Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Tetrandrine for Targeting Therapy Resistance in Cancer

Author(s): Ellen Nogueira Lima, Santosh Lamichhane, Pramod Bahadur K. C, Elisa Silva Ferreira, Sweaty Koul and Hari K. Koul*

Volume 24, Issue 12, 2024

Published on: 05 March, 2024

Page: [1035 - 1049] Pages: 15

DOI: 10.2174/0115680266282360240222062032

Price: $65

Abstract

During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.

Keywords: Tetrandrine, Drug resistance, MDR/ ABCB1 transporter, Trail, Cancer, Nano-therapeutics.

[1]
Lerberghe, V.W. The world health report 2008: Primary health care: Now more than ever; World Health Organization, 2008.
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Alfarouk, K.O.; Stock, C.M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; Reshkin, S.J.; Ibrahim, M.E.; Rauch, C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[4]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[5]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[6]
Curt, G.A.; Clendeninn, N.J.; Chabner, B.A. Drug resistance in cancer. Cancer Treat. Rep., 1984, 68(1), 87-99.
[PMID: 6198082]
[7]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[8]
Zhang, A.; Miao, K.; Sun, H.; Deng, C.X. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int. J. Biol. Sci., 2022, 18(7), 3019-3033.
[http://dx.doi.org/10.7150/ijbs.72534] [PMID: 35541919]
[9]
Pote, M.S.; Gacche, R.N. ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov. Today, 2023, 28(5), 103537.
[http://dx.doi.org/10.1016/j.drudis.2023.103537] [PMID: 36801375]
[10]
Cree, I.A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer, 2017, 17(1), 10.
[http://dx.doi.org/10.1186/s12885-016-2999-1] [PMID: 28056859]
[11]
Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2008, 3(3), 281-290.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[12]
Choi, Y.; Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[13]
Kurimchak, A.M.; Montávez, H.C.; Sangrà, M.S.; Olivera, A.D.; Hu, J.; Domer, N.R.; Kuruvilla, M.; Bellacosa, A.; Testa, J.R.; Jin, J.; Duncan, J.S. The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Sci. Signal., 2022, 15(749), eabn2707.
[http://dx.doi.org/10.1126/scisignal.abn2707] [PMID: 36041010]
[14]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[15]
Chen, C.; Chin, J.E.; Ueda, K.; Clark, D.P.; Pastan, I.; Gottesman, M.M.; Roninson, I.B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 1986, 47(3), 381-389.
[http://dx.doi.org/10.1016/0092-8674(86)90595-7] [PMID: 2876781]
[16]
Bogman, K.; Peyer, A.K.; Török, M.; Küsters, E.; Drewe, J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol., 2001, 132(6), 1183-1192.
[http://dx.doi.org/10.1038/sj.bjp.0703920] [PMID: 11250868]
[17]
Lee, C.G.; Gottesman, M.M. HIV-1 protease inhibitors and the MDR1 multidrug transporter. J. Clin. Invest., 1998, 101(2), 287-288.
[http://dx.doi.org/10.1172/JCI2575] [PMID: 9435298]
[18]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[19]
Ramachandra, M.; Ambudkar, S.V.; Chen, D.; Hrycyna, C.A.; Dey, S.; Gottesman, M.M.; Pastan, I. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry, 1998, 37(14), 5010-5019.
[http://dx.doi.org/10.1021/bi973045u] [PMID: 9538020]
[20]
Efferth, T.; Saeed, M.E.M.; Kadioglu, O.; Seo, E.J.; Shirooie, S.; Mbaveng, A.T.; Nabavi, S.M.; Kuete, V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv., 2020, 38, 107342.
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.009] [PMID: 30708024]
[21]
Stavrovskaya, A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemist. Biokhimiia., 2000, 65(1), 95-106.
[22]
Wtorek, K.; Pokorska, D.A.; Janecka, A. Drug resistance in topoisomerase-targeting therapy. Postepy Hig. Med. Dosw., 2018, 72, 1073-1083.
[23]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[24]
Palmberg, C.; Koivisto, P.; Hyylinen, E.; Isola, J.; Visakorpi, T.; Kallioniemi, O.P.; Tammela, T. Androgen receptor gene amplification in a recurrent prostate cancer after monotherapy with the nonsteroidal potent antiandrogen Casodex (bicalutamide) with a subsequent favorable response to maximal androgen blockade. Eur. Urol., 1997, 31(2), 216-219.
[http://dx.doi.org/10.1159/000474453] [PMID: 9076469]
[25]
Mozzetti, S.; Ferlini, C.; Concolino, P.; Filippetti, F.; Raspaglio, G.; Prislei, S.; Gallo, D.; Martinelli, E.; Ranelletti, F.O.; Ferrandina, G.; Scambia, G. Class III β-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin. Cancer Res., 2005, 11(1), 298-305.
[http://dx.doi.org/10.1158/1078-0432.298.11.1] [PMID: 15671559]
[26]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[27]
Vaidya, F.U.; Chhipa, S.A.; Mishra, V.; Gupta, V.K.; Rawat, S.G.; Kumar, A.; Pathak, C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep., 2022, 5(12), e1291.
[http://dx.doi.org/10.1002/cnr2.1291] [PMID: 33052041]
[28]
Michael, M.; Doherty, M.M. Tumoral drug metabolism: Overview and its implications for cancer therapy. J. Clin. Oncol., 2005, 23(1), 205-229.
[http://dx.doi.org/10.1200/JCO.2005.02.120] [PMID: 15625375]
[29]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[30]
Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab. Dispos., 2007, 35(8), 1292-1300.
[http://dx.doi.org/10.1124/dmd.107.015354] [PMID: 17470523]
[31]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691.
[http://dx.doi.org/10.1038/sj.onc.1209377] [PMID: 16550168]
[32]
Luo, B.; Yan, D.; Yan, H.; Yuan, J. Cytochrome P450: Implications for human breast cancer (Review). Oncol. Lett., 2021, 22(1), 548.
[http://dx.doi.org/10.3892/ol.2021.12809] [PMID: 34093769]
[33]
Higgins, M.J.; Rae, J.M.; Flockhart, D.A.; Hayes, D.F.; Stearns, V. Pharmacogenetics of tamoxifen: Who should undergo CYP2D6 genetic testing? J. Natl. Compr. Canc. Netw., 2009, 7(2), 203-213.
[http://dx.doi.org/10.6004/jnccn.2009.0014] [PMID: 19200418]
[34]
Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006, 43(2), 143-181.
[http://dx.doi.org/10.1080/10408360500523878] [PMID: 16517421]
[35]
Zhu, W.; Yu, H.; Qian, X.; Lu, K.; Zhao, C.; Zhang, Y.; Wang, H.Y.; Liu, Y. Near-infrared frequency upconversion probe for revealing the relationship between glutathione S-transferase and drug-resistance. Anal. Chim. Acta, 2021, 1181, 338920.
[http://dx.doi.org/10.1016/j.aca.2021.338920] [PMID: 34556207]
[36]
Lu, Y.; Pan, Q.; Gao, W.; Pu, Y.; He, B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(33), 6296-6306.
[http://dx.doi.org/10.1039/D2TB01150F] [PMID: 35904024]
[37]
Lewis, A.D.; Hayes, J.D.; Wolf, C.R. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: Intrinsic differences and cell cycle effects. Carcinogenesis, 1988, 9(7), 1283-1287.
[http://dx.doi.org/10.1093/carcin/9.7.1283] [PMID: 2898306]
[38]
Kitakata, H.; Endo, J.; Matsushima, H.; Yamamoto, S.; Ikura, H.; Hirai, A.; Koh, S.; Ichihara, G.; Hiraide, T.; Moriyama, H.; Shirakawa, K.; Goto, S.; Katsumata, Y.; Anzai, A.; Kataoka, M.; Tokuyama, T.; Ishido, S.; Yanagi, S.; Fukuda, K.; Sano, M. MITOL/MARCH5 determines the susceptibility of cardiomyocytes to doxorubicin-induced ferroptosis by regulating GSH homeostasis. J. Mol. Cell. Cardiol., 2021, 161, 116-129.
[http://dx.doi.org/10.1016/j.yjmcc.2021.08.006] [PMID: 34390730]
[39]
Neophytou, C.M.; Trougakos, I.P.; Erin, N.; Papageorgis, P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers, 2021, 13(17), 4363.
[http://dx.doi.org/10.3390/cancers13174363] [PMID: 34503172]
[40]
Boumahdi, S.; de Sauvage, F.J. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov., 2020, 19(1), 39-56.
[http://dx.doi.org/10.1038/s41573-019-0044-1] [PMID: 31601994]
[41]
Santamaría, P.G.; Bueno, M.G.; Cano, A. Contribution of epithelial plasticity to therapy resistance. J. Clin. Med., 2019, 8(5), 676.
[http://dx.doi.org/10.3390/jcm8050676] [PMID: 31091749]
[42]
Takahashi, K. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019]
[43]
Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71.
[http://dx.doi.org/10.1016/j.trecan.2016.11.008] [PMID: 28718426]
[44]
Rajan, P.; Sudbery, I.M.; Villasevil, M.E.M.; Mui, E.; Fleming, J.; Davis, M.; Ahmad, I.; Edwards, J.; Sansom, O.J.; Sims, D.; Ponting, C.P.; Heger, A.; McMenemin, R.M.; Pedley, I.D.; Leung, H.Y. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur. Urol., 2014, 66(1), 32-39.
[http://dx.doi.org/10.1016/j.eururo.2013.08.011] [PMID: 24054872]
[45]
Sun, Y.; Campisi, J.; Higano, C.; Beer, T.M.; Porter, P.; Coleman, I.; True, L.; Nelson, P.S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med., 2012, 18(9), 1359-1368.
[http://dx.doi.org/10.1038/nm.2890] [PMID: 22863786]
[46]
Zhang, F.; Peng, L.; Huang, Y.; Lin, X.; Zhou, L.; Chen, J. Chronic BDE-47 exposure aggravates malignant phenotypes and chemoresistance by activating ERK through ERα and GPR30 in endometrial carcinoma. Front. Oncol., 2019, 9, 1079.
[http://dx.doi.org/10.3389/fonc.2019.01079] [PMID: 31737560]
[47]
Wang, N.; Ma, T.; Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther., 2023, 8(1), 69.
[http://dx.doi.org/10.1038/s41392-023-01341-7] [PMID: 36797239]
[48]
Adhikari, S.; Bhattacharya, A.; Adhikary, S.; Singh, V.; Gadad, S.S.; Roy, S.; Das, C. The paradigm of drug resistance in cancer: An epigenetic perspective. Biosci. Rep., 2022, 42(4), BSR20211812.
[http://dx.doi.org/10.1042/BSR20211812] [PMID: 35438143]
[49]
Fath, K.M.; Azargoonjahromi, A.; Kiani, A.; Jalalifar, F.; Osati, P.; Oryani, A.M.; Shakeri, F.; Nasirzadeh, F.; Khalesi, B.; Nabi-Afjadi, M.; Zalpoor, H.; Mard-Soltani, M.; Payandeh, Z. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell. Mol. Biol. Lett., 2022, 27(1), 52.
[http://dx.doi.org/10.1186/s11658-022-00344-6] [PMID: 35764927]
[50]
Baratchian, M.; Tiwari, R.; Khalighi, S.; Chakravarthy, A.; Yuan, W.; Berk, M.; Li, J.; Guerinot, A.; de Bono, J.; Makarov, V.; Chan, T.A.; Silverman, R.H.; Stark, G.R.; Varadan, V.; De Carvalho, D.D.; Chakraborty, A.A.; Sharifi, N. H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proc. Natl. Acad. Sci., 2022, 119(21), e2114324119.
[http://dx.doi.org/10.1073/pnas.2114324119] [PMID: 35584120]
[51]
Kuhns, K.J.; Zhang, G.; Wang, Z.; Liu, W. ARD1/NAA10 acetylation in prostate cancer. Exp. Mol. Med., 2018, 50(7), 1-8.
[http://dx.doi.org/10.1038/s12276-018-0107-0] [PMID: 30054487]
[52]
King, V.F.; Garcia, M.L.; Himmel, D.; Reuben, J.P.; Lam, Y.K.; Pan, J.X.; Han, G.Q.; Kaczorowski, G.J. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J. Biol. Chem., 1988, 263(5), 2238-2244.
[http://dx.doi.org/10.1016/S0021-9258(18)69196-3] [PMID: 2448307]
[53]
Chen, K.K.; Chen, A.L. The alkaloids of han-fang-chi. J. Biol. Chem., 1935, 109(2), 681-685.
[http://dx.doi.org/10.1016/S0021-9258(18)75199-5]
[54]
Li, P.; Zou, J.; Dong, Y.; Jiang, J.; Liang, W.; Li, D. Tetrandrine, a potent antifungal agent, inhibits mycelial growth and virulence of Botrytis cinerea. Phytopathology, 2021, 111(7), 1152-1157.
[http://dx.doi.org/10.1094/PHYTO-10-20-0446-R] [PMID: 33289404]
[55]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine – A molecule of wide bioactivity. Phytochemistry, 2016, 125, 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[56]
Takemura, H.; Imoto, K.; Ohshika, H.; Kwan, C.Y. Tetrandrine as a calcium antagonist. Clin. Exp. Pharmacol. Physiol., 1996, 23(8), 751-753.
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb01772.x] [PMID: 8886503]
[57]
Liu, Q.Y.; Karpinski, E.; Pang, P.K.T. Tetrandrine inhibits both T and L calcium channel currents in ventricular cells. J. Cardiovasc. Pharmacol., 1992, 20(4), 513-519.
[http://dx.doi.org/10.1097/00005344-199210000-00001] [PMID: 1280704]
[58]
Huang, P.; Xu, Y.; Wei, R.; Li, H.; Tang, Y.; Liu, J.; Zhang, S.S.M.; Zhang, C. Efficacy of tetrandrine on lowering intraocular pressure in animal model with ocular hypertension. J. Glaucoma, 2011, 20(3), 183-188.
[http://dx.doi.org/10.1097/IJG.0b013e3181d7882a] [PMID: 20440217]
[59]
Wang, X.; Yang, Y.; Yang, D.; Tong, G.; Lv, S.; Lin, X.; Chen, C.; Dong, W. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J. Vasc. Surg., 2016, 64(5), 1468-1477.
[http://dx.doi.org/10.1016/j.jvs.2015.09.016] [PMID: 26527422]
[60]
Weber, C.; Opatz, T. Bisbenzylisoquinoline alkaloids. Alkaloids Chem. Biol., 2019, 81, 1-114.
[http://dx.doi.org/10.1016/bs.alkal.2018.07.001] [PMID: 30685048]
[61]
Teles, S.M.M.R.; Pinheiro, V.A.A.; Da Dias, S.C.; Tavares, F.J.; Filho, B.J.M.; Da Cunha, L.E.V. Alkaloids of the Lauraceae. Alkaloids Chem. Biol., 2019, 82, 147-304.
[http://dx.doi.org/10.1016/bs.alkal.2018.11.002] [PMID: 30850031]
[62]
Xie, Z. Preparative isolation of tetrandrine and fandchinoline from radix stephania tetrandra using reversed-phase flash chromatography. J. Liq. Chromatogr. Relat. Technol., 2014, 37(14), 342-352.
[63]
Yang, G.; Xie, W.; Ding, Y.; Wang, W.; Huang, C.; Zhao, T.; Li, Y. A worldwide bibliometric analysis of tetrandrine research in recent two decades. Front. Pharmacol., 2022, 13, 896050.
[http://dx.doi.org/10.3389/fphar.2022.896050] [PMID: 35784708]
[64]
Que, X.; Su, J.; Guo, P.; Kamal, Z.; Xu, E.; Liu, S.; Chen, J.; Qiu, M. Study on preparation, characterization and multidrug resistance reversal of red blood cell membrane-camouflaged tetrandrine-loaded PLGA nanoparticles. Drug Deliv., 2019, 26(1), 199-207.
[http://dx.doi.org/10.1080/10717544.2019.1573861] [PMID: 30835586]
[65]
Wall, M.E.; Wani, M.C. Antineoplastic agents from plants. Annu. Rev. Pharmacol. Toxicol., 1977, 17(1), 117-132.
[http://dx.doi.org/10.1146/annurev.pa.17.040177.001001] [PMID: 326159]
[66]
Liu, T.; Li, K.; Zhang, Z.; Peng, J.; Yang, J.; Law, B.Y.K.; Liu, X.; Li, W. Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via SOD1/ROS signaling pathway. Am. J. Chin. Med., 2023, 51(2), 425-444.
[http://dx.doi.org/10.1142/S0192415X23500222] [PMID: 36692485]
[67]
Chen, L.; Chunhui, W.; Xiaohua, P. Tetrandrine and arsenic trioxide synergistically inhibit proliferation of HCC1937 triple negative breast cancer cells. J. Tradit. Chin. Med., 2017, 37(4), 436-443.
[http://dx.doi.org/10.1016/S0254-6272(17)30149-8] [PMID: 32188201]
[68]
Yao, M.; Yuan, B.; Wang, X.; Sato, A.; Sakuma, K.; Kaneko, K.; Komuro, H.; Okazaki, A.; Hayashi, H.; Toyoda, H.; Pei, X.; Hu, X.; Hirano, T.; Takagi, N. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7. Int. J. Oncol., 2017, 51(2), 587-598.
[http://dx.doi.org/10.3892/ijo.2017.4052] [PMID: 28656245]
[69]
Zhou, Y.; Mu, L.; Liu, X.L.; Li, Q.; Ding, L.X.; Chen, H.C.; Hu, Y.; Li, F.S.; Sun, W.J.; He, B.C.; Wu, K. Tetrandrine inhibits proliferation of colon cancer cells by BMP9/ PTEN/ PI3K/AKT signaling. Genes Dis., 2021, 8(3), 373-383.
[http://dx.doi.org/10.1016/j.gendis.2019.10.017] [PMID: 33997184]
[70]
He, D-L.; Liu, W.; Kou, B.; Ma, Z-K.; Tang, X-S.; Lv, C.; Ye, M.; Chen, J-Q.; Li, L.; Wang, X-Y. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells. Asian J. Androl., 2015, 17(5), 850-853.
[http://dx.doi.org/10.4103/1008-682X.142134] [PMID: 25677131]
[71]
Chen, S.; Liu, W.; Wang, K.; Fan, Y.; Chen, J.; Ma, J.; Wang, X.; He, D.; Zeng, J.; Li, L. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling. PLoS One, 2017, 12(3), e0173725.
[http://dx.doi.org/10.1371/journal.pone.0173725] [PMID: 28288190]
[72]
Qiu, W.; Su, M.; Xie, F.; Ai, J.; Ren, Y.; Zhang, J.; Guan, R.; He, W.; Gong, Y.; Guo, Y. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells. Cell Death Dis., 2014, 5(3), e1123-e1123.
[http://dx.doi.org/10.1038/cddis.2014.84] [PMID: 24625982]
[73]
Chen, Z.; Zhao, L.; Zhao, F.; Yang, G.; Wang, J. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol. Lett., 2018, 15(5), 7433-7437.
[http://dx.doi.org/10.3892/ol.2018.8190] [PMID: 29849794]
[74]
Zhang, H.; Xie, B.; Zhang, Z.; Sheng, X.; Zhang, S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des. Devel. Ther., 2018, 13, 119-127.
[http://dx.doi.org/10.2147/DDDT.S187776] [PMID: 30587932]
[75]
Wu, J.M.; Chen, Y.; Chen, J.C.; Lin, T.Y.; Tseng, S.H. Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Lett., 2010, 287(2), 187-195.
[http://dx.doi.org/10.1016/j.canlet.2009.06.009] [PMID: 19586712]
[76]
Liu, C.; Gong, K.; Mao, X.; Li, W. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int. J. Cancer, 2011, 129(6), 1519-1531.
[http://dx.doi.org/10.1002/ijc.25817] [PMID: 21128229]
[77]
Singh, K.; Dong, Q.; TimiriShanmugam, P.S.; Koul, S.; Koul, H.K. Tetrandrine inhibits deregulated cell cycle in pancreatic cancer cells: Differential regulation of p21 Cip1/Waf1, p27 Kip1 and cyclin D1. Cancer Lett., 2018, 425, 164-173.
[http://dx.doi.org/10.1016/j.canlet.2018.03.042] [PMID: 29605511]
[78]
Li, J.; Wang, Q.; Wang, Z.; Cui, N.; Yang, B.; Niu, W.; Kuang, H. Tetrandrine inhibits colon carcinoma HT-29 cells growth via the Bcl-2/Caspase 3/PARP pathway and G1/S phase. Biosci. Rep., 2019, 39(5), BSR20182109.
[http://dx.doi.org/10.1042/BSR20182109] [PMID: 31040202]
[79]
Wu, S.H.; Chueh, F.S.; Chou, Y.C.; Ma, Y.S.; Peng, S.F.; Lin, C.C.; Liao, C.L.; Chen, P.Y.; Hsia, T.C.; Lien, J.C. Tetrandrine inhibits cell migration and invasion in human nasopharyngeal carcinoma NPC-TW 039 cells through inhibiting MAPK and RhoA signaling pathways. J. Food Biochem., 2020, 44(10), e13387.
[http://dx.doi.org/10.1111/jfbc.13387] [PMID: 32720324]
[80]
Selvakumar, S.C.K.; Preethi, A.; Sekar, D. MicroRNAs as important players in regulating cancer through PTEN/PI3K/AKT signalling pathways. Biochim. Biophys. Acta, 2023, 1878(3)
[81]
Shang, W.; Zhang, J.; Song, H.; Zhu, S.; Zhang, A.; Hua, Y.; Han, S.; Fu, Y. Mechanism of tetrandrine against endometrial cancer based on network pharmacology. Drug Des. Devel. Ther., 2021, 15, 2907-2919.
[http://dx.doi.org/10.2147/DDDT.S307670] [PMID: 34262258]
[82]
Xiao, W.; Jiang, Y.; Men, Q.; Yuan, L.; Huang, Z.; Liu, T.; Li, W.; Liu, X. Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo. Int. J. Oncol., 2015, 46(1), 360-368.
[http://dx.doi.org/10.3892/ijo.2014.2735] [PMID: 25355542]
[83]
Wong, V.K.W.; Zeng, W.; Chen, J.; Yao, X.J.; Leung, E.L.H.; Wang, Q.Q.; Chiu, P.; Ko, B.C.B.; Law, B.Y.K. Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front. Pharmacol., 2017, 8, 351.
[http://dx.doi.org/10.3389/fphar.2017.00351] [PMID: 28642707]
[84]
Cavalcante, G.C.; Schaan, A.P.; Cabral, G.F.; da-Silva, S.M.N.; Pinto, P.; Vidal, A.F.; dos-Santos, R.Â. A cell’s fate: An overview of the molecular biology and genetics of apoptosis. Int. J. Mol. Sci., 2019, 20(17), 4133.
[http://dx.doi.org/10.3390/ijms20174133] [PMID: 31450613]
[85]
Kuo, P.L.; Lin, C.C. Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells. Life Sci., 2003, 73(2), 243-252.
[http://dx.doi.org/10.1016/S0024-3205(03)00266-2] [PMID: 12738038]
[86]
Chaudhary, P.; Vishwanatha, J.K. c-Jun NH2-terminal kinase-induced proteasomal degradation of c-FLIPL/S and Bcl2 sensitize prostate cancer cells to Fas- and mitochondria-mediated apoptosis by tetrandrine. Biochem. Pharmacol., 2014, 91(4), 457-473.
[http://dx.doi.org/10.1016/j.bcp.2014.08.014] [PMID: 25181458]
[87]
Shishodia, G.; Koul, S.; Dong, Q.; Koul, H.K. Tetrandrine (TET) induces death receptors apo trail R1 (DR4) and apo trail R2 (DR5) and sensitizes prostate cancer cells to TRAIL-induced apoptosis. Mol. Cancer Ther., 2018, 17(6), 1217-1228.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1157] [PMID: 29549167]
[88]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[89]
Guo, Y.; Pei, X. Tetrandrine-induced autophagy in mda-mb-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/7517431] [PMID: 30713576]
[90]
Wang, Y.; Yue, W.; Lang, H.; Ding, X.; Chen, X.; Chen, H. Resuming sensitivity of tamoxifen-resistant breast cancer cells to tamoxifen by tetrandrine. Integr. Cancer Ther., 2021, 20
[http://dx.doi.org/10.1177/1534735421996822] [PMID: 33660534]
[91]
Zhang, Y.; Liu, W.; He, W.; Zhang, Y.; Deng, X.; Ma, Y.; Zeng, J.; Kou, B. Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. Int. J. Oncol., 2016, 48(5), 2035-2042.
[http://dx.doi.org/10.3892/ijo.2016.3415] [PMID: 26983576]
[92]
Tsai, S-C.; Wu, W-C.; Yang, J-S. Tetrandrine inhibits epithelial-mesenchymal transition in IL-6-induced HCT116 human colorectal cancer cells. OncoTargets Ther., 2021, 14, 4523-4536.
[http://dx.doi.org/10.2147/OTT.S324552]
[93]
Zhang, Z.; Liu, T.; Yu, M.; Li, K.; Li, W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 7.
[http://dx.doi.org/10.1186/s13046-018-0678-6] [PMID: 29334999]
[94]
Kou, B.; Liu, W.; He, W.; Zhang, Y.; Zheng, J.; Yan, Y.; Zhang, Y.; Xu, S.; Wang, H. Tetrandrine suppresses metastatic phenotype of prostate cancer cells by regulating Akt/mTOR/MMP-9 signaling pathway. Oncol. Rep., 2016, 35(5), 2880-2886.
[http://dx.doi.org/10.3892/or.2016.4649] [PMID: 26935264]
[95]
Gao, J.L. Tetrandrine suppresses cancer angiogenesis and metastasis in 4T1 tumor bearing mice. Evid Based Complement Alternat Med, 2013, 2013, 265061.
[http://dx.doi.org/10.1155/2013/265061]
[96]
Chang, K.H.; Liao, H.F.; Chang, H.H.; Chen, Y.Y.; Yu, M.C.; Chou, C.J.; Chen, Y.J. Inhibitory effect of tetrandrine on pulmonary metastases in CT26 colorectal adenocarcinoma-bearing BALB/c mice. Am. J. Chin. Med., 2004, 32(6), 863-872.
[http://dx.doi.org/10.1142/S0192415X04002478] [PMID: 15673192]
[97]
He, B.C.; Gao, J.L.; Zhang, B.Q.; Luo, Q.; Shi, Q.; Kim, S.H.; Huang, E.; Gao, Y.; Yang, K.; Wagner, E.R.; Wang, L.; Tang, N.; Luo, J.; Liu, X.; Li, M.; Bi, Y.; Shen, J.; Luther, G.; Hu, N.; Zhou, Q.; Luu, H.H.; Haydon, R.C.; Zhao, Y.; He, T.C. Tetrandrine inhibits Wnt/β-catenin signaling and suppresses tumor growth of human colorectal cancer. Mol. Pharmacol., 2011, 79(2), 211-219.
[http://dx.doi.org/10.1124/mol.110.068668] [PMID: 20978119]
[98]
Yuan, B.; Yao, M.; Wang, X.; Sato, A.; Okazaki, A.; Komuro, H.; Hayashi, H.; Toyoda, H.; Pei, X.; Hu, X.; Hirano, T.; Takagi, N. Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo. Cancer Cell Int., 2018, 18(1), 113.
[http://dx.doi.org/10.1186/s12935-018-0613-0] [PMID: 30123091]
[99]
Yu, M.; Liu, T.; Chen, Y.; Li, Y.; Li, W. Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy. J. Exp. Clin. Cancer Res., 2018, 37(1), 114.
[http://dx.doi.org/10.1186/s13046-018-0779-2] [PMID: 29866132]
[100]
Wang, J.; Yao, Z.; Lai, X.; Bao, H.; Li, Y.; Li, S.; Chang, L.; Zhang, G. Tetrandrine sensitizes nasopharyngeal carcinoma cells to irradiation by inducing autophagy and inhibiting MEK/ERK pathway. Cancer Med., 2020, 9(19), 7268-7278.
[http://dx.doi.org/10.1002/cam4.3356] [PMID: 32780562]
[101]
Ullah, R.; Yin, Q.; Snell, A.H.; Wan, L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol., 2022, 85, 123-154.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.010] [PMID: 33992782]
[102]
Cho, H.S.; Chang, S.H.; Chung, Y.S. Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J Vet Sci., 2009, 10(1)
[http://dx.doi.org/10.4142/jvs.2009.10.1.23]
[103]
Niu, B.; Wei, S.; Sun, J.; Zhao, H.; Wang, B.; Chen, G. Deciphering the molecular mechanism of tetrandrine in inhibiting hepatocellular carcinoma and increasing sorafenib sensitivity by combining network pharmacology and experimental evaluation. Pharm. Biol., 2022, 60(1), 75-86.
[http://dx.doi.org/10.1080/13880209.2021.2017468] [PMID: 34962429]
[104]
Mei, L.; Chen, Y.; Wang, Z.; Wang, J.; Wan, J.; Yu, C.; Liu, X.; Li, W. Synergistic anti-tumour effects of tetrandrine and chloroquine combination therapy in human cancer: A potential antagonistic role for p21. Br. J. Pharmacol., 2015, 172(9), 2232-2245.
[http://dx.doi.org/10.1111/bph.13045] [PMID: 25521075]
[105]
Zhang, Y.; Wang, C.; Wang, H.; Wang, K.; Du, Y.; Zhang, J. Combination of Tetrandrine with cisplatin enhances cytotoxicity through growth suppression and apoptosis in ovarian cancer in vitro and in vivo. Cancer Lett., 2011, 304(1), 21-32.
[http://dx.doi.org/10.1016/j.canlet.2011.01.022] [PMID: 21333438]
[106]
Li, X.; Lu, X.; Xu, H.; Zhu, Z.; Yin, H.; Qian, X.; Li, R.; Jiang, X.; Liu, B. Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on “oxidation therapy”. Mol. Pharm., 2012, 9(2), 222-229.
[http://dx.doi.org/10.1021/mp2002736] [PMID: 22171565]
[107]
Sperandio, L.P.; Lins, I.V.F.; Erustes, A.G.; Leão, A.H.F.F.; Antunes, F.; Morais, I.B.M.; Vieira, H.F.; de Campos, L.M.; Bincoletto, C.; Smaili, S.S.; Pereira, G.J.S. Blocking autophagy by the two-pore channels antagonist tetrandrine improves sorafenib-induced death of hepatocellular carcinoma cells. Toxicol. in vitro, 2023, 90, 105603.
[http://dx.doi.org/10.1016/j.tiv.2023.105603] [PMID: 37121360]
[108]
Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]
[109]
Goldstein, L.J.; Galski, H.; Fojo, A.; Willingham, M.; Lai, S.L.; Gazdar, A.; Pirker, R.; Green, A.; Crist, W.; Brodeur, G.M.; Lieber, M.; Cossman, J.; Gottesman, M.M.; Pastan, I. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst., 1989, 81(2), 116-124.
[http://dx.doi.org/10.1093/jnci/81.2.116] [PMID: 2562856]
[110]
Zhou, X.; Jin, N.; Chen, B. Tetrandrine overcomes drug resistance mediated by bone marrow microenvironment by regulating the expression of P-glycoprotein in acute leukemia. Hematology, 2022, 27(1), 274-279.
[http://dx.doi.org/10.1080/16078454.2022.2034256] [PMID: 35192780]
[111]
Li, X.; Qin, Z.; Yuan, Q.; Song, Y.; Xu, Q.; Yang, J.; Deng, X. Controllable release of self-assembled reduction-sensitive paclitaxel dimer prodrug and tetrandrine nanoparticles promotes synergistic therapy against multidrug-resistant cancer. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(7), 130362.
[http://dx.doi.org/10.1016/j.bbagen.2023.130362] [PMID: 37031808]
[112]
Li, Y.; Li, D.; Wang, P.; Zhu, W.; Yin, W. Tetrandrine partially reverses multidrug resistance of human laryngeal cancer cells. J. Int. Med. Res., 2020, 48(8)
[http://dx.doi.org/10.1177/0300060520944706] [PMID: 32776811]
[113]
Chen, B.; Sun, Q.; Wang, X.; Gao, F.; Dai, Y.; Yin, Y.; Ding, J.; Gao, C.; Cheng, J.; Li, J.; Sun, X.; Chen, N.; Xu, W.; Shen, H.; Liu, D. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells. Int. J. Nanomedicine, 2008, 3(2), 277-286.
[PMID: 18686787]
[114]
Shen, H.; Xu, W.; Chen, Q.; Wu, Z.; Tang, H.; Wang, F. Tetrandrine prevents acquired drug resistance of K562 cells through inhibition of mdr1 gene transcription. J. Cancer Res. Clin. Oncol., 2010, 136(5), 659-665.
[http://dx.doi.org/10.1007/s00432-009-0704-3] [PMID: 19898868]
[115]
Chen, H.Y.; Chen, X.Y. Tetrandrine reversed the resistance of tamoxifen in human breast cancer MCF-7/TAM cells: An experimental research. Chin. J integr. Trad. West. Med., 2013, 33(4), 488-491.
[116]
Zhao, Q-X.; Chen, B.A.; Cheng, J.; Ding, J.H.; Gao, F.; Gao, C.; Sun, Y.Y.; Wang, J.; Zhao, G.; Bao, W.; Song, H.H. [Effect of tetrandrine, toremifene and their combination on the reversion of multidrug resistance of K562/A02 cell line]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008, 16(1), 61-64.
[PMID: 18315901]
[117]
Liu, Z.L.; Hirano, T.; Tanaka, S.; Onda, K.; Oka, K. Persistent reversal of P-glycoprotein-mediated daunorubicin resistance by tetrandrine in multidrug-resistant human T lymphoblastoid leukemia MOLT-4 cells. J. Pharm. Pharmacol., 2010, 55(11), 1531-1537.
[http://dx.doi.org/10.1211/0022357022115] [PMID: 14713364]
[118]
Xu, W.L.; Shen, H.L.; Ao, Z.F.; Chen, B.A.; Xia, W.; Gao, F.; Zhang, Y.N. Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia. Leuk. Res., 2006, 30(4), 407-413.
[http://dx.doi.org/10.1016/j.leukres.2005.08.005] [PMID: 16219352]
[119]
Yao, J.; Deng, K.; Huang, J.; Zeng, R.; Zuo, J. Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer. Front. Pharmacol., 2020, 11, 592912.
[http://dx.doi.org/10.3389/fphar.2020.592912] [PMID: 33362547]
[120]
Ye, L.Y.; Hu, S.; Xu, H.E.; Xu, R.R.; Kong, H.; Zeng, X.N.; Xie, W.P.; Wang, H. The effect of tetrandrine combined with cisplatin on proliferation and apoptosis of A549/DDP cells and A549 cells. Cancer Cell Int., 2017, 17(1), 40.
[http://dx.doi.org/10.1186/s12935-017-0410-1] [PMID: 28360820]
[121]
He, Q.Y.; Meng, F.H.; Zhang, H.Q. Reduction of doxorubicin resistance by tetrandrine and dauricine in harringtonine-resistant human leukemia (HL60) cells. Chung Kuo Yao Li Hsueh Pao, 1996, 17(2), 179-181.
[PMID: 9772674]
[122]
Fu, L.; Liang, Y.; Deng, L.; Ding, Y.; Chen, L.; Ye, Y.; Yang, X.; Pan, Q. Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother. Pharmacol., 2004, 53(4), 349-356.
[http://dx.doi.org/10.1007/s00280-003-0742-5] [PMID: 14666379]
[123]
Jiang, L.; Hou, R. Tetrandrine reverses paclitaxel resistance in human ovarian cancer via inducing apoptosis, cell cycle arrest through β-catenin pathway. OncoTargets Ther., 2020, 13, 3631-3639.
[http://dx.doi.org/10.2147/OTT.S235533] [PMID: 32431514]
[124]
Wang, T.H.; Wan, J.Y.; Gong, X.; Li, H.Z.; Cheng, Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol. Rep., 2012, 28(5), 1681-1686.
[http://dx.doi.org/10.3892/or.2012.1999] [PMID: 22941407]
[125]
Lu, Y.; Li, F.; Xu, T.; Sun, J. Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int. J. Mol. Med., 2017, 39(4), 993-1000.
[http://dx.doi.org/10.3892/ijmm.2017.2895] [PMID: 28260091]
[126]
Fanelli, M.; Hattinger, M.C.; Vella, S.; Tavanti, E.; Michelacci, F.; Gudeman, B.; Barnett, D.; Picci, P.; Serra, M. Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1 ® can overcome drug resistance in osteosarcoma. Curr. Cancer Drug Targets, 2016, 16(3), 261-274.
[http://dx.doi.org/10.2174/1568009616666151106120434] [PMID: 26548759]
[127]
Oldham, R.K.; Reid, W.K.; Barnett, D. Phase I study of CBT-1 and taxol in patients with taxol resistant cancers. Cancer Biother. Radiopharm., 2000, 15(2), 153-159.
[http://dx.doi.org/10.1089/cbr.2000.15.153] [PMID: 10803320]
[128]
Cote, G.M.; Chawla, S.P.; Burgess, M.A.; Thornton, K.A.; Oldham, R.K.; Okuno, S.H.; Ballman, K.V.; Matlow, S.; Barnett, D.; Attia, S. CBT-1 in combination with doxorubicin in patients with metastatic, unresectable sarcomas who previously progressed on doxorubicin. J. Clin. Oncol., 2019, 37(15_suppl), TPS11077.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS11077]
[129]
Kelly, R.J.; Robey, R.W.; Chen, C.C.; Draper, D.; Luchenko, V.; Barnett, D.; Oldham, R.K.; Caluag, Z.; Frye, A.R.; Steinberg, S.M.; Fojo, T.; Bates, S.E. A pharmacodynamic study of the P-glycoprotein antagonist CBT-1® in combination with paclitaxel in solid tumors. Oncologist, 2012, 17(4), 512-e523.
[http://dx.doi.org/10.1634/theoncologist.2012-0080] [PMID: 22416063]
[130]
de Miguel, D.; Lemke, J.; Anel, A.; Walczak, H.; Lostao, M.L. Onto better TRAILs for cancer treatment. Cell Death Differ., 2016, 23(5), 733-747.
[http://dx.doi.org/10.1038/cdd.2015.174] [PMID: 26943322]
[131]
Pan, G.; O’Rourke, K.; Chinnaiyan, A.M.; Gentz, R.; Ebner, R.; Ni, J.; Dixit, V.M. The receptor for the cytotoxic ligand TRAIL. Science, 1997, 276(5309), 111-113.
[http://dx.doi.org/10.1126/science.276.5309.111] [PMID: 9082980]
[132]
Walczak, H.; Esposti, D.M.A.; Johnson, R.S.; Smolak, P.J.; Waugh, J.Y.; Boiani, N.; Timour, M.S.; Gerhart, M.J.; Schooley, K.A.; Smith, C.A.; Goodwin, R.G.; Rauch, C.T. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO J., 1997, 16(17), 5386-5397.
[http://dx.doi.org/10.1093/emboj/16.17.5386] [PMID: 9311998]
[133]
Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer, 2002, 2(6), 420-430.
[http://dx.doi.org/10.1038/nrc821] [PMID: 12189384]
[134]
Sprick, M.R.; Weigand, M.A.; Rieser, E.; Rauch, C.T.; Juo, P.; Blenis, J.; Krammer, P.H.; Walczak, H. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity, 2000, 12(6), 599-609.
[http://dx.doi.org/10.1016/S1074-7613(00)80211-3] [PMID: 10894160]
[135]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science, 1998, 281(5381), 1305-1308.
[http://dx.doi.org/10.1126/science.281.5381.1305] [PMID: 9721089]
[136]
Voortman, J.; Resende, T.P.; El Hassan, A.M.A.I.; Giaccone, G.; Kruyt, F.A.E. TRAIL therapy in non–small cell lung cancer cells: Sensitization to death receptor–mediated apoptosis by proteasome inhibitor bortezomib. Mol. Cancer Ther., 2007, 6(7), 2103-2112.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0167] [PMID: 17620439]
[137]
Li, G.; Fu, D.; Liang, W.; Fan, L.; Chen, K.; Shan, L.; Hu, S.; Ma, X.; Zhou, K.; Cheng, B. CYC1 silencing sensitizes osteosarcoma cells to TRAIL-induced apoptosis. Cell. Physiol. Biochem., 2014, 34(6), 2070-2080.
[http://dx.doi.org/10.1159/000366402] [PMID: 25562155]
[138]
Kim, K.; Fisher, M.J.; Xu, S.Q.; el-Deiry, W.S. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin. Cancer Res., 2000, 6(2), 335-346.
[PMID: 10690508]
[139]
Lane, D.; Côté, M.; Grondin, R.; Couture, M.C.; Piché, A. Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3. Mol. Cancer Ther., 2006, 5(3), 509-521.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0362] [PMID: 16546965]
[140]
Henderson, I.; Caiazzo, E.; McSharry, C.; Guzik, T.J.; Maffia, P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol. Res., 2020, 160, 105189.
[http://dx.doi.org/10.1016/j.phrs.2020.105189] [PMID: 32911071]
[141]
Ciato, D.; Albani, A. Molecular mechanisms of glucocorticoid resistance in corticotropinomas: New developments and drug targets. Front. Endocrinol., 2020, 11, 21.
[http://dx.doi.org/10.3389/fendo.2020.00021] [PMID: 32117053]
[142]
Xu, W.; Meng, K.; Tu, Y.; Tanaka, S.; Onda, K.; Sugiyama, K.; Hirano, T.; Yamada, H. Tetrandrine potentiates the glucocorticoid pharmacodynamics via inhibiting P-glycoprotein and mitogen-activated protein kinase in mitogen-activated human peripheral blood mononuclear cells. Eur. J. Pharmacol., 2017, 807, 102-108.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.007] [PMID: 28408143]
[143]
Xu, W.; Wang, X.; Chen, S.; Wu, H.; Tanaka, S.; Onda, K.; Sugiyama, K.; Yamada, H.; Hirano, T. Tetrandrine enhances glucocorticoid receptor translocation possibly via inhibition of P-glycoprotein in daunorubicin-resistant human T lymphoblastoid leukemia cells. Eur. J. Pharmacol., 2020, 881, 173232.
[http://dx.doi.org/10.1016/j.ejphar.2020.173232] [PMID: 32525004]
[144]
Xu, W.; Chen, S.; Wang, X.; Wu, H.; Yamada, H.; Hirano, T. Methylprednisolone potentiates tetrandrine pharmacodynamics against human T lymphoblastoid leukemia MOLT-4 cells via regulation of NF-κB activation and cell cycle transition. Steroids, 2020, 163, 108714.
[http://dx.doi.org/10.1016/j.steroids.2020.108714] [PMID: 32818521]
[145]
Mo, L.; Zhang, F.; Chen, F.; Xia, L.; Huang, Y.; Mo, Y.; Zhang, L.; Huang, D.; He, S.; Deng, J.; Hao, E.; Du, Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front. Pharmacol., 2022, 13, 978600.
[http://dx.doi.org/10.3389/fphar.2022.978600] [PMID: 36052124]
[146]
Schütz, R.; Müller, M.; Geisslinger, F.; Vollmar, A.; Bartel, K.; Bracher, F. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues. Eur. J. Med. Chem., 2020, 207, 112810.
[http://dx.doi.org/10.1016/j.ejmech.2020.112810] [PMID: 32942071]
[147]
Liu, C.; Lv, L.; Guo, W.; Mo, L.; Huang, Y.; Li, G.; Huang, X. Self-nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: Physicochemical characterization and pharmacokinetic study. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6763057] [PMID: 30363745]
[148]
Zhao, Y.Q.; Li-ping, W.; Chao, M.; Kun, Z.; Ying, L. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers. Int J Nanomedicine, 2013, 8, 4169-4181.
[149]
Huang, J.; Huang, S.; Liu, S.; Feng, L.; Huang, W.; Wang, Y.; Huang, D.; Huang, T.; Huang, X. Preparation of tetrandrine nanocrystals by microfluidic method and its in vitro and in vivo evaluation. AAPS PharmSciTech, 2023, 25(1), 4.
[http://dx.doi.org/10.1208/s12249-023-02718-1] [PMID: 38114843]
[150]
Zhang, R.H.; Wang, S.; Zhang, H.; Lan, J.J.; Xu, G.B.; Zhao, Y.L.; Wang, L.; Li, Y.J.; Wang, Y.L.; Zhou, Y.H.; Liu, J.L.; Pan, W.D.; Liao, S.G.; Zhou, M. Discovery of tetrandrine derivatives as tumor migration, invasion and angiogenesis inhibitors. Bioorg. Chem., 2020, 101, 104025.
[http://dx.doi.org/10.1016/j.bioorg.2020.104025] [PMID: 32599368]
[151]
Liu, R.; Wang, S.; Fang, S.; Wang, J.; Chen, J.; Huang, X.; He, X.; Liu, C. Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: Development, characterization, and in vitro and in vivo evaluation. Nanoscale Res. Lett., 2016, 11(1), 254.
[http://dx.doi.org/10.1186/s11671-016-1471-0] [PMID: 27188974]
[152]
Huang, T.; Xu, S.; Deo, R.; Ma, A.; Li, H.; Ma, K.; Gan, X. Targeting the Ca2+/Calmodulin-dependent protein kinase II by Tetrandrine in human liver cancer cells. Biochem. Biophys. Res. Commun., 2019, 508(4), 1227-1232.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.012] [PMID: 30554655]
[153]
Sun, J.; Zhang, Y.; Zhen, Y.; Cui, J.; Hu, G.; Lin, Y. Antitumor activity of tetrandrine citrate in human glioma U87 cells in vitro and in vivo. Oncol. Rep., 2019, 42(6), 2345-2354.
[http://dx.doi.org/10.3892/or.2019.7372] [PMID: 31638254]
[154]
Liao, C.L.; Ma, Y.S.; Hsia, T.C.; Chou, Y.C.; Lien, J.C.; Peng, S.F.; Kuo, C.L.; Hsu, F.T. Tetrandrine suppresses human brain glioblastoma GBM 8401/luc2 cell-xenografted subcutaneous tumors in nude mice in vivo. Molecules, 2021, 26(23), 7105.
[http://dx.doi.org/10.3390/molecules26237105] [PMID: 34885686]
[155]
Lee, H.S.; Kim, D.H.; Lee, I.S.; Park, J.H.; Martin, G.; Safe, S.; Kim, K.J.; Kim, J.H.; Jang, B.I.; Lee, S.O. Plant alkaloid tetrandrine is a nuclear receptor 4A1 Antagonist and inhibits panc-1 cell growth in vitro and in vivo. Int. J. Mol. Sci., 2022, 23(9), 5280.
[http://dx.doi.org/10.3390/ijms23095280] [PMID: 35563670]
[156]
Wang, C.; Yang, J.; Guo, Y.; Shen, J.; Pei, X. Anticancer activity of tetrandrine by inducing apoptosis in human breast cancer cell line MDA-MB-231 in vivo. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/6823520] [PMID: 32714412]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy