Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

多模态伽马刺激改善老年Tgf344-AD大鼠的活动,但没有改善记忆

卷 20, 期 11, 2023

发表于: 05 March, 2024

页: [769 - 777] 页: 9

弟呕挨: 10.2174/0115672050281956240228075849

价格: $65

Open Access Journals Promotions 2
摘要

背景:多模态感觉伽马刺激是一种治疗阿尔茨海默病的方法,在阿尔茨海默病转基因小鼠模型中已被证明可以改善病理和记忆。由于大鼠在进化上更接近人类,我们假设携带人类APP和PS1的转基因大鼠系TgF344-AD将是测试这种治疗效果的一个很好的补充候选。目前正在研究的治疗方法是利用免疫反应来减少或降低设计为过表达Aβ的小鼠模型中β-淀粉样蛋白斑块负荷的积累。然而,许多这些模型缺乏阿尔茨海默病的一些特征,如过度磷酸化的tau和神经元细胞损失。TgF344-AD转基因大鼠模型是弥合小鼠模型与人类临床疗效之间差距的良好候选者。 目的:本研究的目的是在光和听觉模式下同时使用多模态伽马刺激,以测试这是否能增强物体定位任务和自发交替任务的记忆表现。 方法:设计并制作了一种低成本、易于构建的多模态光声伽玛刺激器。我们的伽马刺激装置是用Arduino微控制器制造的,它驱动伽马频率的灯和扬声器。我们在本文中包含了我们的设备的部件,硬件设计和软件架构,以便于再现。随后,我们进行了多模态伽马刺激对14月龄TgF344-AD大鼠认知能力的影响实验。大鼠被随机分配到接受伽马刺激的实验组和不接受伽马刺激的对照组。在治疗前和治疗后对两组的新目标定位(NOL)任务和自发交替任务的表现进行评估。 结果:与未刺激的TgF344-AD大鼠相比,多模态伽马刺激没有改善记忆。然而,在新的定位任务中,受伽马刺激的大鼠确实比未受刺激的大鼠花了更多的时间来探索物体。在自发交替任务中,伽马刺激的大鼠比未刺激的对照组表现出更大的探索活动。 结论:多模态刺激对目标定位任务和自发交替任务的记忆表现没有增强作用。然而,在这两项任务中,与未治疗组相比,治疗组的探索性活动指标有所改善。我们得出结论,一些限制因素可能导致了这种混合效应,包括衰老并发症、不同的动物模型或光循环效应。

关键词: 神经调节,伽马,记忆,目标定位任务,自发性交替痴呆,阿尔茨海默病。

[1]
Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; Prince, M.; Stewart, R.; Wimo, A.; Zhang, Z.X.; Antuono, P. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol., 2008, 7(9), 812-826.
[http://dx.doi.org/10.1016/S1474-4422(08)70169-8] [PMID: 18667359]
[2]
Rizzi, L.; Rosset, I.; Roriz-Cruz, M. Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/908915] [PMID: 25089278]
[3]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[4]
Solomon, P.R.; Murphy, C.A. Should we screen for Alzheimer’s disease? A review of the evidence for and against screening Alzheimer’s disease in primary care practice. Geriatrics, 2005, 60(11), 26-31.
[PMID: 16287338]
[5]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[6]
Wimo, A.; Handels, R.; Winblad, B.; Black, C.M.; Johansson, G.; Salomonsson, S.; Eriksdotter, M.; Khandker, R.K. Quantifying and describing the natural history and costs of Alzheimer’s disease and effects of hypothetical interventions. J. Alzheimers Dis., 2020, 75(3), 891-902.
[http://dx.doi.org/10.3233/JAD-191055] [PMID: 32390617]
[7]
Global Health Estimates. Life expectancy and leading causes of death and disability. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
[8]
Braak, H.; Braak, E. Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging, 1995, 16(3), 271-278.
[http://dx.doi.org/10.1016/0197-4580(95)00021-6] [PMID: 7566337]
[9]
Braak, H.; Braak, E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand., 1996, 94(S165), 3-12.
[http://dx.doi.org/10.1111/j.1600-0404.1996.tb05866.x] [PMID: 8740983]
[10]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[11]
Bloom, G.S. Amyloid-β and Tau. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[12]
Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med., 2023, 29(9), 2187-2199.
[http://dx.doi.org/10.1038/s41591-023-02505-2] [PMID: 37667136]
[13]
Iaccarino, H.F.; Singer, A.C.; Martorell, A.J.; Rudenko, A.; Gao, F.; Gillingham, T.Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F.; Adaikkan, C.; Canter, R.G.; Rueda, R.; Brown, E.N.; Boyden, E.S.; Tsai, L.H. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632), 230-235.
[http://dx.doi.org/10.1038/nature20587] [PMID: 27929004]
[14]
Adaikkan, C.; Tsai, L.H. Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci., 2020, 43(1), 24-41.
[http://dx.doi.org/10.1016/j.tins.2019.11.001] [PMID: 31836315]
[15]
Zheng, L.; Yu, M.; Lin, R.; Wang, Y.; Zhuo, Z.; Cheng, N.; Wang, M.; Tang, Y.; Wang, L.; Hou, S.T. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat. Commun., 2020, 11(1), 3012.
[http://dx.doi.org/10.1038/s41467-020-16826-0] [PMID: 32541656]
[16]
Martorell, A.J.; Paulson, A.L.; Suk, H.J.; Abdurrob, F.; Drummond, G.T.; Guan, W.; Young, J.Z.; Kim, D.N.W.; Kritskiy, O.; Barker, S.J.; Mangena, V.; Prince, S.M.; Brown, E.N.; Chung, K.; Boyden, E.S.; Singer, A.C.; Tsai, L.H. Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell, 2019, 177(2), 256-271.e22.
[http://dx.doi.org/10.1016/j.cell.2019.02.014] [PMID: 30879788]
[17]
Adaikkan, C.; Middleton, S.J.; Marco, A.; Pao, P.C.; Mathys, H.; Kim, D.N.W.; Gao, F.; Young, J.Z.; Suk, H.J.; Boyden, E.S.; McHugh, T.J.; Tsai, L.H. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 2019, 102(5), 929-943.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.04.011] [PMID: 31076275]
[18]
Jankowsky, J.L.; Slunt, H.H.; Ratovitski, T.; Jenkins, N.A.; Copeland, N.G.; Borchelt, D.R. Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomol. Eng., 2001, 17(6), 157-165.
[http://dx.doi.org/10.1016/S1389-0344(01)00067-3] [PMID: 11337275]
[19]
Cohen, R.M.; Rezai-Zadeh, K.; Weitz, T.M.; Rentsendorj, A.; Gate, D.; Spivak, I.; Bholat, Y.; Vasilevko, V.; Glabe, C.G.; Breunig, J.J.; Rakic, P.; Davtyan, H.; Agadjanyan, M.G.; Kepe, V.; Barrio, J.R.; Bannykh, S.; Szekely, C.A.; Pechnick, R.N.; Town, T. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J. Neurosci., 2013, 33(15), 6245-6256.
[http://dx.doi.org/10.1523/JNEUROSCI.3672-12.2013] [PMID: 23575824]
[20]
Stoiljkovic, M.; Kelley, C.; Horvath, T.L.; Hajós, M. Neurophysiological signals as predictive translational biomarkers for Alzheimer’s disease treatment: Effects of donepezil on neuronal network oscillations in TgF344-AD rats. Alzheimers Res. Ther., 2018, 10(1), 105.
[http://dx.doi.org/10.1186/s13195-018-0433-4] [PMID: 30301466]
[21]
Stoiljkovic, M.; Kelley, C.; Stutz, B.; Horvath, T.L.; Hajós, M. Altered cortical and hippocampal excitability in TgF344-AD rats modeling alzheimer’s disease pathology. Cereb. Cortex, 2019, 29(6), 2716-2727.
[http://dx.doi.org/10.1093/cercor/bhy140] [PMID: 29920597]
[22]
Broussard, J.I.; Redell, J.B.; Maynard, M.E.; Zhao, J.; Moore, A.; Mills, R.W.; Hood, K.N.; Underwood, E.; Roysam, B.; Dash, P.K. Impaired experience-dependent refinement of place cells in a rat model of alzheimer’s disease. J. Alzheimers Dis., 2022, 86(4), 1907-1916.
[http://dx.doi.org/10.3233/JAD-215023] [PMID: 35253742]
[23]
Moradi, F.; van den Berg, M.; Mirjebreili, M.; Kosten, L.; Verhoye, M.; Amiri, M.; Keliris, G.A. Early classification of Alzheimer’s disease phenotype based on hippocampal electrophysiology in the TgF344-AD rat model. iScience, 2023, 26(8), 107454.
[http://dx.doi.org/10.1016/j.isci.2023.107454] [PMID: 37599835]
[24]
Broussard, J.I.; Redell, J.B.; Zhao, J.; Maynard, M.E.; Kobori, N.; Perez, A.; Hood, K.N.; Zhang, X.O.; Moore, A.N.; Dash, P.K. Mild traumatic brain injury decreases spatial information content and reduces place field stability of hippocampal CA1 neurons. J. Neurotrauma, 2020, 37(2), 227-235.
[http://dx.doi.org/10.1089/neu.2019.6766] [PMID: 31530217]
[25]
Broussard, J.I.; Redell, J.B.; Zhao, J.; West, R.; Homma, R.; Dash, P.K. Optogenetic stimulation of CA1 pyramidal neurons at theta enhances recognition memory in brain injured animals. J. Neurotrauma, 2023, 40(21-22), 2442-2448.
[http://dx.doi.org/10.1089/neu.2023.0078] [PMID: 37387400]
[26]
Ragozzino, M.E.; Pal, S.N.; Unick, K.; Stefani, M.R.; Gold, P.E. Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 1998, 18(4), 1595-1601.
[http://dx.doi.org/10.1523/JNEUROSCI.18-04-01595.1998] [PMID: 9454864]
[27]
Lennartz, R.C. The role of extramaze cues in spontaneous alternation in a plus-maze. Learn. Behav., 2008, 36(2), 138-144.
[http://dx.doi.org/10.3758/LB.36.2.138] [PMID: 18543713]
[28]
Yamamoto, J.; Suh, J.; Takeuchi, D.; Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell, 2014, 157(4), 845-857.
[http://dx.doi.org/10.1016/j.cell.2014.04.009] [PMID: 24768692]
[29]
Mably, A.J.; Gereke, B.J.; Jones, D.T.; Colgin, L.L. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus, 2017, 27(4), 378-392.
[http://dx.doi.org/10.1002/hipo.22697] [PMID: 28032686]
[30]
Mably, A.J.; Colgin, L.L. Gamma oscillations in cognitive disorders. Curr. Opin. Neurobiol., 2018, 52, 182-187.
[http://dx.doi.org/10.1016/j.conb.2018.07.009] [PMID: 30121451]
[31]
Rorabaugh, J.M.; Chalermpalanupap, T.; Botz-Zapp, C.A.; Fu, V.M.; Lembeck, N.A.; Cohen, R.M.; Weinshenker, D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain, 2017, 140(11), 3023-3038.
[http://dx.doi.org/10.1093/brain/awx232] [PMID: 29053824]
[32]
Bons, N.; Rieger, F.; Prudhomme, D.; Fisher, A.; Krause, K.H. Microcebus murinus : A useful primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav., 2006, 5(2), 120-130.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00149.x] [PMID: 16507003]
[33]
Heuer, E.; Rosen, R.F.; Cintron, A.; Walker, L.C. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des., 2012, 18(8), 1159-1169.
[http://dx.doi.org/10.2174/138161212799315885] [PMID: 22288403]
[34]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6(4), 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[35]
Schneider, L.S.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R.; Mantua, V.; Mecocci, P.; Pani, L.; Winblad, B.; Kivipelto, M. Clinical trials and late-stage drug development for A lzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med., 2014, 275(3), 251-283.
[http://dx.doi.org/10.1111/joim.12191] [PMID: 24605808]
[36]
Banik, A.; Brown, R.E.; Bamburg, J.; Lahiri, D.K.; Khurana, D.; Friedland, R.P.; Chen, W.; Ding, Y.; Mudher, A.; Padjen, A.L.; Mukaetova-Ladinska, E.; Ihara, M.; Srivastava, S.; Padma Srivastava, M.V.; Masters, C.L.; Kalaria, R.N.; Anand, A. Translation of pre-clinical studies into successful clinical trials for alzheimer’s disease: What are the roadblocks and how can they be overcome?1. J. Alzheimers Dis., 2015, 47(4), 815-843.
[http://dx.doi.org/10.3233/JAD-150136] [PMID: 26401762]
[37]
Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol., 2017, 133(2), 155-175.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[38]
Chan, D.; Suk, H.J.; Jackson, B.; Milman, N.P.; Stark, D.; Beach, S.D.; Tsai, L.H. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer’s disease. J. Intern. Med., 2021, 290(5), 993-1009.
[http://dx.doi.org/10.1111/joim.13329] [PMID: 34156133]
[39]
Chan, D.; Suk, H.J.; Jackson, B.L.; Milman, N.P.; Stark, D.; Klerman, E.B.; Kitchener, E.; Avalos, F.V.S.; de Weck, G.; Banerjee, A.; Beach, S.D.; Blanchard, J.; Stearns, C.; Boes, A.D.; Uitermarkt, B.; Gander, P.; Howard, M., III; Sternberg, E.J.; Nieto-Castanon, A.; Anteraper, S.; Whitfield-Gabrieli, S.; Brown, E.N.; Boyden, E.S.; Dickerson, B.C.; Tsai, L.H. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: Results of feasibility and pilot studies. PLoS One, 2022, 17(12), e0278412.
[http://dx.doi.org/10.1371/journal.pone.0278412] [PMID: 36454969]
[40]
Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-term effects of rhythmic sensory stimulation in alzheimer’s disease: An exploratory pilot study. J. Alzheimers Dis., 2016, 52(2), 651-660.
[http://dx.doi.org/10.3233/JAD-160081] [PMID: 27031491]
[41]
Cimenser, A.; Hempel, E.; Travers, T.; Strozewski, N.; Martin, K.; Malchano, Z.; Hajós, M. Sensory-evoked 40-Hz gamma oscillation improves sleep and daily living activities in Alzheimer’s disease patients. Front. Syst. Neurosci., 2021, 15, 746859.
[http://dx.doi.org/10.3389/fnsys.2021.746859] [PMID: 34630050]
[42]
Liu, Q.; Contreras, A.; Afaq, M.S.; Yang, W.; Hsu, D.K.; Russell, M.; Lyeth, B.; Zanto, T.P.; Zhao, M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer’s disease. Cell Biosci., 2023, 13(1), 138.
[http://dx.doi.org/10.1186/s13578-023-01085-5] [PMID: 37507776]
[43]
Manippa, V.; Palmisano, A.; Nitsche, M.A.; Filardi, M.; Vilella, D.; Logroscino, G.; Rivolta, D. Cognitive and neuropathophysiological outcomes of gamma-tacs in dementia: A systematic review. Neuropsychol. Rev., 2024, 34(1), 338-361.
[http://dx.doi.org/10.1007/s11065-023-09589-0] [PMID: 36877327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy