Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

In Silico Analysis of Natural Plant-Derived Cyclotides with Antifungal Activity against Pathogenic Fungi

Author(s): Akshita Sharma, Bisma Butool, Pallavi Sahu, Reema Mishra and Aparajita Mohanty*

Volume 31, Issue 3, 2024

Published on: 05 March, 2024

Page: [247 - 260] Pages: 14

DOI: 10.2174/0109298665295545240223114346

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Fungal infections in plants, animals, and humans are widespread across the world. Limited classes of antifungal drugs to treat fungal infections and loss of drug efficacy due to rapidly evolving fungal strains pose a challenge in the agriculture and health sectors. Hence, the search for a new class of antifungal agents is imperative. Cyclotides are cyclic plant peptides with multiple bioactivities, including antifungal activity. They have six conserved cysteine residues forming three disulfide linkages (CI-CIV, CII-CV, CIII-CVI) that establish a Cyclic Cystine Knot (CCK) structure, making them extremely resistant to chemical, enzymatic, and thermal attacks.

Aim: This in silico analysis of natural, plant-derived cyclotides aimed to assess the parameters that can assist and hasten the process of selecting the cyclotides with potent antifungal activity and prioritize them for in vivo/ in vitro experiments.

Objective: The objective of this study was to conduct in silico studies to compare the physicochemical parameters, sequence diversity, surface structures, and membrane-cyclotide interactions of experimentally screened (from literature survey) potent (MIC ≤ 20 μM) and non-potent (MIC > 20 μM) cyclotides for antifungal activity.

Methodology: Cyclotide sequences assessed for antifungal activity were retrieved from the database (Cybase). Various online and offline tools were used for sequence-based studies, such as physicochemical parameters, sequence diversity, and neighbor-joining trees. Structure-based studies involving surface structure analysis and membrane-cyclotide interaction were also carried out. All investigations were conducted in silico.

Results: Physicochemical parameter values, viz. isoelectric point, net charge, and the number of basic amino acids, were significantly higher in potent cyclotides compared to non-potent cyclotides. The surface structure of potent cyclotides showed a larger hydrophobic patch with a higher number of hydrophobic amino acids. Furthermore, the membrane-cyclotide interaction studies of potent cyclotides revealed lower transfer free energy (ΔG transfer) and higher penetration depth into fungal membranes, indicating higher binding stability and membrane-disruption ability.

Conclusion: These in silico studies can be applied for rapidly identifying putatively potent antifungal cyclotides for in vivo and in vitro experiments, which will ultimately be relevant in the agriculture and pharmaceutical sectors.

Keywords: Antifungal, cyclotides, cycloviolacin O2, cycloviolacin O13, hydrophobic cluster, membrane-cyclotide interaction, tricyclon A.

« Previous
Graphical Abstract
[1]
Rajaram, S.; Dubin, H.J. Plant diseases, global food security and the role of R. Glenn anderson. In: Plant Diseases and Food Security in the 21st Century; Scott, P.; Strange, R.; Korsten, L.; Gullino, M.L., Eds.; Springer International Publishing, 2021; pp. 35-45.
[http://dx.doi.org/10.1007/978-3-030-57899-2_3]
[2]
Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem., 2023, 415, 135787.
[http://dx.doi.org/10.1016/j.foodchem.2023.135787] [PMID: 36854245]
[3]
Izquierdo, A.A. WHO fungal priority pathogens list to guide research, development and public health action. 2022. Available from: https://www.who.int/publications/i/item/9789240060241
[4]
Hoenigl, M. Invasive fungal disease complicating coronavirus disease 2019: When it rains, it spores. Clin. Infect. Dis., 2021, 73(7), e1645-e1648.
[http://dx.doi.org/10.1093/cid/ciaa1342] [PMID: 32887998]
[5]
Koehler, P.; Cornely, O.A.; Böttiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T.; Rybniker, J.; Kochanek, M.; Böll, B.; Vornhagen, S.A. COVID-19 associated pulmonary aspergillosis. Mycoses, 2020, 63(6), 528-534.
[http://dx.doi.org/10.1111/myc.13096] [PMID: 32339350]
[6]
Raut, A.; Huy, N.T. Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India amidst the second wave? Lancet Respir. Med., 2021, 9(8), e77.
[http://dx.doi.org/10.1016/S2213-2600(21)00265-4] [PMID: 34090607]
[7]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[8]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[9]
Monapathi, M.E.; Oguegbulu, J.C.; Adogo, L.; Klink, M.; Okoli, B.; Mtunzi, F.; Modise, J.S. Pharmaceutical pollution: Azole antifungal drugs and resistance of opportunistic pathogenic yeasts in wastewater and environmental water. Appl. Environ. Soil Sci., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9985398]
[10]
Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse effects associated with currently commonly used antifungal agents: A network meta-analysis and systematic review. Front. Pharmacol., 2021, 12, 697330.
[http://dx.doi.org/10.3389/fphar.2021.697330] [PMID: 34776941]
[11]
De Cesare, B.G.; Cristy, S.A.; Garsin, D.A.; Lorenz, M.C. Antimicrobial peptides: A new frontier in antifungal therapy. MBio, 2020, 11(6), e02123-20.
[http://dx.doi.org/10.1128/mBio.02123-20] [PMID: 33144376]
[12]
Helmy, N.M.; Parang, K. Cyclic peptides with antifungal properties derived from bacteria, fungi, plants, and synthetic sources. Pharmaceuticals, 2023, 16(6), 892.
[http://dx.doi.org/10.3390/ph16060892] [PMID: 37375840]
[13]
Tam, J.P.; Lu, Y.A.; Yang, J.L.; Chiu, K.W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci., 1999, 96(16), 8913-8918.
[http://dx.doi.org/10.1073/pnas.96.16.8913] [PMID: 10430870]
[14]
Strömstedt, A.A.; Park, S.; Burman, R.; Göransson, U. Bactericidal activity of cyclotides where phosphati- dylethanolamine-lipid selectivity determines antimicrobial spectra. Biochim. Biophys. Acta Biomembr., 2017, 1859(10), 1986-2000.
[http://dx.doi.org/10.1016/j.bbamem.2017.06.018] [PMID: 28669767]
[15]
Slazak, B.; Kapusta, M.; Strömstedt, A.A.; Słomka, A.; Krychowiak, M.; Shariatgorji, M.; Andrén, P.E.; Bohdanowicz, J.; Kuta, E.; Göransson, U. How does the sweet violet (Viola odorata L.) fight pathogens and pests – cyclotides as a comprehensive plant host defense system. Front. Plant Sci., 2018, 9, 1296.
[http://dx.doi.org/10.3389/fpls.2018.01296] [PMID: 30254654]
[16]
Slazak, B.; Kaltenböck, K.; Steffen, K.; Rogala, M.; Rodríguez, R.P.; Nilsson, A.; Shariatgorji, R.; Andrén, P.E.; Göransson, U. Cyclotide host-defense tailored for species and environments in violets from the Canary Islands. Sci. Rep., 2021, 11(1), 12452.
[http://dx.doi.org/10.1038/s41598-021-91555-y] [PMID: 34127703]
[17]
Wang, C.K.L.; Kaas, Q.; Chiche, L.; Craik, D.J. CyBase: A database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res., 2007, 36(Database), D206-D210.
[http://dx.doi.org/10.1093/nar/gkm953] [PMID: 17986451]
[18]
de Veer, S.J.; Kan, M.W.; Craik, D.J. Cyclotides: From structure to function. Chem. Rev., 2019, 119(24), 12375-12421.
[http://dx.doi.org/10.1021/acs.chemrev.9b00402] [PMID: 31829013]
[19]
Craik, D.J.; Daly, N.L.; Bond, T.; Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol., 1999, 294(5), 1327-1336.
[http://dx.doi.org/10.1006/jmbi.1999.3383] [PMID: 10600388]
[20]
Colgrave, M.L.; Craik, D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot. Biochemistry, 2004, 43(20), 5965-5975.
[http://dx.doi.org/10.1021/bi049711q] [PMID: 15147180]
[21]
Grover, T.; Mishra, R.; Bushra; Gulati, P.; Mohanty, A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides, 2021, 135, 170430.
[http://dx.doi.org/10.1016/j.peptides.2020.170430] [PMID: 33096195]
[22]
Ojeda, P.G.; Cardoso, M.H.; Franco, O.L. Pharmaceutical applications of cyclotides. Drug Discov. Today, 2019, 24(11), 2152-2161.
[http://dx.doi.org/10.1016/j.drudis.2019.09.010] [PMID: 31541712]
[23]
Rajendran, S.; Slazak, B.; Mohotti, S.; Muhammad, T.; Strömstedt, A.A.; Kapusta, M.; Wilmowicz, E.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for cyclotides in Sri Lankan medicinal plants: Discovery, characterization, and bioactivity screening of cyclotides from Geophila repens. J. Nat. Prod., 2023, 86(1), 52-65.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00674] [PMID: 36525646]
[24]
Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res., 2004, 14(6), 1188-1190.
[http://dx.doi.org/10.1101/gr.849004] [PMID: 15173120]
[25]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[26]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454] [PMID: 3447015]
[27]
Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins; Bryson, V.; Vogel, H.J., Eds.; Academic Press, 1965; pp. 97-166.
[http://dx.doi.org/10.1016/B978-1-4832-2734-4.50017-6]
[28]
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39(4), 783-791.
[http://dx.doi.org/10.2307/2408678] [PMID: 28561359]
[29]
Nguyen, K.N.T.; Nguyen, G.K.T.; Nguyen, P.Q.T.; Ang, K.H.; Dedon, P.C.; Tam, J.P. Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea ( Clitoria ternatea ). FEBS J., 2016, 283(11), 2067-2090.
[http://dx.doi.org/10.1111/febs.13720] [PMID: 27007913]
[30]
Mehta, L.; Shambhawi; Kumar, S.; Mohanty, A. In silico analysis of native cyclotides with antibacterial activity against gram-negative bacteria. Appl. Biochem. Microbiol., 2022, 58(6), 715-725.
[http://dx.doi.org/10.1134/S0003683822060096]
[31]
Hernandez, J.F.; Gagnon, J.; Chiche, L.; Nguyen, T.M.; Andrieu, J.P.; Heitz, A.; Trinh Hong, T.; Pham, T.T.C.; Le Nguyen, D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry, 2000, 39(19), 5722-5730.
[http://dx.doi.org/10.1021/bi9929756] [PMID: 10801322]
[32]
Heitz, A.; Hernandez, J.F.; Gagnon, J.; Hong, T.T.; Pham, T.T.C.; Nguyen, T.M.; Le-Nguyen, D.; Chiche, L. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry, 2001, 40(27), 7973-7983.
[http://dx.doi.org/10.1021/bi0106639] [PMID: 11434766]
[33]
Felizmenio-Quimio, M.E.; Daly, N.L.; Craik, D.J. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J. Biol. Chem., 2001, 276(25), 22875-22882.
[http://dx.doi.org/10.1074/jbc.M101666200] [PMID: 11292835]
[34]
Du, Q.; Huang, Y.H.; Wang, C.K.; Kaas, Q.; Craik, D.J. Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. J. Biol. Chem., 2022, 298(4), 101822.
[http://dx.doi.org/10.1016/j.jbc.2022.101822] [PMID: 35283188]
[35]
Shenkarev, Z.O.; Nadezhdin, K.D.; Sobol, V.A.; Sobol, A.G.; Skjeldal, L.; Arseniev, A.S. Conformation and mode of membrane interaction in cyclotides. FEBS J., 2006, 273(12), 2658-2672.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05282.x] [PMID: 16817894]
[36]
Wang, C.K.; Wacklin, H.P.; Craik, D.J. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions. J. Biol. Chem., 2012, 287(52), 43884-43898.
[http://dx.doi.org/10.1074/jbc.M112.421198] [PMID: 23129773]
[37]
Henriques, T.S.; Craik, D.J. Cyclotide structure and function: The Role of membrane binding and permeation. Biochemistry, 2017, 56(5), 669-682.
[http://dx.doi.org/10.1021/acs.biochem.6b01212] [PMID: 28085267]
[38]
Ireland, D.C.; Wang, C.K.L.; Wilson, J.A.; Gustafson, K.R.; Craik, D.J. Cyclotides as natural anti-HIV agents. Biopolymers, 2008, 90(1), 51-60.
[http://dx.doi.org/10.1002/bip.20886] [PMID: 18008336]
[39]
Huang, Y.H.; Colgrave, M.L.; Clark, R.J.; Kotze, A.C.; Craik, D.J. Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J. Biol. Chem., 2010, 285(14), 10797-10805.
[http://dx.doi.org/10.1074/jbc.M109.089854] [PMID: 20103593]
[40]
Henriques, S.T.; Huang, Y.H.; Rosengren, K.J.; Franquelim, H.G.; Carvalho, F.A.; Johnson, A.; Sonza, S.; Tachedjian, G.; Castanho, M.A.R.B.; Daly, N.L.; Craik, D.J. Decoding the membrane activity of the cyclotide kalata B1: The importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem., 2011, 286(27), 24231-24241.
[http://dx.doi.org/10.1074/jbc.M111.253393] [PMID: 21576247]
[41]
Troeira Henriques, S.; Huang, Y.H.; Chaousis, S.; Wang, C.K.; Craik, D.J. Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting. ChemBioChem, 2014, 15(13), 1956-1965.
[http://dx.doi.org/10.1002/cbic.201402144] [PMID: 25099014]
[42]
Burman, R.; Strömstedt, A.A.; Malmsten, M.; Göransson, U. Cyclotide–membrane interactions: Defining factors of membrane binding, depletion and disruption. Biochim. Biophys. Acta Biomembr., 2011, 1808(11), 2665-2673.
[http://dx.doi.org/10.1016/j.bbamem.2011.07.004] [PMID: 21787745]
[43]
Henriques, S.T.; Huang, Y.H.; Castanho, M.A.R.B.; Bagatolli, L.A.; Sonza, S.; Tachedjian, G.; Daly, N.L.; Craik, D.J. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J. Biol. Chem., 2012, 287(40), 33629-33643.
[http://dx.doi.org/10.1074/jbc.M112.372011] [PMID: 22854971]
[44]
Ravipati, A.S.; Henriques, S.T.; Poth, A.G.; Kaas, Q.; Wang, C.K.; Colgrave, M.L.; Craik, D.J. Lysine-rich cyclotides: A new subclass of circular knotted proteins from violaceae. ACS Chem. Biol., 2015, 10(11), 2491-2500.
[http://dx.doi.org/10.1021/acschembio.5b00454] [PMID: 26322745]
[45]
Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40(D1), D370-D376.
[http://dx.doi.org/10.1093/nar/gkr703] [PMID: 21890895]
[46]
Lomize, A.L.; Pogozheva, I.D.; Lomize, M.A.; Mosberg, H.I. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol., 2007, 7(1), 44.
[http://dx.doi.org/10.1186/1472-6807-7-44] [PMID: 17603894]
[47]
Kamimori, H.; Hall, K.; Craik, D.J.; Aguilar, M.I. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal. Biochem., 2005, 337(1), 149-153.
[http://dx.doi.org/10.1016/j.ab.2004.10.028] [PMID: 15649388]
[48]
Gupta, R.; Kumari, J.; Pati, S.; Singh, S.; Mishra, M.; Ghosh, S.K. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. Int. J. Biol. Macromol., 2021, 191, 852-860.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.147] [PMID: 34592223]
[49]
Parsley, N.C.; Kirkpatrick, C.L.; Crittenden, C.M.; Rad, J.G.; Hoskin, D.W.; Brodbelt, J.S.; Hicks, L.M. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry, 2018, 152, 61-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.04.014] [PMID: 29734037]
[50]
Ireland, D.C.; Colgrave, M.L.; Craik, D.J. A novel suite of cyclotides from Viola odorata : sequence variation and the implications for structure, function and stability. Biochem. J., 2006, 400(1), 1-12.
[http://dx.doi.org/10.1042/BJ20060627] [PMID: 16872274]
[51]
Wang, C.K.L.; Colgrave, M.L.; Gustafson, K.R.; Ireland, D.C.; Goransson, U.; Craik, D.J. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J. Nat. Prod., 2008, 71(1), 47-52.
[http://dx.doi.org/10.1021/np070393g] [PMID: 18081258]
[52]
Mulvenna, J.P.; Sando, L.; Craik, D.J. Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A. Structure, 2005, 13(5), 691-701.
[http://dx.doi.org/10.1016/j.str.2005.02.013] [PMID: 15893660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy