Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Advancing Diagnostics: Evaluating the Potential of Nanoparticle-Based Immunoassays as PCR Alternatives for Disease Confirmation

Author(s): Aditya Kurdekar* and Venkataramaniah Kamisetti

Volume 20, Issue 5, 2024

Published on: 11 March, 2024

Page: [287 - 294] Pages: 8

DOI: 10.2174/0115734110287852240228064645

Price: $65

Open Access Journals Promotions 2
Abstract

In diagnostic technologies, search for quick, accurate, and cost-efficient ways to confirm diseases has prompted the investigation of alternative methodologies to classic PCR-based tests. This article delves into the growing field of nanoparticle-based immunoassays, offering a comprehensive evaluation of their potential as viable alternatives to PCR for disease diagnostics. We discuss the basic principles of nanoparticle-based immunoassays, highlighting their distinctive ability to combine the specialized binding characteristics of antibodies with the improved detection capacities of nanoparticles. The article compares the performance attributes of nanoparticle-based immunoassays with PCR, focusing on sensitivity, specificity, and detection speed. We further delve into a novel diagnostic technology, immuno-PCR, which integrates the strengths of immunoassays and PCR techniques. Healthcare systems and stakeholders must comprehend and implement novel diagnostic procedures emphasizing accuracy and sensitivity as the diagnostic landscape advances globally. This review contributes to the advancement of diagnostics by synthesizing current research and suggesting future directions for development. It highlights the transformative potential of current and emerging methods in shaping the future of disease diagnostics.

Keywords: Nanoparticle, immunoassays, PCR, disease diagnostics, DNA, RNA.

Next »
Graphical Abstract
[1]
Zhu, Y.; Jiang, W.; Chen, R.; Jouha, J.; Wang, Q.; Wu, L.; Qin, Y. A post-pandemic perspective: Evolution of SARS-CoV-2 early detection. Trends Analyt. Chem., 2024, 170, 117458.
[http://dx.doi.org/10.1016/j.trac.2023.117458]
[2]
Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques, 2020, 69(4), 317-325.
[http://dx.doi.org/10.2144/btn-2020-0057] [PMID: 32815744]
[3]
Shen, M.; Zhou, Y.; Ye, J.; Abdullah AL-maskri, A.A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal., 2020, 10(2), 97-101.
[http://dx.doi.org/10.1016/j.jpha.2020.02.010] [PMID: 32292623]
[4]
Hayden, M.K.; Hanson, K.E.; Englund, J.A.; Lee, M.J.; Loeb, M.; Lee, F.; Morgan, D.J.; Patel, R.; El Mikati, I.K.; Iqneibi, S.; Alabed, F.; Amarin, J.Z.; Mansour, R.; Patel, P.; Falck-Ytter, Y.; Morgan, R.L.; Murad, M.H.; Sultan, S.; Bhimraj, A.; Mustafa, R.A. The infectious diseases society of america guidelines on the diagnosis of coronavirus disease 2019 (COVID-19): Molecular diagnostic testing. Clin. Infect. Dis., 2023, ciad646.
[http://dx.doi.org/10.1093/cid/ciad646] [PMID: 38112284]
[5]
Lin, C.; Liu, Z.; Fang, F.; Zhao, S.; Li, Y.; Xu, M.; Peng, Y.; Chen, H.; Yuan, F.; Zhang, W.; Zhang, X.; Teng, Z.; Xiao, R.; Yang, Y. Next-generation rapid and ultrasensitive lateral flow immunoassay for detection of SARS-CoV-2 variants. ACS Sens., 2023, 8(10), 3733-3743.
[http://dx.doi.org/10.1021/acssensors.3c01019] [PMID: 37675933]
[6]
Ito, E.; Iha, K.; Yoshimura, T.; Nakaishi, K.; Watabe, S. Early diagnosis with ultrasensitive ELISA. Adv. Clin. Chem., 2021, 101, 121-133.
[http://dx.doi.org/10.1016/bs.acc.2020.06.002]
[7]
Chunduri, L.A.A.; Kurdekar, A.; Haleyurgirisetty, M.K.; Bulagonda, E.P.; Kamisetti, V.; Hewlett, I.K. Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of HIV infection. Sci. Rep., 2017, 7(1), 7149.
[http://dx.doi.org/10.1038/s41598-017-07299-1] [PMID: 28769052]
[8]
Kurdekar, A.; Chunduri, L.A.A.; Haleyurgirisetty, M.K.; Hewlett, I.K.; Kamisetti, V. Sub-picogram level sensitivity in HIV diagnostics achieved with the europium nanoparticle immunoassay through metal enhanced fluorescence. Nanoscale Adv., 2019, 1(1), 273-280.
[http://dx.doi.org/10.1039/C8NA00019K] [PMID: 36132469]
[9]
Masson, J.F. Consideration of sample matrix effects and “biological” noise in optimizing the limit of detection of biosensors. ACS Sens., 2020, 5(11), 3290-3292.
[http://dx.doi.org/10.1021/acssensors.0c02254] [PMID: 33233896]
[10]
Yu, L.; Li, N. Noble metal nanoparticles-based colorimetric biosensor for visual quantification: A mini review. Chemosensors, 2019, 7(4), 53.
[http://dx.doi.org/10.3390/chemosensors7040053]
[11]
Zhu, Y.; Kekalo, K. NDong, C.; Huang, Y-Y.; Shubitidze, F.; Griswold, K.E.; Baker, I.; Zhang, J.X.J. Magnetic‐nanoparticle‐based immunoassays‐on‐chip: Materials synthesis, surface functionalization, and cancer cell screening. Adv. Funct. Mater., 2016, 26(22), 3953-3972.
[http://dx.doi.org/10.1002/adfm.201504176]
[12]
Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(3), 291-304.
[http://dx.doi.org/10.1002/wnan.84] [PMID: 20336708]
[13]
Tan, G.R.; Wang, M.; Hsu, C.Y.; Chen, N.; Zhang, Y. Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv. Opt. Mater., 2016, 4(7), 984-997.
[http://dx.doi.org/10.1002/adom.201600141]
[14]
Zhong, W. Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem., 2009, 394(1), 47-59.
[http://dx.doi.org/10.1007/s00216-009-2643-x] [PMID: 19221721]
[15]
Shi, J.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(35), 6989-7005.
[http://dx.doi.org/10.1039/C5TB00885A] [PMID: 32262700]
[16]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006, 18(4), 319-326.
[http://dx.doi.org/10.1002/elan.200503415]
[17]
Guo, S.; Dong, S. Biomolecule-nanoparticle hybrids for electrochemical biosensors. Trends Analyt. Chem., 2009, 28(1), 96-109.
[http://dx.doi.org/10.1016/j.trac.2008.10.014]
[18]
Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst, 2018, 143(9), 1970-1996.
[http://dx.doi.org/10.1039/C8AN00307F] [PMID: 29645058]
[19]
Ma, X.; He, S.; Qiu, B.; Luo, F.; Guo, L.; Lin, Z. Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye. ACS Sens., 2019, 4(4), 782-791.
[http://dx.doi.org/10.1021/acssensors.9b00438] [PMID: 30896159]
[20]
Wang, X.; Niessner, R.; Tang, D.; Knopp, D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal. Chim. Acta, 2016, 912, 10-23.
[http://dx.doi.org/10.1016/j.aca.2016.01.048] [PMID: 26920768]
[21]
Frias, I.A.M.; da Silva Junior, A.G.; Oliveira, M.D.L.; Andrade, C.A.S. Oligonucleotide-conjugated nanomaterials as biosensing platforms to potential bioterrorism tools. Curr. Anal. Chem., 2023, 19(1), 18-26.
[http://dx.doi.org/10.2174/1573411018666220601100003]
[22]
Wu, Y.; Fu, Y.; Guo, J.; Guo, J. Single-molecule immunoassay technology: Recent advances. Talanta, 2023, 265, 124903.
[http://dx.doi.org/10.1016/j.talanta.2023.124903] [PMID: 37418954]
[23]
Liu, H.; Lei, Y. A critical review: Recent advances in “digital” biomolecule detection with single copy sensitivity. Biosens. Bioelectron., 2021, 177, 112901.
[http://dx.doi.org/10.1016/j.bios.2020.112901] [PMID: 33472132]
[24]
Yim, J.H.; Seo, K.H.; Chon, J.W.; Jeong, D.; Song, K.Y. Status and prospects of PCR detection methods for diagnosing pathogenic escherichia coli: A review. J. Dairy Sci. Biotechnol., 2021, 39(2), 51-62.
[http://dx.doi.org/10.22424/jdsb.2021.39.2.51]
[25]
Mouliou, D.S.; Gourgoulianis, K.I. False-positive and false-negative COVID-19 cases: Respiratory prevention and management strategies, vaccination, and further perspectives. Expert Rev. Respir. Med., 2021, 15(8), 993-1002.
[http://dx.doi.org/10.1080/17476348.2021.1917389] [PMID: 33896332]
[26]
Zhang, Y.; Gu, H.; Xu, H. Recent progress in digital immunoassay: How to achieve ultrasensitive, multiplex and clinical accessible detection? Sens. diagn., 2024, 3(1), 9-27.
[http://dx.doi.org/10.1039/D3SD00144J]
[27]
McNeil, S.E. Ed.; Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, 2011, p. 697.
[http://dx.doi.org/10.1007/978-1-60327-198-1]
[28]
Sturgeon, C.M.; Viljoen, A. Analytical error and interference in immunoassay: Minimizing risk. Ann. Clin. Biochem., 2011, 48(5), 418-432.
[http://dx.doi.org/10.1258/acb.2011.011073] [PMID: 21750113]
[29]
Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta, 2021, 223(Pt 1), 121722.
[http://dx.doi.org/10.1016/j.talanta.2020.121722] [PMID: 33303168]
[30]
Shan, J.; Shi, L.; Li, Y.; Yin, X.; Wang, S.; Liu, S.; Sun, J.; Zhang, D.; Ji, Y.W.; Wang, J. SERS-based immunoassay for amplified detection of food hazards: Recent advances and future trends. Trends Food Sci. Technol., 2023, 140, 104149.
[http://dx.doi.org/10.1016/j.tifs.2023.104149]
[31]
Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron., 2013, 40(1), 412-416.
[http://dx.doi.org/10.1016/j.bios.2012.06.049] [PMID: 22795532]
[32]
de la Rica, R.; Stevens, M.M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol., 2012, 7(12), 821-824.
[http://dx.doi.org/10.1038/nnano.2012.186] [PMID: 23103935]
[33]
Syamchand, S.S.; Sony, G. Europium enabled luminescent nanoparticles for biomedical applications. J. Lumin., 2015, 165, 190-215.
[http://dx.doi.org/10.1016/j.jlumin.2015.04.042]
[34]
Liu, J.; Du, B.; Zhang, P.; Haleyurgirisetty, M.; Zhao, J.; Ragupathy, V.; Lee, S.; DeVoe, D.L.; Hewlett, I.K. Development of a microchip Europium nanoparticle immunoassay for sensitive point-of-care HIV detection. Biosens. Bioelectron., 2014, 61, 177-183.
[http://dx.doi.org/10.1016/j.bios.2014.04.057] [PMID: 24880655]
[35]
Haleyur Giri Setty, M.K.; Liu, J.; Mahtani, P.; Zhang, P.; Du, B.; Ragupathy, V.; Devadas, K.; Hewlett, I.K. Novel time-resolved fluorescence europium nanoparticle immunoassay for detection of human immunodeficiency virus-1 group o viruses using microplate and microchip platforms. AIDS Res. Hum. Retroviruses, 2016, 32(6), 612-619.
[http://dx.doi.org/10.1089/aid.2014.0351] [PMID: 26978478]
[36]
Briggs, J.A.G.; Simon, M.N.; Gross, I.; Kräusslich, H.G.; Fuller, S.D.; Vogt, V.M.; Johnson, M.C. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol., 2004, 11(7), 672-675.
[http://dx.doi.org/10.1038/nsmb785] [PMID: 15208690]
[37]
Malou, N.; Raoult, D. Immuno-PCR: A promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends Microbiol., 2011, 19(6), 295-302.
[http://dx.doi.org/10.1016/j.tim.2011.03.004] [PMID: 21478019]
[38]
Sano, T.; Smith, C.L.; Cantor, C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 1992, 258(5079), 120-122.
[http://dx.doi.org/10.1126/science.1439758]
[39]
He, X.; Patfield, S.A. Immuno-PCR assay for sensitive detection of proteins in real time. In: Methods in Molecular Biology; , 2015; pp. 139-148.
[http://dx.doi.org/10.1007/978-1-4939-2742-5_14]
[40]
Niemeyer, C.; Adler, M.; Blohm, D. High sensitivity detection of antigens using immuno PCR. 2014. Available from: https://assets.fishersci.com/TFS-Assets/LSG/Application-Notes/D19593.pdf
[41]
Barletta, J.M.; Edelman, D.C.; Constantine, N.T. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am. J. Clin. Pathol., 2004, 122(1), 20-27.
[http://dx.doi.org/10.1309/529T2WDNEB6X8VUN] [PMID: 15272526]
[42]
Barletta, J.; Bartolome, A.; Constantine, N.T. Immunomagnetic quantitative immuno-PCR for detection of less than one HIV-1] virion. J. Virol. Methods, 2009, 157(2), 122-132.
[http://dx.doi.org/10.1016/j.jviromet.2008.12.013] [PMID: 19138706]
[43]
Zhang, P. A highly sensitive point-of-care covid-19 serological test using immuno-PCR in 35 mins. 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA2021, pp. 743-746.
[http://dx.doi.org/10.1109/Transducers50396.2021.9495696]
[44]
Zhang, P.; Chen, L.; Hu, J.; Trick, A.Y.; Chen, F.E.; Hsieh, K.; Zhao, Y.; Coleman, B.; Kruczynski, K.; Pisanic, T.R., II; Heaney, C.D.; Clarke, W.A.; Wang, T.H. Magnetofluidic immuno-PCR for point-of-care COVID-19 serological testing. Biosens. Bioelectron., 2022, 195, 113656.
[http://dx.doi.org/10.1016/j.bios.2021.113656] [PMID: 34600203]
[45]
Qiu, Y.; Jiang, K.; Wu, J.; Peng, Y.K.; Oh, J.W.; Lee, J.H. Ultrasensitive plasmonic photothermal immunomagnetic bioassay using real-time and end-point dual-readout. Sens. Actuators B Chem., 2023, 377, 133110.
[http://dx.doi.org/10.1016/j.snb.2022.133110]
[46]
Qiu, Y.; Jiang, K.; Wu, J.; Mi, H.; Peng, Y-K.; Go, Y.Y.; Park, H.J.; Lee, J.H. Fast and sensitive immuno-PCR assisted by plasmonic magnetic nanoparticles. Appl. Mater. Today, 2021, 23, 101054.
[http://dx.doi.org/10.1016/j.apmt.2021.101054]
[47]
Liu, C.; Lin, H.; Guo, J.; Yang, C.; Chen, J.; Pan, W.; Cui, B.; Feng, J.; Zhang, Y.; Li, B.; Yao, S.; Zheng, L. Profiling of single-vesicle surface proteins via droplet digital immuno-PCR for multi-subpopulation extracellular vesicles counting towards cancer diagnostics. Chem. Eng. J., 2023, 471, 144364.
[http://dx.doi.org/10.1016/j.cej.2023.144364]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy