Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

The Role of CYPs and Transporters in the Biotransformation and Transport of the Anti-hepatitis C Antiviral Agents Asunaprevir, Daclatasvir, and Beclabuvir: Impact of Liver Disease, Race and Drug-drug Interactions on Safety and Efficacy

Author(s): Michael Murray*

Volume 25, Issue 2, 2024

Published on: 01 March, 2024

Page: [96 - 109] Pages: 14

DOI: 10.2174/0113892002288832240213095622

Price: $65

Open Access Journals Promotions 2
Abstract

Asunaprevir, daclatasvir, and beclabuvir are direct-acting antiviral agents used in the treatment of patients infected with hepatitis C genotype 1b. This article reviews the biotransformation and disposition of these drugs in relation to the safety and efficacy of therapy. CYP3A4 and 3A5 catalyze the oxidative biotransformation of the drugs, while P-glycoprotein mediates their efflux from tissues. Asunaprevir is also a substrate for the influx transporters OATP1B1 and OATP2B1 and the efflux transporter MRP2, while beclabuvir is also a substrate for the efflux transporter BCRP. Liver disease decreases the expression of CYPs and transporters that mediate drug metabolism and disposition. Serum asunaprevir concentrations, but not those of daclatasvir or beclabuvir, are increased in patients with severe liver disease, which may produce toxicity. Pharmacogenomic variation in CYPs and transporters also has the potential to disrupt therapy with asunaprevir, daclatasvir and beclabuvir; some variants are more prevalent in certain racial groups. Pharmacokinetic drug-drug interactions, especially where asunaprevir, daclatasvir, and beclabuvir are victim drugs, are mediated by coadministered rifampicin, ketoconazole and ritonavir, and are attributable to inhibition and/or induction of CYPs and transporters. Conversely, there is also evidence that asunaprevir, daclatasvir and beclabuvir are perpetrators of drug interactions with coadministered rosuvastatin and dextromethorphan. Together, liver disease, pharmacogenomic variation and drug-drug interactions may disrupt therapy with asunaprevir, daclatasvir and beclabuvir due to the impaired function of important CYPs and transporters.

Keywords: Transporters, asunaprevir, daclatasvir, beclabuvir, pharmacokinetic, biotransformation.

Graphical Abstract
[1]
Ioannou, G.N.; Tang, W.; Beste, L.A.; Tincopa, M.A.; Su, G.L.; Van, T.; Tapper, E.B.; Singal, A.G.; Zhu, J.; Waljee, A.K. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis. JAMA Netw. Open, 2020, 3(9), e2015626.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.15626] [PMID: 32870314]
[2]
Zeuzem, S.; Andreone, P.; Pol, S.; Lawitz, E.; Diago, M.; Roberts, S.; Focaccia, R.; Younossi, Z.; Foster, G.R.; Horban, A.; Ferenci, P.; Nevens, F.; Müllhaupt, B.; Pockros, P.; Terg, R.; Shouval, D.; van Hoek, B.; Weiland, O.; Van Heeswijk, R.; De Meyer, S.; Luo, D.; Boogaerts, G.; Polo, R.; Picchio, G.; Beumont, M. Telaprevir for retreatment of HCV infection. N. Engl. J. Med., 2011, 364(25), 2417-2428.
[http://dx.doi.org/10.1056/NEJMoa1013086] [PMID: 21696308]
[3]
Kiser, J.J.; Burton, J.R.; Anderson, P.L.; Everson, G.T. Review and management of drug interactions with boceprevir and telaprevir. Hepatology, 2012, 55(5), 1620-1628.
[http://dx.doi.org/10.1002/hep.25653] [PMID: 22331658]
[4]
Simmonds, P.; Bukh, J.; Combet, C.; Deléage, G.; Enomoto, N.; Feinstone, S.; Halfon, P.; Inchauspé, G.; Kuiken, C.; Maertens, G.; Mizokami, M.; Murphy, D.G.; Okamoto, H.; Pawlotsky, J.M.; Penin, F.; Sablon, E.; Shin-I, T.; Stuyver, L.J.; Thiel, H.J.; Viazov, S.; Weiner, A.J.; Widell, A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005, 42(4), 962-973.
[http://dx.doi.org/10.1002/hep.20819] [PMID: 16149085]
[5]
Schnell, G.; Krishnan, P.; Tripathi, R.; Beyer, J.; Reisch, T.; Irvin, M.; Dekhtyar, T.; Lu, L.; Ng, T.I.; Xie, W.; Pilot-Matias, T.; Collins, C. Hepatitis C virus genetic diversity by geographic region within genotype 1-6 subtypes among patients treated with glecaprevir and pibrentasvir. PLoS One, 2018, 13(10), e0205186.
[http://dx.doi.org/10.1371/journal.pone.0205186] [PMID: 30286205]
[6]
Lim, S.G.; Aghemo, A.; Chen, P.J.; Dan, Y.Y.; Gane, E.; Gani, R.; Gish, R.G.; Guan, R.; Jia, J.D.; Lim, K.; Piratvisuth, T.; Shah, S.; Shiffman, M.L.; Tacke, F.; Tan, S.S.; Tanwandee, T.; Win, K.M.; Yurdaydin, C. Management of hepatitis C virus infection in the Asia-Pacific region: An update. Lancet Gastroenterol. Hepatol., 2017, 2(1), 52-62.
[http://dx.doi.org/10.1016/S2468-1253(16)30080-2] [PMID: 28404015]
[7]
Chen, C.Y.; Huang, C.F.; Cheng, P.N.; Tseng, K.C.; Lo, C.C.; Kuo, H.T.; Huang, Y.H.; Tai, C.M.; Peng, C.Y.; Bair, M.J.; Chen, C.H.; Yeh, M.L.; Lin, C.L.; Lin, C.Y.; Lee, P.L.; Chong, L.W.; Hung, C.H.; Huang, J.F.; Yang, C.C.; Hu, J.T.; Lin, C.W.; Chen, C.T.; Wang, C.C.; Su, W.W.; Hsieh, T.Y.; Lin, C.L.; Tsai, W.L.; Lee, T.H.; Chen, G.Y.; Wang, S.J.; Chang, C.C.; Mo, L.R.; Yang, S.S.; Wu, W.C.; Huang, C.S.; Hsiung, C.K.; Kao, C.N.; Tsai, P.C.; Liu, C.H.; Lee, M.H.; Liu, C.J.; Dai, C.Y.; Kao, J.H.; Chuang, W.L.; Lin, H.C.; Yu, M.L. Factors associated with treatment failure of direct-acting antivirals for chronic hepatitis C: A real-world nationwide hepatitis C virus registry programme in Taiwan. Liver Int., 2021, 41(6), 1265-1277.
[http://dx.doi.org/10.1111/liv.14849] [PMID: 33655714]
[8]
Wei, L.; Wang, F.S.; Zhang, M.X.; Jia, J.D.; Yakovlev, A.A.; Xie, W.; Burnevich, E.; Niu, J.Q.; Jung, Y.J.; Jiang, X.J.; Xu, M.; Chen, X.Y.; Xie, Q.; Li, J.; Hou, J.L.; Tang, H.; Dou, X.G.; Gandhi, Y.; Hu, W.H.; Mcphee, F.; Noviello, S.; Treitel, M.; Mo, L.; Deng, J. Daclatasvir plus asunaprevir in treatment-naïve patients with hepatitis C virus genotype 1b infection. World J. Gastroenterol., 2018, 24(12), 1361-1372.
[http://dx.doi.org/10.3748/wjg.v24.i12.1361] [PMID: 29599611]
[9]
Takaguchi, K.; Toyoda, H.; Tsutsui, A.; Suzuki, Y.; Nakamuta, M.; Imamura, M.; Senoh, T.; Nagano, T.; Tada, T.; Tachi, Y.; Hiraoka, A.; Michitaka, K.; Shibata, H.; Joko, K.; Okubo, H.; Tsuji, K.; Takaki, S.; Watanabe, T.; Ogawa, C.; Chayama, K.; Kumada, T.; Kudo, M.; Kumada, H. Real-world virological efficacy and safety of daclatasvir/asunaprevir/beclabuvir in patients with chronic hepatitis C virus genotype 1 infection in Japan. J. Gastroenterol., 2019, 54(8), 742-751.
[http://dx.doi.org/10.1007/s00535-019-01568-8] [PMID: 30848363]
[10]
Gentile, I.; Zappulo, E.; Buonomo, A.R.; Maraolo, A.E.; Borgia, G. Beclabuvir for the treatment of hepatitis C. Expert Opin. Investig. Drugs, 2015, 24(8), 1111-1121.
[http://dx.doi.org/10.1517/13543784.2015.1059820] [PMID: 26156630]
[11]
Steffansen, B.; Nielsen, C.U.; Brodin, B.; Eriksson, A.H.; Andersen, R.; Frokjaer, S. Intestinal solute carriers: An overview of trends and strategies for improving oral drug absorption. Eur. J. Pharm. Sci., 2004, 21(1), 3-16.
[http://dx.doi.org/10.1016/j.ejps.2003.10.010] [PMID: 14706808]
[12]
Available from: https://www.proteinatlas.org (Accessed 18 September 2023).
[13]
Jetter, A.; Kullak-Ublick, G.A. Drugs and hepatic transporters: A review. Pharmacol. Res., 2020, 154, 104234.
[http://dx.doi.org/10.1016/j.phrs.2019.04.018] [PMID: 31004787]
[14]
Pharmaceuticals and Medical Devices Agency (Japan). 2023. Available from: https://pmda.go.jp/files/000209023.pdf (Accessed 18 September 2023).
[15]
Eley, T.; Garimella, T.; Li, W.; Bertz, R.J. Asunaprevir: An HCV protease inhibitor with preferential liver distribution. Clin. Pharmacol. Drug Dev., 2017, 6(2), 195-200.
[http://dx.doi.org/10.1002/cpdd.315] [PMID: 28263460]
[16]
Eley, T.; Han, Y-H.; Huang, S-P.; He, B.; Li, W.; Bedford, W.; Stonier, M.; Gardiner, D.; Sims, K.; Rodrigues, A.D.; Bertz, R.J. Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin. Pharmacol. Ther., 2015, 97(2), 159-166.
[http://dx.doi.org/10.1002/cpt.4] [PMID: 25670521]
[17]
Pharmaceuticals and Medical Devices Agency (Japan). 2023. Available from: https://pmda.go.jp/files/000226231.pdf(Accessed 20 September 2023).
[18]
Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov. Today, 2008, 13(9-10), 379-393.
[http://dx.doi.org/10.1016/j.drudis.2007.12.010] [PMID: 18468555]
[19]
Katsura, T.; Inui, K. Intestinal absorption of drugs mediated by drug transporters: Mechanisms and regulation. Drug Metab. Pharmacokinet., 2003, 18(1), 1-15.
[http://dx.doi.org/10.2133/dmpk.18.1] [PMID: 15618714]
[20]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev., 2003, 55(1), 3-29.
[http://dx.doi.org/10.1016/S0169-409X(02)00169-2] [PMID: 12535572]
[21]
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett., 2016, 370(1), 153-164.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[22]
Vander Borght, S.; Libbrecht, L.; Katoonizadeh, A.; van Pelt, J.; Cassiman, D.; Nevens, F.; Van Lommel, A.; Petersen, B.E.; Fevery, J.; Jansen, P.L.; Roskams, T.A. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: Possible functional consequences. J. Histochem. Cytochem., 2006, 54(9), 1051-1059.
[http://dx.doi.org/10.1369/jhc.5A6912.2006] [PMID: 16709727]
[23]
McPhee, F.; Sheaffer, A.K.; Friborg, J.; Hernandez, D.; Falk, P.; Zhai, G.; Levine, S.; Chaniewski, S.; Yu, F.; Barry, D.; Chen, C.; Lee, M.S.; Mosure, K.; Sun, L.Q.; Sinz, M.; Meanwell, N.A.; Colonno, R.J.; Knipe, J.; Scola, P. Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother., 2012, 56(10), 5387-5396.
[http://dx.doi.org/10.1128/AAC.01186-12] [PMID: 22869577]
[24]
Available from: https://vcclab.org/lab/alogps//(Accessed 18 September 2023).
[25]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[26]
Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol., 2015, 28(1), 38-42.
[http://dx.doi.org/10.1021/tx500444e] [PMID: 25485457]
[27]
Desposito, F.; Tattam, B.; Ramzan, I.; Murray, M. A liquid chromatography/electrospray ionization mass spectrometry (LC–MS/MS) assay for the determination of irinotecan (CPT-11) and its two major metabolites in human liver microsomal incubations and human plasma samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(2), 522-530.
[http://dx.doi.org/10.1016/j.jchromb.2008.10.011] [PMID: 18952506]
[28]
Gong, J.; Eley, T.; He, B.; Arora, V.; Philip, T.; Jiang, H.; Easter, J.; Humphreys, W.G.; Iyer, R.A.; Li, W. Characterization of ADME properties of [ 14 C]asunaprevir (BMS-650032) in humans. Xenobiotica, 2016, 46(1), 52-64.
[http://dx.doi.org/10.3109/00498254.2015.1048487] [PMID: 26153443]
[29]
Li, W.; Zhao, W.; Liu, X.; Huang, X.; Lopez, O.D.; Leet, J.E.; Fancher, R.M.; Nguyen, V.; Goodrich, J.; Easter, J.; Hong, Y.; Caceres-Cortes, J.; Chang, S.Y.; Ma, L.; Belema, M.; Hamann, L.G.; Gao, M.; Zhu, M.; Shu, Y.Z.; Humphreys, W.G.; Johnson, B.M. Biotransformation of daclatasvir in vitro and in nonclinical species: Formation of the main metabolite by pyrrolidine δ-oxidation and rearrangement. Drug Metab. Dispos., 2016, 44(6), 809-820.
[http://dx.doi.org/10.1124/dmd.115.068866] [PMID: 27029743]
[30]
Pharmaceuticals and medical devices agency (japan). review report: Daklinza. 2023. Available from: https://pmda.go.jp/files/000209021.pdf(Accessed 20 September 2023).
[31]
Shiozaki, T.; Ueno, T.; Nagashima, H.; Yamahira, N.; Hiraoka, M.; Eley, T.; Bifano, M.; Bertz, R.J. Single- and multiple-ascending dose studies to evaluate the safety, tolerability, and pharmacokinetics of daclatasvir and asunaprevir in healthy male Japanese subjects. Int. J. Clin. Pharmacol. Ther., 2015, 53(4), 292-302.
[http://dx.doi.org/10.5414/CP202186] [PMID: 25740262]
[32]
Esposito, I.; Marciano, S.; Trinks, J. Pharmacokinetic and pharmacodynamic evaluation of daclatasvir, asunaprevir plus beclabuvir as a fixed-dose co-formulation for the treatment of hepatitis C. Expert Opin. Drug Metab. Toxicol., 2018, 14(6), 649-657.
[http://dx.doi.org/10.1080/17425255.2018.1483336] [PMID: 29855221]
[33]
Eley, T.; Garimella, T.; Li, W.; Bertz, R.J. Asunaprevir: A review of preclinical and clinical pharmacokinetics and drug-drug interactions. Clin. Pharmacokinet., 2015, 54(12), 1205-1222.
[http://dx.doi.org/10.1007/s40262-015-0299-6] [PMID: 26177803]
[34]
Eley, T.; He, B.; Chang, I.; Colston, E.; Child, M.; Bedford, W.; Kandoussi, H.; Pasquinelli, C.; Marbury, T.C.; Bertz, R.J. The effect of hepatic impairment on the pharmacokinetics of asunaprevir, an HCV NS3 protease inhibitor. Antivir. Ther., 2015, 20(1), 29-37.
[http://dx.doi.org/10.3851/IMP2773] [PMID: 24704773]
[35]
Nettles, R.E.; Gao, M.; Bifano, M.; Chung, E.; Persson, A.; Marbury, T.C.; Goldwater, R.; DeMicco, M.P.; Rodriguez-Torres, M.; Vutikullird, A.; Fuentes, E.; Lawitz, E.; Lopez-Talavera, J.C.; Grasela, D.M. Multiple ascending dose study of BMS-790052, a nonstructural protein 5A replication complex inhibitor, in patients infected with hepatitis C virus genotype 1. Hepatology, 2011, 54(6), 1956-1965.
[http://dx.doi.org/10.1002/hep.24609] [PMID: 21837752]
[36]
Available from: https://clinicaltrials.gov/ct2/show/NCT01830205 (Accessed 17 September 2023).
[37]
Available from: https://clinicaltrials.gov/ct2/show/NCT00859053 (Accessed 17 September 2023).
[38]
Smolders, E.J.; Colbers, E.P.H.; de Kanter, C.T.M.M.; Velthoven-Graafland, K.; Drenth, J.P.H.; Burger, D.M. Daclatasvir 30 mg/day is the correct dose for patients taking atazanavir/cobicistat. J. Antimicrob. Chemother., 2017, 72(2), 486-489.
[http://dx.doi.org/10.1093/jac/dkw429] [PMID: 27798211]
[39]
Available from: https://clinicaltrials.gov/ct2/show/NCT02159352 (Accessed 17 September 2023).
[40]
Sims, K.D.; Lemm, J.; Eley, T.; Liu, M.; Berglind, A.; Sherman, D.; Lawitz, E.; Vutikullird, A.B.; Tebas, P.; Gao, M.; Pasquinelli, C.; Grasela, D.M. Randomized, placebo-controlled, single-ascending-dose study of BMS-791325, a hepatitis C virus (HCV) NS5B polymerase inhibitor, in HCV genotype 1 infection. Antimicrob. Agents Chemother., 2014, 58(6), 3496-3503.
[http://dx.doi.org/10.1128/AAC.02579-13] [PMID: 24733462]
[41]
Rodríguez-Antona, C.; Bort, R.; Jover, R.; Tindberg, N.; Ingelman-Sundberg, M.; Gómez-Lechón, M.J.; Castell, J.V. Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein α and hepatocyte nuclear factor-3 γ. Mol. Pharmacol., 2003, 63(5), 1180-1189.
[http://dx.doi.org/10.1124/mol.63.5.1180] [PMID: 12695546]
[42]
Chen, K.G.; Sale, S.; Tan, T.; Ermoian, R.P.; Sikic, B.I. CCAAT/enhancer-binding protein β (nuclear factor for interleukin 6) transactivates the human MDR1 gene by interaction with an inverted CCAAT box in human cancer cells. Mol. Pharmacol., 2004, 65(4), 906-916.
[http://dx.doi.org/10.1124/mol.65.4.906] [PMID: 15044620]
[43]
Maher, J.M.; Slitt, A.L.; Callaghan, T.N.; Cheng, X.; Cheung, C.; Gonzalez, F.J.; Klaassen, C.D. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1α. Biochem. Pharmacol., 2006, 72(4), 512-522.
[http://dx.doi.org/10.1016/j.bcp.2006.03.016] [PMID: 16806085]
[44]
Hakkola, J.; Bernasconi, C.; Coecke, S.; Richert, L.; Andersson, T.B.; Pelkonen, O. Cytochrome P450 induction and xeno-sensing receptors Pregnane X receptor, Constitutive Androstane receptor, Aryl Hydrocarbon receptor and Peroxisome Proliferator-Activated receptor-α at the crossroads of toxicokinetics and toxicodynamics. Basic Clin. Pharmacol. Toxicol., 2018, 123(S5)(Suppl. 5), 42-50.
[http://dx.doi.org/10.1111/bcpt.13004] [PMID: 29527807]
[45]
Farrell, G.C.; Murray, M. Human cytochrome P450 isoforms. Gastroenterology, 1990, 99(3), 885-889.
[http://dx.doi.org/10.1016/0016-5085(90)90985-A] [PMID: 2199294]
[46]
Maglich, J.M.; Stoltz, C.M.; Goodwin, B.; Hawkins-Brown, D.; Moore, J.T.; Kliewer, S.A. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol., 2002, 62(3), 638-646.
[http://dx.doi.org/10.1124/mol.62.3.638] [PMID: 12181440]
[47]
Larigot, L.; Benoit, L.; Koual, M.; Tomkiewicz, C.; Barouki, R.; Coumoul, X. Aryl Hydrocarbon receptor and its diverse ligands and functions: An exposome receptor. Annu. Rev. Pharmacol. Toxicol., 2022, 62(1), 383-404.
[http://dx.doi.org/10.1146/annurev-pharmtox-052220-115707] [PMID: 34499523]
[48]
Kipp, H.; Arias, I.M. Trafficking of canalicular ABC transporters in hepatocytes. Annu. Rev. Physiol., 2002, 64(1), 595-608.
[http://dx.doi.org/10.1146/annurev.physiol.64.081501.155793] [PMID: 11826281]
[49]
Zhang, Q.; Hong, M.; Duan, P.; Pan, Z.; Ma, J.; You, G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway. J. Biol. Chem., 2008, 283(47), 32570-32579.
[http://dx.doi.org/10.1074/jbc.M800298200] [PMID: 18818201]
[50]
Zhou, F.; Lee, A.C.; Krafczyk, K.; Zhu, L.; Murray, M. Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2. Br. J. Pharmacol., 2011, 162(6), 1380-1388.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01144.x] [PMID: 21133891]
[51]
Murray, M.; Zhou, F. Trafficking and other regulatory mechanisms for Organic anion transporting polypeptides (OATPs) and Organic Anion transporters (OATs) that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br. J. Pharmacol., 2017, 174(13), 1908-1924.
[http://dx.doi.org/10.1111/bph.13785] [PMID: 28299773]
[52]
Gu, X.; Manautou, J.E. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab. Rev., 2010, 42(3), 482-538.
[http://dx.doi.org/10.3109/03602531003654915] [PMID: 20233023]
[53]
Murray, M.; Zaluzny, L.; Dannan, G.A.; Guengerich, F.P.; Farrell, G.C. Altered regulation of cytochrome P-450 enzymes in choline-deficient cirrhotic male rat liver: Impaired regulation and activity of the male-specific androst-4-ene-3,17-dione 16 α-hydroxylase, cytochrome P-450UT-A, in hepatic cirrhosis. Mol. Pharmacol., 1987, 31(1), 117-121.
[PMID: 3543647]
[54]
Murray, M.; Zaluzny, L.; Farrell, G.C. Impaired androgen 16α-hydroxylation in hepatic microsomes from carbon tetrachloride-cirrhotic male rats. Gastroenterology, 1987, 93(1), 141-147.
[http://dx.doi.org/10.1016/0016-5085(87)90326-X] [PMID: 3582901]
[55]
Cantrill, E.; Murray, M.; Mehta, I.; Farrell, G.C. Down-regulation of the male-specific steroid 16α-hydroxylase, cytochrome P-450UT-A, in male rats with portal bypass: Relevance to estradiol accumulation and impaired drug metabolism in hepatic cirrhosis. J. Clin. Invest., 1989, 83, 1211-1216.
[http://dx.doi.org/10.1172/JCI114003] [PMID: 2703529]
[56]
Chen, J.; Murray, M.; Liddle, C.; Jiang, X.M.; Farrell, G.C. Downregulation of male-specific cytochrome P450s 2C11 and 3A2 in bile duct-ligated male rats: Importance to reduced hepatic content of cytochrome P450 in cholestasis. Hepatology, 1995, 22(2), 580-587.
[PMID: 7635428]
[57]
Aitken, A.E.; Richardson, T.A.; Morgan, E.T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu. Rev. Pharmacol. Toxicol., 2006, 46(1), 123-149.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141059] [PMID: 16402901]
[58]
Murray, M. In vitro and in vivo studies of the effect of vitamin E on microsomal cytochrome P450 in rat liver. Biochem. Pharmacol., 1991, 42(11), 2107-2114.
[http://dx.doi.org/10.1016/0006-2952(91)90345-6] [PMID: 1958229]
[59]
Murray, M.; Cantrill, E.; Martini, R.; Farrell, G.C. Increased expression of cytochrome P450 IIIA2 in male rat liver after dietary vitamin A supplementation. Arch. Biochem. Biophys., 1991, 286(2), 618-624.
[http://dx.doi.org/10.1016/0003-9861(91)90089-2] [PMID: 1897981]
[60]
Zarezadeh, M.; Saedisomeolia, A.; Shekarabi, M.; Khorshidi, M.; Emami, M.R.; Müller, D.J. The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: A systematic review of current evidence on human studies. Eur. J. Nutr., 2021, 60(6), 2905-2921.
[http://dx.doi.org/10.1007/s00394-020-02421-y] [PMID: 33141242]
[61]
Alvarez, A.I.; Real, R.; Pérez, M.; Mendoza, G.; Prieto, J.G.; Merino, G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J. Pharm. Sci., 2010, 99(2), 598-617.
[http://dx.doi.org/10.1002/jps.21851] [PMID: 19544374]
[62]
Guo, Y.; Cui, J.Y.; Lu, H.; Klaassen, C.D. Effect of nine diets on xenobiotic transporters in livers of mice. Xenobiotica, 2015, 45(7), 634-641.
[http://dx.doi.org/10.3109/00498254.2014.1001009] [PMID: 25566878]
[63]
Guengerich, F.P.; Turvy, C.G. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J. Pharmacol. Exp. Ther., 1991, 256(3), 1189-1194.
[PMID: 2005581]
[64]
Hardwick, R.N.; Fisher, C.D.; Canet, M.J.; Scheffer, G.L.; Cherrington, N.J. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab. Dispos., 2011, 39(12), 2395-2402.
[http://dx.doi.org/10.1124/dmd.111.041012] [PMID: 21878559]
[65]
Merrell, M.D.; Cherrington, N.J. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab. Rev., 2011, 43(3), 317-334.
[http://dx.doi.org/10.3109/03602532.2011.577781] [PMID: 21612324]
[66]
Thakkar, N.; Slizgi, J.R.; Brouwer, K.L.R. Effect of liver disease on hepatic transporter expression and function. J. Pharm. Sci., 2017, 106(9), 2282-2294.
[http://dx.doi.org/10.1016/j.xphs.2017.04.053] [PMID: 28465155]
[67]
Drozdzik, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, L.; Szeląg-Pieniek, S.; Post, M.; Parus, A.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein abundance of drug metabolizing enzymes in human hepatitis C livers. Int. J. Mol. Sci., 2023, 24(5), 4543.
[http://dx.doi.org/10.3390/ijms24054543] [PMID: 36901973]
[68]
El-Khateeb, E.; Achour, B.; Al-Majdoub, Z.M.; Barber, J.; Rostami-Hodjegan, A. Non-uniformity of changes in drug-metabolizing enzymes and transporters in liver cirrhosis: Implications for drug dosage adjustment. Mol. Pharm., 2021, 18(9), 3563-3577.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00462] [PMID: 34428046]
[69]
Vasilogianni, A.M.; Al-Majdoub, Z.M.; Achour, B.; Peters, S.A.; Rostami-Hodjegan, A.; Barber, J. Proteomics of colorectal cancer liver metastasis: A quantitative focus on drug elimination and pharmacodynamics effects. Br. J. Clin. Pharmacol., 2022, 88(4), 1811-1823.
[http://dx.doi.org/10.1111/bcp.15098] [PMID: 34599518]
[70]
Pugh, R.N.H.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg., 2005, 60(8), 646-649.
[http://dx.doi.org/10.1002/bjs.1800600817] [PMID: 4541913]
[71]
Kojima, H.; Nies, A.T.; König, J.; Hagmann, W.; Spring, H.; Uemura, M.; Fukui, H.; Keppler, D. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J. Hepatol., 2003, 39(5), 693-702.
[http://dx.doi.org/10.1016/S0168-8278(03)00410-0] [PMID: 14568249]
[72]
Wang, L.; Collins, C.; Kelly, E.J.; Chu, X.; Ray, A.S.; Salphati, L.; Xiao, G.; Lee, C.; Lai, Y.; Liao, M.; Mathias, A.; Evers, R.; Humphreys, W.; Hop, C.E.C.A.; Kumer, S.C.; Unadkat, J.D. Transporter expression in liver tissue from subjects with alcoholic or hepatitis C cirrhosis quantified by targeted quantitative proteomics. Drug Metab. Dispos., 2016, 44(11), 1752-1758.
[http://dx.doi.org/10.1124/dmd.116.071050] [PMID: 27543206]
[73]
Vander Borght, S.; Libbrecht, L.; Blokzijl, H.; Nico Faber, K.; Moshage, H.; Aerts, R.; Van Steenbergen, W.; Jansen, P.L.; Desmet, V.J.; Roskams, T.A. Diagnostic and pathogenetic implications of the expression of hepatic transporters in focal lesions occurring in normal liver. J. Pathol., 2005, 207(4), 471-482.
[http://dx.doi.org/10.1002/path.1852] [PMID: 16161006]
[74]
Zollner, G.; Wagner, M.; Fickert, P.; Silbert, D.; Fuchsbichler, A.; Zatloukal, K.; Denk, H.; Trauner, M. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int., 2005, 25(2), 367-379.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01033.x] [PMID: 15780063]
[75]
Billington, S.; Ray, A.S.; Salphati, L.; Xiao, G.; Chu, X.; Humphreys, W.G.; Liao, M.; Lee, C.A.; Mathias, A.; Hop, C.E.C.A.; Rowbottom, C.; Evers, R.; Lai, Y.; Kelly, E.J.; Prasad, B.; Unadkat, J.D. Transporter expression in noncancerous and cancerous liver tissue from donors with hepatocellular carcinoma and chronic hepatitis C infection quantified by LC-MS/MS proteomics. Drug Metab. Dispos., 2018, 46(2), 189-196.
[http://dx.doi.org/10.1124/dmd.117.077289] [PMID: 29138286]
[76]
Drozdzik, M.; Szelag-Pieniek, S.; Post, M.; Zeair, S.; Wrzesinski, M.; Kurzawski, M.; Prieto, J.; Oswald, S. Protein abundance of hepatic drug transporters in patients with different forms of liver damage. Clin. Pharmacol. Ther., 2020, 107(5), 1138-1148.
[http://dx.doi.org/10.1002/cpt.1717] [PMID: 31697849]
[77]
Namisaki, T.; Schaeffeler, E.; Fukui, H.; Yoshiji, H.; Nakajima, Y.; Fritz, P.; Schwab, M.; Nies, A.T. Differential expression of drug uptake and efflux transporters in Japanese patients with hepatocellular carcinoma. Drug Metab. Dispos., 2014, 42(12), 2033-2040.
[http://dx.doi.org/10.1124/dmd.114.059832] [PMID: 25231932]
[78]
Clarke, J.D.; Novak, P.; Lake, A.D.; Hardwick, R.N.; Cherrington, N.J. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int., 2017, 37(7), 1074-1081.
[http://dx.doi.org/10.1111/liv.13362] [PMID: 28097795]
[79]
Kullak-Ublick, G.; Baretton, G.B.; Oswald, M.; Renner, E.L.; Paumgartner, G.; Beuers, U. Expression of the hepatocyte canalicular multidrug resistance protein (MRP2) in primary biliary cirrhosis. Hepatol. Res., 2002, 23(1), 78-82.
[http://dx.doi.org/10.1016/S1386-6346(01)00159-0] [PMID: 12084558]
[80]
Cirqueira, C.S.; Felipe-Silva, A.S.; Wakamatsu, A.; Marins, L.V.; Rocha, E.C.; de Mello, E.S.; Alves, V.A.F. Immunohistochemical assessment of the expression of biliary transportation proteins MRP2 and MRP3 in hepatocellular carcinoma and in cholangiocarcinoma. Pathol. Oncol. Res., 2019, 25(4), 1363-1371.
[http://dx.doi.org/10.1007/s12253-018-0386-8] [PMID: 29464551]
[81]
Ros, J.E.; Libbrecht, L.; Geuken, M.; Jansen, P.L.M.; Roskams, T.A.D. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J. Pathol., 2003, 200(5), 553-560.
[http://dx.doi.org/10.1002/path.1379] [PMID: 12898590]
[82]
Pippa, L.F.; Vieira, C.P.; Caris, J.A.; Rocha, A.; Marques, M.P.; Garcia, C.P.; Rezende, R.E.F.; Lanchote, V.L. Effect of chronic hepatitis C on the activity of the membrane transporters P-gp and OATP1B1/BCRP on patients with different stages of hepatic fibrosis. Clin. Pharmacol. Ther., 2023, 114(1), 173-181.
[http://dx.doi.org/10.1002/cpt.2908] [PMID: 37070971]
[83]
Gentile, I.; Zappulo, E.; Buonomo, A.R.; Scotto, R.; Borgia, G. Asunaprevir for hepatitis C: A safety evaluation. Expert Opin. Drug Saf., 2015, 14(10), 1631-1646.
[http://dx.doi.org/10.1517/14740338.2015.1084287] [PMID: 26329454]
[84]
Zhang, F.; Finkelstein, J. Inconsistency in race and ethnic classification in pharmacogenetics studies and its potential clinical implications. Pharm. Genomics Pers. Med., 2019, 12, 107-123.
[http://dx.doi.org/10.2147/PGPM.S207449] [PMID: 31308725]
[85]
Ito, S.; Ieiri, I.; Tanabe, M.; Suzuki, A.; Higuchi, S.; Otsubo, K. Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics, 2001, 11(2), 175-184.
[http://dx.doi.org/10.1097/00008571-200103000-00008] [PMID: 11266082]
[86]
Zhou, F.; Zhu, L.; Wang, K.; Murray, M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv. Drug Deliv. Rev., 2017, 116, 21-36.
[http://dx.doi.org/10.1016/j.addr.2016.06.004] [PMID: 27320645]
[87]
Zhou, F.; Zheng, J.; Zhu, L.; Jodal, A.; Cui, P.H.; Wong, M.; Gurney, H.; Church, W.B.; Murray, M. Functional analysis of novel polymorphisms in the human SLCO1A2 gene that encodes the transporter OATP1A2. AAPS J., 2013, 15(4), 1099-1108.
[http://dx.doi.org/10.1208/s12248-013-9515-1] [PMID: 23918469]
[88]
Lee, H.H.; Ho, R.H. Interindividual and interethnic variability in drug disposition: Polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1 ). Br. J. Clin. Pharmacol., 2017, 83(6), 1176-1184.
[http://dx.doi.org/10.1111/bcp.13207] [PMID: 27936281]
[89]
Suzuki, Y.; Sasamoto, Y.; Koyama, T.; Yoshijima, C.; Oda, A.; Nakatochi, M.; Kubo, M.; Momozawa, Y.; Uehara, R.; Ohno, K. Relationship of hemoglobin level and plasma coproporphyrin-I concentrations as an endogenous probe for phenotyping OATP1B. Clin. Transl. Sci., 2021, 14(4), 1403-1411.
[http://dx.doi.org/10.1111/cts.12996] [PMID: 33650309]
[90]
He, Y.J.; Zhang, W.; Chen, Y.; Guo, D.; Tu, J.H.; Xu, L.Y.; Tan, Z.R.; Chen, B.L.; Li, Z.; Zhou, G.; Yu, B.N.; Kirchheiner, J.; Zhou, H.H. Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clin. Chim. Acta, 2009, 405(1-2), 49-52.
[http://dx.doi.org/10.1016/j.cca.2009.04.003] [PMID: 19374892]
[91]
Tamraz, B.; Fukushima, H.; Wolfe, A.R.; Kaspera, R.; Totah, R.A.; Floyd, J.S.; Ma, B.; Chu, C.; Marciante, K.D.; Heckbert, S.R.; Psaty, B.M.; Kroetz, D.L.; Kwok, P.Y. OATP1B1-related drug–drug and drug–gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet. Genom., 2013, 23(7), 355-364.
[http://dx.doi.org/10.1097/FPC.0b013e3283620c3b] [PMID: 23652407]
[92]
Tomita, Y.; Maeda, K.; Sugiyama, Y. Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin. Pharmacol. Ther., 2013, 94(1), 37-51.
[http://dx.doi.org/10.1038/clpt.2012.221] [PMID: 23443754]
[93]
Tirona, R.G.; Leake, B.F.; Merino, G.; Kim, R.B. Polymorphisms in OATP-C. J. Biol. Chem., 2001, 276(38), 35669-35675.
[http://dx.doi.org/10.1074/jbc.M103792200] [PMID: 11477075]
[94]
Kato, K.; Shimada, N.; Atsukawa, M.; Abe, H.; Itokawa, N.; Matsumoto, Y.; Agata, R.; Tsubota, A. Single nucleotide polymorphisms associated with elevated alanine aminotransferase in patients receiving asunaprevir plus daclatasvir combination therapy for chronic hepatitis C. PLoS One, 2019, 14(7), e0219022.
[http://dx.doi.org/10.1371/journal.pone.0219022] [PMID: 31291311]
[95]
Kumondai, M.; Gutiérrez Rico, E.M.; Hishinuma, E.; Ueda, A.; Saito, S.; Saigusa, D.; Tadaka, S.; Kinoshita, K.; Nakayoshi, T.; Oda, A.; Abe, A.; Maekawa, M.; Mano, N.; Hirasawa, N.; Hiratsuka, M. Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1′-Hydroxylation and Testosterone 6 β -Hydroxylation. Drug Metab. Dispos., 2021, 49(3), 212-220.
[http://dx.doi.org/10.1124/dmd.120.000261] [PMID: 33384383]
[96]
Sai, K.; Saito, Y.; Itoda, M.; Fukushima-Uesaka, H.; Nishimaki-Mogami, T.; Ozawa, S.; Maekawa, K.; Kurose, K.; Kaniwa, N.; Kawamoto, M.; Kamatani, N.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Yamada, Y.; Tamura, T.; Yoshida, T.; Minami, H.; Matsumura, Y.; Ohtsu, A.; Saijo, N.; Sawada, J. Genetic variations and haplotypes of ABCC2 encoding MRP2 in a Japanese population. Drug Metab. Pharmacokinet., 2008, 23(2), 139-147.
[http://dx.doi.org/10.2133/dmpk.23.139] [PMID: 18445995]
[97]
Seo, T.; Ishitsu, T.; Ueda, N.; Nakada, N.; Yurube, K.; Ueda, K.; Nakagawa, K. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics, 2006, 7(4), 551-561.
[http://dx.doi.org/10.2217/14622416.7.4.551] [PMID: 16753003]
[98]
Furihata, T.; Matsumoto, S.; Fu, Z.; Tsubota, A.; Sun, Y.; Matsumoto, S.; Kobayashi, K.; Chiba, K. Different interaction profiles of direct-acting anti-hepatitis C virus agents with human organic anion transporting polypeptides. Antimicrob. Agents Chemother., 2014, 58(8), 4555-4564.
[http://dx.doi.org/10.1128/AAC.02724-14] [PMID: 24867984]
[99]
Gandhi, Y.; Eley, T.; Fura, A.; Li, W.; Bertz, R.J.; Garimella, T. Daclatasvir: A review of preclinical and clinical pharmacokinetics. Clin. Pharmacokinet., 2018, 57(8), 911-928.
[http://dx.doi.org/10.1007/s40262-017-0624-3] [PMID: 29353349]
[100]
Garimella, T.; You, X.; Wang, R.; Huang, S.P.; Kandoussi, H.; Bifano, M.; Bertz, R.; Eley, T. A Review of daclatasvir drug-drug interactions. Adv. Ther., 2016, 33(11), 1867-1884.
[http://dx.doi.org/10.1007/s12325-016-0407-5] [PMID: 27664109]
[101]
Murray, M. Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats. Arch. Biochem. Biophys., 1988, 262(1), 381-388.
[http://dx.doi.org/10.1016/0003-9861(88)90202-0] [PMID: 3364973]
[102]
Murray, M.; Field, S.L. Inhibition and metabolite complexation of rat hepatic microsomal cytochrome p450 by tricyclic antidepressants. Biochem. Pharmacol., 1992, 43(10), 2065-2071.
[http://dx.doi.org/10.1016/0006-2952(92)90163-D] [PMID: 1599495]
[103]
Murray, M. Metabolite intermediate complexation of microsomal cytochrome P450 2C11 in male rat liver by nortriptyline. Mol. Pharmacol., 1992, 42(5), 931-938.
[PMID: 1435757]
[104]
Murray, M.; Wilkinson, C.F.; Marcus, C.; Dubé, C.E. Structure-activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo. Mol. Pharmacol., 1983, 24(1), 129-136.
[PMID: 6865922]
[105]
Marcus, C.B.; Murray, M.; Wilkinson, C.F. Spectral and inhibitory interactions of methylenedioxyphenyl and related compounds with purified isozymes of cytochrome P-450. Xenobiotica, 1985, 15(4), 351-362.
[http://dx.doi.org/10.3109/00498258509045370] [PMID: 4024670]
[106]
Murray, M.; Hetnarski, K.; Wilkinson, C.F. Selective inhibitory interactions of alkoxymethylenedioxybenzenes towards mono-oxygenase activity in rat-hepatic microsomes. Xenobiotica, 1985, 15(5), 369-379.
[http://dx.doi.org/10.3109/00498258509045007] [PMID: 4036165]
[107]
Murray, M.; Butler, A.M.; Stupans, I. Competitive inhibition of human liver microsomal cytochrome P450 3A-dependent steroid 6 β-hydroxylation activity by cyclophosphamide and ifosfamide in vitro. J. Pharmacol. Exp. Ther., 1994, 270(2), 645-649.
[PMID: 8071856]
[108]
Nakajima, M.; Yoshida, R.; Shimada, N.; Yamazaki, H.; Yokoi, T. Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab. Dispos., 2001, 29(8), 1110-1113.
[PMID: 11454729]
[109]
Moreno, R.L.; Kent, U.M.; Hodge, K.; Hollenberg, P.F. Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate. Chem. Res. Toxicol., 1999, 12(7), 582-587.
[http://dx.doi.org/10.1021/tx9900019] [PMID: 10409397]
[110]
Ortiz de Montellano, P.R. Acetylenes: Cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab. Rev., 2019, 51(2), 162-177.
[http://dx.doi.org/10.1080/03602532.2019.1632891] [PMID: 31203694]
[111]
Guengerich, F.P. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal., 2018, 8(12), 10964-10976.
[http://dx.doi.org/10.1021/acscatal.8b03401] [PMID: 31105987]
[112]
Kalgutkar, A.S.; Soglia, J.R. Minimising the potential for metabolic activation in drug discovery. Expert Opin. Drug Metab. Toxicol., 2005, 1(1), 91-142.
[http://dx.doi.org/10.1517/17425255.1.1.91] [PMID: 16922655]
[113]
Ortiz de Montellano, P.R.; Mathews, J.M. Autocatalytic alkylation of the cytochrome P -450 prosthetic haem group by 1-aminobenzotriazole. Isolation of an NN -bridged benzyne-protoporphyrin IX adduct. Biochem. J., 1981, 195(3), 761-764.
[http://dx.doi.org/10.1042/bj1950761] [PMID: 7316983]
[114]
Guengerich, F.P. Inhibition of cytochrome P450 enzymes by drugs-Molecular basis and practical applications. Biomol. Ther. , 2022, 30(1), 1-18.
[http://dx.doi.org/10.4062/biomolther.2021.102] [PMID: 34475272]
[115]
“Murray, M. In vitro effects of quinoline derivatives on cytochrome P-450 and aminopyrine N-demethylase activity in rat hepatic microsomes. Biochem. Pharmacol., 1984, 33, 3277-3281
[116]
Verras, A.; Kuntz, I.D.; Ortiz de Montellano, P.R. Computer-assisted design of selective imidazole inhibitors for cytochrome p450 enzymes. J. Med. Chem., 2004, 47(14), 3572-3579.
[http://dx.doi.org/10.1021/jm030608t] [PMID: 15214784]
[117]
Cheng, Y.; Ma, L.; Chang, S.Y.; Humphreys, W.G.; Li, W. Application of static models to predict midazolam clinical interactions in the presence of single or multiple hepatitis C virus drugs. Drug Metab. Dispos., 2016, 44(8), 1372-1380.
[http://dx.doi.org/10.1124/dmd.116.070409] [PMID: 27226352]
[119]
Yu, J.; Zhou, Z.; Tay-Sontheimer, J.; Levy, R.H.; Ragueneau-Majlessi, I. Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. Food and Drug Administration between 2013 and 2016. Drug Metab. Dispos., 2018, 46(6), 835-845.
[http://dx.doi.org/10.1124/dmd.117.078691] [PMID: 29572333]
[120]
Eley, T.; Gardiner, D.F.; Persson, A.; He, B.; You, X.; Shah, V.; Sherman, D.; Kandoussi, H.; Sims, K.D.; Pasquinelli, C.; Bertz, R.J. Evaluation of drug interaction potential of the HCV protease inhibitor BMS-650032 at 200mg twice daily (bid) in metabolic cocktail and p-glycoprotein (P-gp) probe studies in healthy volunteers. Hepatology, 2011, 54, 548A. [abstract 381
[121]
Garimella, T.; Tao, X.; Sims, K.; Chang, Y.T.; Rana, J.; Myers, E.; Wind-Rotolo, M.; Bhatnagar, R.; Eley, T.; LaCreta, F.; AbuTarif, M. Effects of a fixed-dose co-formulation of daclatasvir, asunaprevir, and beclabuvir on the pharmacokinetics of a cocktail of cytochrome P450 and drug transporter substrates in healthy subjects. Drugs R D., 2018, 18(1), 55-65.
[http://dx.doi.org/10.1007/s40268-017-0222-8] [PMID: 29255971]
[122]
Bogman, K.; Peyer, A.K.; Török, M.; Küsters, E.; Drewe, J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol., 2001, 132(6), 1183-1192.
[http://dx.doi.org/10.1038/sj.bjp.0703920] [PMID: 11250868]
[123]
Afrouzian, M.; Al-Lahham, R.; Patrikeeva, S.; Xu, M.; Fokina, V.; Fischer, W.G.; Abdel-Rahman, S.Z.; Costantine, M.; Ahmed, M.S.; Nanovskaya, T. Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem. Pharmacol., 2018, 156, 467-478.
[http://dx.doi.org/10.1016/j.bcp.2018.09.012] [PMID: 30217571]
[124]
Ho, R.H.; Tirona, R.G.; Leake, B.F.; Glaeser, H.; Lee, W.; Lemke, C.J.; Wang, Y.; Kim, R.B. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology, 2006, 130(6), 1793-1806.
[http://dx.doi.org/10.1053/j.gastro.2006.02.034] [PMID: 16697742]
[125]
Wang, Q.; Zheng, M.; Leil, T. Investigating transporter-mediated drug-drug interactions using a physiologically based pharmacokinetic model of rosuvastatin. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(4), 228-238.
[http://dx.doi.org/10.1002/psp4.12168] [PMID: 28296193]
[126]
Kivistö, K.T.; Niemi, M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm. Res., 2007, 24(2), 239-247.
[http://dx.doi.org/10.1007/s11095-006-9159-2] [PMID: 17177112]
[127]
US Food and Drug Administration. Highlights of prescribing information: Daklinza. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/206843s006lbl.pdf. (Accessed 22 September 2023).
[128]
Garrison, K.L.; German, P.; Mogalian, E.; Mathias, A. The drug-drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab. Dispos., 2018, 46(8), 1212-1225.
[http://dx.doi.org/10.1124/dmd.117.079038] [PMID: 29695614]
[129]
Gobran, S.T.; Ancuta, P.; Shoukry, N.H. A tale of two viruses: Immunological insights into HCV/HIV coinfection. Front. Immunol., 2021, 12, 726419.
[http://dx.doi.org/10.3389/fimmu.2021.726419] [PMID: 34456931]
[130]
Bierman, W.F.W.; Scheffer, G.L.; Schoonderwoerd, A.; Jansen, G.; van Agtmael, M.A.; Danner, S.A.; Scheper, R.J. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J. Antimicrob. Chemother., 2010, 65(8), 1672-1680.
[http://dx.doi.org/10.1093/jac/dkq209] [PMID: 20551216]
[131]
Shitara, Y.; Takeuchi, K.; Horie, T. Long-lasting inhibitory effects of saquinavir and ritonavir on OATP1B1-mediated uptake. J. Pharm. Sci., 2013, 102(9), 3427-3435.
[http://dx.doi.org/10.1002/jps.23477] [PMID: 23440887]
[132]
Eagling, V.A.; Back, D.J.; Barry, M.G. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br. J. Clin. Pharmacol., 1997, 44(2), 190-194.
[http://dx.doi.org/10.1046/j.1365-2125.1997.00644.x] [PMID: 9278209]
[133]
Gandhi, Y.; Adamczyk, R.; Wang, R.; Stonier, M.; Kandoussi, H.; Hesney, M.; Liu, Z.; Ackerman, P.; Garimella, T.; Eley, T. Assessment of drug–drug interactions between daclatasvir and darunavir/ritonavir or lopinavir/ritonavir. In: 16th International Workshop on Clinical Pharmacology of HIV and Hepatitis Therapy 015; Washington DC, USA, 2015.
[134]
Bifano, M.; Hwang, C.; Oosterhuis, B.; Hartstra, J.; Grasela, D.; Tiessen, R.; Velinova-Donga, M.; Kandoussi, H.; Sevinsky, H.; Bertz, R. Assessment of pharmacokinetic interactions of the HCV NS5A replication complex inhibitor daclatasvir with antiretroviral agents: Ritonavir-boosted atazanavir, efavirenz and tenofovir. Antivir. Ther., 2013, 18(7), 931-940.
[http://dx.doi.org/10.3851/IMP2674] [PMID: 23963204]
[135]
Taguchi, T.; Masuo, Y.; Futatsugi, A.; Kato, Y. Static model-based assessment of OATP1B1-mediated drug interactions with preincubation-dependent inhibitors based on inactivation and recovery kinetics. Drug Metab. Dispos., 2020, 48(9), 750-758.
[http://dx.doi.org/10.1124/dmd.120.000020] [PMID: 32616544]
[136]
Chu, X.; Chan, G.H.; Houle, R.; Lin, M.; Yabut, J.; Fandozzi, C. In Vitro assessment of transporter mediated perpetrator DDIs for several hepatitis C virus direct-acting antiviral drugs and prediction of DDIs with statins using static models. AAPS J., 2022, 24(3), 45.
[http://dx.doi.org/10.1208/s12248-021-00677-8] [PMID: 35314909]
[137]
Yoo, H.W.; Park, J.Y.; Kim, S.G.; Jung, Y.K.; Lee, S.H.; Kim, M.Y.; Jun, D.W.; Jang, J.Y.; Lee, J.W.; Kwon, O.S. Regression of liver fibrosis and hepatocellular carcinoma development after HCV eradication with oral antiviral agents. Sci. Rep., 2022, 12(1), 193.
[http://dx.doi.org/10.1038/s41598-021-03272-1] [PMID: 34996920]
[138]
Watanabe, T.; Tokumoto, Y.; Joko, K.; Michitaka, K.; Horiike, N.; Tanaka, Y.; Tada, F.; Kisaka, Y.; Nakanishi, S.; Yamauchi, K.; Yukimoto, A.; Hirooka, M.; Abe, M.; Hiasa, Y. Predictors of hepatocellular carcinoma occurrence after direct-acting antiviral therapy in patients with hepatitis C virus infection. Hepatol. Res., 2019, 49(2), 136-146.
[http://dx.doi.org/10.1111/hepr.13278] [PMID: 30335208]
[139]
Huang, C.F.; Yeh, M.L.; Huang, C.I.; Liang, P.C.; Lin, Y.H.; Hsieh, M.Y.; Chen, K.Y.; Ko, Y.M.; Lin, Z.Y.; Chen, S.C.; Huang, J.F.; Dai, C.Y.; Chuang, W.L.; Yu, M.L. Ribavirin facilitates early viral kinetics in chronic hepatitis C patients receiving daclatasvir/asunaprevir. J. Gastroenterol. Hepatol., 2020, 35(1), 151-156.
[http://dx.doi.org/10.1111/jgh.14815] [PMID: 31373037]
[140]
Matsumoto, J.; San, S.N.; Fujiyoshi, M.; Kawauchi, A.; Chiba, N.; Tagai, R.; Sanbe, R.; Yanaka, S.; Sakaue, H.; Kato, Y.; Nakamura, H.; Yamada, H.; Ariyoshi, N. Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro: A different effect on asunaprevir versus daclatasvir and beclabuvir. J. Hum. Genet., 2020, 65(2), 143-153.
[http://dx.doi.org/10.1038/s10038-019-0685-2] [PMID: 31645655]
[141]
Maekawa, S.; Sato, M.; Kuratomi, N.; Inoue, T.; Suzuki, Y.; Tatsumi, A.; Miura, M.; Matsuda, S.; Muraoka, M.; Nakakuki, N.; Amemiya, F.; Takano, S.; Fukasawa, M.; Nakayama, Y.; Yamaguchi, T.; Sato, T.; Sakamoto, M.; Murakawa, M.; Nakagawa, M.; Asahina, Y.; Enomoto, N. Association between alanine aminotransferase elevation and UGT1A1*6 polymorphisms in daclatasvir and asunaprevir combination therapy for chronic hepatitis C. J. Gastroenterol., 2018, 53(6), 780-786.
[http://dx.doi.org/10.1007/s00535-017-1405-3] [PMID: 29094205]
[142]
Balram, C.; Zhou, Q.; Cheung, Y.B.; Lee, E.J.D. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur. J. Clin. Pharmacol., 2003, 59(2), 123-126.
[http://dx.doi.org/10.1007/s00228-003-0594-2] [PMID: 12756511]
[143]
Murray, M. Mechanisms and clinical significance of pharmacokinetic drug interactions mediated by FDA and EMA-approved hepatitis C direct-acting antiviral agents. Clin. Pharmacokinet., 2023, 62(10), 1365-1392.
[http://dx.doi.org/10.1007/s40262-023-01302-x] [PMID: 37731164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy