1471.
[http://dx.doi.org/10.2174/1385272825666210208142427];
(aa) Pellissier, H. Recent developments in enantioselective domino reactions. part a: Noble metal catalysts. Adv. Synth. Catal., 2023, 365(5), 620-681.
[http://dx.doi.org/10.1002/adsc.202201284];
(ab) Pellissier, H. Recent developments in enantioselective domino reactions. Part B: First row metal catalysts. Adv. Synth. Catal., 2023, 365(6), 768-819.
[http://dx.doi.org/10.1002/adsc.202300002]
[67]
Akullian, L.C.; Snapper, M.L.; Hoveyda, A.H. Three-component enantioselective synthesis of propargylamines through Zr-catalyzed additions of alkyl zinc reagents to alkynylimines. Angew. Chem. Int. Ed., 2003, 42(35), 4244-4247.
[http://dx.doi.org/10.1002/anie.200352081] [PMID: 14502747]
[68]
Akullian, L.C.; Porter, J.R.; Traverse, J.F.; Snapper, M.L.; Hoveyda, A.H. Asymmetric synthesis of acyclic amines through Zr‐ and Hf‐catalyzed enantioselective alkylzinc reagents to imines. Adv. Synth. Catal., 2005, 347(2-3), 417-425.
[http://dx.doi.org/10.1002/adsc.200404319]
[69]
Schneider, C.; Hansch, M. First catalytic, enantioselectivealdol-tishchenko reactions with ketone aldols as enolequivalents. Synlett, 2003, 6(6), 0837-0840.
[http://dx.doi.org/10.1055/s-2003-38741]
[70]
Schneider, C.; Hansch, M.; Sreekumar, P. Zirconium-BINOLate-catalyzed, enantioselective aldol-Tishchenko reactions of aromatic ketone aldols. Tetrahedron Asymmetry, 2006, 17(19), 2738-2742.
[http://dx.doi.org/10.1016/j.tetasy.2006.10.019]
[71]
Kobayashi, S.; Kobayashi, J.; Yazaki, R.; Ueno, M. Toward the total synthesis of onchidin, a cytotoxic cyclic depsipeptide from a mollusc. Chem. Asian J., 2007, 2(1), 135-144.
[http://dx.doi.org/10.1002/asia.200600232] [PMID: 17441146]
[72]
Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang, L.; Hu, W. Catalytic enantioselective trapping of an alcoholic oxonium ylide with aldehydes: Rh(II)/Zr(IV)-co-catalyzed three-component reactions of aryl diazoacetates, benzyl alcohol, and aldehydes. Angew. Chem. Int. Ed., 2008, 47(35), 6647-6649.
[http://dx.doi.org/10.1002/anie.200801510] [PMID: 18646030]
[73]
Zhang, X.; Staples, R.J.; Rheingold, A.L.; Wulff, W.D. Catalytic asymmetric α-Iminol rearrangement: New chiral platforms. J. Am. Chem. Soc., 2014, 136(40), 13971-13974.
[http://dx.doi.org/10.1021/ja5065685] [PMID: 25247674]
[74]
Daniels, B.E.; Ni, J.; Reisman, S.E. Synthesis of enantioenriched indolines by a conjugate addition/asymmetric protonation/Aza‐Prins cascade reaction. Angew. Chem. Int. Ed., 2016, 55(10), 3398-3402.
[http://dx.doi.org/10.1002/anie.201510972] [PMID: 26844668]
[75]
Negishi, E-i. Discovery of ZACA reaction: Zr-catalyzed asymmetric carboalumination of alkenes. ARKIVOC, 2011, viii, 34-53.
[76]
Xu, S.; Li, H.; Komiyama, M.; Oda, A.; Negishi, E. One‐step homologation for the catalytic asymmetric synthesis of deoxypropionates. Chemistry, 2017, 23(1), 149-156.
[http://dx.doi.org/10.1002/chem.201604478] [PMID: 27739117]
[77]
Xu, S.; Wang, C.; Komiyama, M.; Tomonari, Y.; Negishi, E. Asymmetric synthesis of chiral cyclopentanes bearing an all-carbon quaternary stereocenter by zirconium-catalyzed double carboalumination. Angew. Chem., Int. Ed, 2017, 56, 11502-11505.
[78]
Dai, Y.; Zheng, L.; Chakraborty, D.; Borhan, B.; Wulff, W.D. Zirconium-catalyzed asymmetric Kabachnik-Fields reactions of aromatic and aliphatic aldehydes. Chem. Sci., 2021, 12, 12333-12345.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy