[11]
Neradil, J.; Pavlasova, G.; Veselska, R. New mechanisms for an old drug; DHFR-and non-DHFR-mediated effects of methotrexate in cancer cells. Klinicka Oncologie, 2012, 25, 87-92.
[25]
Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol., 2003, 10, 980.
[26]
Saeed, A.; Hussain, H.; Shamraiz, U.; Rehman, N.U.; Khan, H.Y.; Badshah, A.; Heller, L.; Csuk, R.; Ali, M.; Khan, A.; Al-Harrasi, A. Synthesis of new triterpenic monomers and dimers as potential antiproliferative agents and their molecular docking studies. Eur. J. Med. Chem., 2018, 143, 948-957.
[27]
Eswar, N.; Eramian, D.; Webb, B.; Shen, M.Y.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol., 2008, 426, 145-159.
[28]
Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35, W522-W525.
[29]
Olsson, M.H.M. SØndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 2011, 7, 525-537.
[30]
Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; Jain, S.; Lewis, S.M.; Arendal, III, W.B.; Snoeyink, J.; Adams, P.D.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci., 2018, 27, 293-315.
[31]
Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[32]
Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem., 2012, 55, 623-638.
[34]
Rowland, M.; Tozer, T.N.; Derendorf, H.; Hochhaus, G. Chapter 1. Therapeutic Relevance In: Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications; 4th ed.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, 2011. ISBN 9780781750097.
[35]
Shargel, L.; Andrew, B.; Wu-Pong, S. Applied Biopharmaceutics & Pharmacokinetics; Appleton & Lange Stamford, 1999, Vol 264, .
[36]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49, W5-W14.
[37]
De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinforma. Chem., 2016, 1-11.
[38]
Amir Rawa, M.S.; Al-Thiabat, M.G.; Nogawa, T.; Futamura, Y.; Okano, A.; Wahab, H.A. Naturally occurring 8ß, 13ß-kaur-15-en-17-al and anti-malarial activity from Podocarpus polystachyus leaves. Pharmaceuticals, 2022, 15, 902.
[39]
Larue, L.; Kenzhebayeva, B.; Al-Thiabat, M.G.; Jouan-Hureaux, V.; Mohd-Gazzali, A.; Wahab, H.A.; Boura, C.; Yeligbayeva, G.; Nakan, U.; Frochot, C.; Acherar, S. tLyp–1: a peptide suitable to target NRP–1 receptor. Bioorg. Chem., 2023, 130, 106200.
[40]
Al-Thiabat, M.G.; Gazzali, A.M.; Mohtar, N.; Murugaiyah, V.; Kamarulzaman, E.E.; Yap, B.K.; Rahman, N.A.; Othman, R.; Wahab, H.A. Conjugated β-cyclodextrin enhances the affinity of folic acid towards FRα: molecular dynamics study. Mol., 2021, 17, 5304.
[41]
Alidmat, M.M.; Khairuddean, M.; Kamal, N.N.S.N.M.; Muhammad, M.; Wahab, H.A.; Al-Thiabat, M.G.; Alhawarri, M.B. Synthesis, characterization, molecular docking and cytotoxicity evaluation of new thienyl chalcone derivatives against breast cancer cells. Sys. Rev. Pharm., 2022, 13, 1-11.
[42]
Wright, N.J.; Fedor, J.G.; Zhang, H.; Jeong, P.; Suo, Y.; Yoo, J.; Hong, J.; Im, W.; Lee, S.Y. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature, 2022, 609, 1056-1062.
[43]
Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an old drug with new tricks. Int. J. Mol. Sci., 2019, 20, 5023.
[44]
Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys., 2015, 48, 488-515.
[45]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[46]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[47]
Giménez, B.G.; Santos, M.S.; Ferrarini, M.; Dos Santos Fernandes, J.P. Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 2010, 65, 148-152.
[48]
Weinblatt, M.E. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans. Am. Clin. Climatol. Assoc., 2013, 124, 25.
[49]
Colom, H.; Farré, R.; Soy, D.; Peraire, C.; Cendros, J.M.; Pardo, N.; Torrent, M.; Domenech, J.; Mangues, M.A. Population pharmacokinetics of high-dose methotrexate after intravenous administration in pediatric patients with osteosarcoma. Ther. Drug Monit., 2009, 31, 76-85.
[50]
Furst, D.E.; Koehnke, R.; Burmeister, L.F.; Kohler, J.; Cargill, I. Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J. Rheumatol., 1989, 16, 313-320.
[51]
Malaviya, A.N.; Sharma, A.; Agarwal, D.; Kapoor, S.; Garg, S.; Sawhney, S. Low-dose and high-dose methotrexate are two different drugs in practical terms. Int. J. Rheum. Dis., 2010, 13, 288-293.
[52]
Nurhanan, M.Y.; Nor Datiakma, M.A.; Muhammad Haffiz, J.; Sui Kiong, L.; Nor Hasnida, H.; Nor Jannah, S. The in vitro anti-cancer activities and mechanisms of action of 9-methoxycanthin-6-one from Eurycoma longifolia in selected cancer cell lines. Mol., 2022, 27, 585.