Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Multimodal Gamma Stimulation Improves Activity but not Memory in Aged Tgf344-AD Rats

Author(s): J.H. Bentley and J.I. Broussard*

Volume 20, Issue 11, 2023

Published on: 05 March, 2024

Page: [769 - 777] Pages: 9

DOI: 10.2174/0115672050281956240228075849

Abstract

Background: Multimodal sensory gamma stimulation is a treatment approach for Alzheimer’s disease that has been shown to improve pathology and memory in transgenic mouse models of Alzheimer's. Because rats are closer to humans in evolution, we tested the hypothesis that the transgenic rat line bearing human APP and PS1, line TgF344-AD, would be a good supplemental candidate to test the efficacy of this treatment. Current therapy approaches under investigation seek to utilize the immune response to minimize or degrade the accumulation of β-amyloid plaque load in mouse models designed to overexpress Aβ. However, many of these models lack some of the hallmarks of Alzheimer's disease, such as hyperphosphorylated tau and neuronal cell loss. The TgF344-AD transgenic rat model is a good candidate to bridge the gap between mouse models and clinical efficacy in humans.

Objective: The objective of this study was to use multimodal gamma stimulation at light and auditory modalities simultaneously to test whether this enhances memory performance as measured by the object location task and the spontaneous alternation task.

Methods: In our study, we designed and built a low-cost, easy-to-construct multimodal light and sound gamma stimulator. Our gamma stimulation device was built using an Arduino microcontroller, which drives lights and a speaker at the gamma frequency. We have included in this paper our device’s parts, hardware design, and software architecture for easy reproducibility. We then performed an experiment to test the effect of multimodal gamma stimulation on the cognitive performance of fourteen-month-old TgF344-AD rats. Rats were randomly assigned to either an experimental group that received gamma stimulation or a control group that did not. Performance in a Novel Object Location (NOL) task and spontaneous alternation task was evaluated in both groups before and after the treatment.

Results: Multimodal gamma stimulation did not improve memory compared to unstimulated TgF344-AD rats. However, the gamma-stimulated rats did spend significantly more time exploring objects in the novel location task than the unstimulated rats. In the spontaneous alternation task, gamma-stimulated rats exhibited significantly greater exploratory activity than unstimulated controls.

Conclusion: Multimodal gamma stimulation did not enhance memory performance in the object location task or the spontaneous alternation task. However, in both tasks, the treatment group had improved measures of exploratory activity relative to the untreated group. We conclude that several limitations could have contributed to this mixed effect, including aging complications, different animal models, or light cycle effects.

Keywords: Neuromodulation, gamma, memory, object location task, spontaneous alternation dementia, Alzheimer’s disease.

[1]
Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; Prince, M.; Stewart, R.; Wimo, A.; Zhang, Z.X.; Antuono, P. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol., 2008, 7(9), 812-826.
[http://dx.doi.org/10.1016/S1474-4422(08)70169-8] [PMID: 18667359]
[2]
Rizzi, L.; Rosset, I.; Roriz-Cruz, M. Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/908915] [PMID: 25089278]
[3]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[4]
Solomon, P.R.; Murphy, C.A. Should we screen for Alzheimer’s disease? A review of the evidence for and against screening Alzheimer’s disease in primary care practice. Geriatrics, 2005, 60(11), 26-31.
[PMID: 16287338]
[5]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[6]
Wimo, A.; Handels, R.; Winblad, B.; Black, C.M.; Johansson, G.; Salomonsson, S.; Eriksdotter, M.; Khandker, R.K. Quantifying and describing the natural history and costs of Alzheimer’s disease and effects of hypothetical interventions. J. Alzheimers Dis., 2020, 75(3), 891-902.
[http://dx.doi.org/10.3233/JAD-191055] [PMID: 32390617]
[7]
Global Health Estimates. Life expectancy and leading causes of death and disability. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
[8]
Braak, H.; Braak, E. Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging, 1995, 16(3), 271-278.
[http://dx.doi.org/10.1016/0197-4580(95)00021-6] [PMID: 7566337]
[9]
Braak, H.; Braak, E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand., 1996, 94(S165), 3-12.
[http://dx.doi.org/10.1111/j.1600-0404.1996.tb05866.x] [PMID: 8740983]
[10]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[11]
Bloom, G.S. Amyloid-β and Tau. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[12]
Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med., 2023, 29(9), 2187-2199.
[http://dx.doi.org/10.1038/s41591-023-02505-2] [PMID: 37667136]
[13]
Iaccarino, H.F.; Singer, A.C.; Martorell, A.J.; Rudenko, A.; Gao, F.; Gillingham, T.Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F.; Adaikkan, C.; Canter, R.G.; Rueda, R.; Brown, E.N.; Boyden, E.S.; Tsai, L.H. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632), 230-235.
[http://dx.doi.org/10.1038/nature20587] [PMID: 27929004]
[14]
Adaikkan, C.; Tsai, L.H. Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci., 2020, 43(1), 24-41.
[http://dx.doi.org/10.1016/j.tins.2019.11.001] [PMID: 31836315]
[15]
Zheng, L.; Yu, M.; Lin, R.; Wang, Y.; Zhuo, Z.; Cheng, N.; Wang, M.; Tang, Y.; Wang, L.; Hou, S.T. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat. Commun., 2020, 11(1), 3012.
[http://dx.doi.org/10.1038/s41467-020-16826-0] [PMID: 32541656]
[16]
Martorell, A.J.; Paulson, A.L.; Suk, H.J.; Abdurrob, F.; Drummond, G.T.; Guan, W.; Young, J.Z.; Kim, D.N.W.; Kritskiy, O.; Barker, S.J.; Mangena, V.; Prince, S.M.; Brown, E.N.; Chung, K.; Boyden, E.S.; Singer, A.C.; Tsai, L.H. Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell, 2019, 177(2), 256-271.e22.
[http://dx.doi.org/10.1016/j.cell.2019.02.014] [PMID: 30879788]
[17]
Adaikkan, C.; Middleton, S.J.; Marco, A.; Pao, P.C.; Mathys, H.; Kim, D.N.W.; Gao, F.; Young, J.Z.; Suk, H.J.; Boyden, E.S.; McHugh, T.J.; Tsai, L.H. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 2019, 102(5), 929-943.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.04.011] [PMID: 31076275]
[18]
Jankowsky, J.L.; Slunt, H.H.; Ratovitski, T.; Jenkins, N.A.; Copeland, N.G.; Borchelt, D.R. Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomol. Eng., 2001, 17(6), 157-165.
[http://dx.doi.org/10.1016/S1389-0344(01)00067-3] [PMID: 11337275]
[19]
Cohen, R.M.; Rezai-Zadeh, K.; Weitz, T.M.; Rentsendorj, A.; Gate, D.; Spivak, I.; Bholat, Y.; Vasilevko, V.; Glabe, C.G.; Breunig, J.J.; Rakic, P.; Davtyan, H.; Agadjanyan, M.G.; Kepe, V.; Barrio, J.R.; Bannykh, S.; Szekely, C.A.; Pechnick, R.N.; Town, T. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J. Neurosci., 2013, 33(15), 6245-6256.
[http://dx.doi.org/10.1523/JNEUROSCI.3672-12.2013] [PMID: 23575824]
[20]
Stoiljkovic, M.; Kelley, C.; Horvath, T.L.; Hajós, M. Neurophysiological signals as predictive translational biomarkers for Alzheimer’s disease treatment: Effects of donepezil on neuronal network oscillations in TgF344-AD rats. Alzheimers Res. Ther., 2018, 10(1), 105.
[http://dx.doi.org/10.1186/s13195-018-0433-4] [PMID: 30301466]
[21]
Stoiljkovic, M.; Kelley, C.; Stutz, B.; Horvath, T.L.; Hajós, M. Altered cortical and hippocampal excitability in TgF344-AD rats modeling alzheimer’s disease pathology. Cereb. Cortex, 2019, 29(6), 2716-2727.
[http://dx.doi.org/10.1093/cercor/bhy140] [PMID: 29920597]
[22]
Broussard, J.I.; Redell, J.B.; Maynard, M.E.; Zhao, J.; Moore, A.; Mills, R.W.; Hood, K.N.; Underwood, E.; Roysam, B.; Dash, P.K. Impaired experience-dependent refinement of place cells in a rat model of alzheimer’s disease. J. Alzheimers Dis., 2022, 86(4), 1907-1916.
[http://dx.doi.org/10.3233/JAD-215023] [PMID: 35253742]
[23]
Moradi, F.; van den Berg, M.; Mirjebreili, M.; Kosten, L.; Verhoye, M.; Amiri, M.; Keliris, G.A. Early classification of Alzheimer’s disease phenotype based on hippocampal electrophysiology in the TgF344-AD rat model. iScience, 2023, 26(8), 107454.
[http://dx.doi.org/10.1016/j.isci.2023.107454] [PMID: 37599835]
[24]
Broussard, J.I.; Redell, J.B.; Zhao, J.; Maynard, M.E.; Kobori, N.; Perez, A.; Hood, K.N.; Zhang, X.O.; Moore, A.N.; Dash, P.K. Mild traumatic brain injury decreases spatial information content and reduces place field stability of hippocampal CA1 neurons. J. Neurotrauma, 2020, 37(2), 227-235.
[http://dx.doi.org/10.1089/neu.2019.6766] [PMID: 31530217]
[25]
Broussard, J.I.; Redell, J.B.; Zhao, J.; West, R.; Homma, R.; Dash, P.K. Optogenetic stimulation of CA1 pyramidal neurons at theta enhances recognition memory in brain injured animals. J. Neurotrauma, 2023, 40(21-22), 2442-2448.
[http://dx.doi.org/10.1089/neu.2023.0078] [PMID: 37387400]
[26]
Ragozzino, M.E.; Pal, S.N.; Unick, K.; Stefani, M.R.; Gold, P.E. Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 1998, 18(4), 1595-1601.
[http://dx.doi.org/10.1523/JNEUROSCI.18-04-01595.1998] [PMID: 9454864]
[27]
Lennartz, R.C. The role of extramaze cues in spontaneous alternation in a plus-maze. Learn. Behav., 2008, 36(2), 138-144.
[http://dx.doi.org/10.3758/LB.36.2.138] [PMID: 18543713]
[28]
Yamamoto, J.; Suh, J.; Takeuchi, D.; Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell, 2014, 157(4), 845-857.
[http://dx.doi.org/10.1016/j.cell.2014.04.009] [PMID: 24768692]
[29]
Mably, A.J.; Gereke, B.J.; Jones, D.T.; Colgin, L.L. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus, 2017, 27(4), 378-392.
[http://dx.doi.org/10.1002/hipo.22697] [PMID: 28032686]
[30]
Mably, A.J.; Colgin, L.L. Gamma oscillations in cognitive disorders. Curr. Opin. Neurobiol., 2018, 52, 182-187.
[http://dx.doi.org/10.1016/j.conb.2018.07.009] [PMID: 30121451]
[31]
Rorabaugh, J.M.; Chalermpalanupap, T.; Botz-Zapp, C.A.; Fu, V.M.; Lembeck, N.A.; Cohen, R.M.; Weinshenker, D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain, 2017, 140(11), 3023-3038.
[http://dx.doi.org/10.1093/brain/awx232] [PMID: 29053824]
[32]
Bons, N.; Rieger, F.; Prudhomme, D.; Fisher, A.; Krause, K.H. Microcebus murinus : A useful primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav., 2006, 5(2), 120-130.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00149.x] [PMID: 16507003]
[33]
Heuer, E.; Rosen, R.F.; Cintron, A.; Walker, L.C. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des., 2012, 18(8), 1159-1169.
[http://dx.doi.org/10.2174/138161212799315885] [PMID: 22288403]
[34]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6(4), 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[35]
Schneider, L.S.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R.; Mantua, V.; Mecocci, P.; Pani, L.; Winblad, B.; Kivipelto, M. Clinical trials and late-stage drug development for A lzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med., 2014, 275(3), 251-283.
[http://dx.doi.org/10.1111/joim.12191] [PMID: 24605808]
[36]
Banik, A.; Brown, R.E.; Bamburg, J.; Lahiri, D.K.; Khurana, D.; Friedland, R.P.; Chen, W.; Ding, Y.; Mudher, A.; Padjen, A.L.; Mukaetova-Ladinska, E.; Ihara, M.; Srivastava, S.; Padma Srivastava, M.V.; Masters, C.L.; Kalaria, R.N.; Anand, A. Translation of pre-clinical studies into successful clinical trials for alzheimer’s disease: What are the roadblocks and how can they be overcome?1. J. Alzheimers Dis., 2015, 47(4), 815-843.
[http://dx.doi.org/10.3233/JAD-150136] [PMID: 26401762]
[37]
Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol., 2017, 133(2), 155-175.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[38]
Chan, D.; Suk, H.J.; Jackson, B.; Milman, N.P.; Stark, D.; Beach, S.D.; Tsai, L.H. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer’s disease. J. Intern. Med., 2021, 290(5), 993-1009.
[http://dx.doi.org/10.1111/joim.13329] [PMID: 34156133]
[39]
Chan, D.; Suk, H.J.; Jackson, B.L.; Milman, N.P.; Stark, D.; Klerman, E.B.; Kitchener, E.; Avalos, F.V.S.; de Weck, G.; Banerjee, A.; Beach, S.D.; Blanchard, J.; Stearns, C.; Boes, A.D.; Uitermarkt, B.; Gander, P.; Howard, M., III; Sternberg, E.J.; Nieto-Castanon, A.; Anteraper, S.; Whitfield-Gabrieli, S.; Brown, E.N.; Boyden, E.S.; Dickerson, B.C.; Tsai, L.H. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: Results of feasibility and pilot studies. PLoS One, 2022, 17(12), e0278412.
[http://dx.doi.org/10.1371/journal.pone.0278412] [PMID: 36454969]
[40]
Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-term effects of rhythmic sensory stimulation in alzheimer’s disease: An exploratory pilot study. J. Alzheimers Dis., 2016, 52(2), 651-660.
[http://dx.doi.org/10.3233/JAD-160081] [PMID: 27031491]
[41]
Cimenser, A.; Hempel, E.; Travers, T.; Strozewski, N.; Martin, K.; Malchano, Z.; Hajós, M. Sensory-evoked 40-Hz gamma oscillation improves sleep and daily living activities in Alzheimer’s disease patients. Front. Syst. Neurosci., 2021, 15, 746859.
[http://dx.doi.org/10.3389/fnsys.2021.746859] [PMID: 34630050]
[42]
Liu, Q.; Contreras, A.; Afaq, M.S.; Yang, W.; Hsu, D.K.; Russell, M.; Lyeth, B.; Zanto, T.P.; Zhao, M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer’s disease. Cell Biosci., 2023, 13(1), 138.
[http://dx.doi.org/10.1186/s13578-023-01085-5] [PMID: 37507776]
[43]
Manippa, V.; Palmisano, A.; Nitsche, M.A.; Filardi, M.; Vilella, D.; Logroscino, G.; Rivolta, D. Cognitive and neuropathophysiological outcomes of gamma-tacs in dementia: A systematic review. Neuropsychol. Rev., 2024, 34(1), 338-361.
[http://dx.doi.org/10.1007/s11065-023-09589-0] [PMID: 36877327]

© 2024 Bentham Science Publishers | Privacy Policy