Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Unlocking the Therapeutic Potentiality of Natural Products in Cancer Therapy: A Recent Update and Current Prospects

Author(s): Asma Khurshid*, Rabbia Hussain and Rimsha Farooq

Volume 21, Issue 1, 2025

Published on: 28 February, 2024

Page: [76 - 94] Pages: 19

DOI: 10.2174/0115733947289705240206074048

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is one of the main causes of mortality that affects a large propotion of population worldwide each year. Traditional and synthetic medications are less successful in cancer treatment. The deleterious effects of synthetic compounds divert our attention toward the utilization of naturally derived compounds in current clinical research. The impact of biodiversity on population development and livelihood represents a wider area of interest that still heavily relies on natural medicines against the cure of various ailments. Since ancient times, people have been using natural plants because of their accessibility and economical affordability as a safe therapeutic alternative to traditional synthetic drugs. Currently, plants are used because of their remarkable properties in the form of staple drugs. These plants gain huge attention as a safe treatment option with anti-tumor, chemo-protective and anti-proliferative properties than conventional harmful therapeutics. The secondary metabolites extracted from medicinal plants lead to the production of innovative therapeutic strategies against cancer and other diseases. Targeted delivery of pharmaceuticals agents, through chemical and conventional methods is a significant challenge. The discovery of nano-vectors provides a solution to this issue with the innovation of plant-based nanoparticles have been manufactured using an ecologically sound method. Based on the highlights provided, the current review provides updated knowledge on diverse aspects of medicinal plants including challenges, significance and their role as a potential therapeutic agent against the treatment of various diseases, especially cancers. This subsequent review entails and clarifies the benefits of phytochemicals extracted from Asian medicinal plants due to their imperative values in cancer treatment and other pharmacological targets. The recent discoveries and findings linked to the understanding of medicinal drugs with significance on wide range of phytochemical constituents or secondary metabolites are a current attempt to update our knowledge towards the progress of natural therapeutics novel strategies.

Keywords: Natural products, therapeutic agent, medicinal plant, secondary metabolites, anti-cancer agents, herbal medicine, phyto-pharmaceuticals

« Previous
Graphical Abstract
[1]
Mahomoodally MF. Traditional medicines in Africa: An appraisal of ten potent african medicinal plants. Evid Based Complement Alternat Med 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/617459] [PMID: 24367388]
[2]
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27(1): 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[3]
Kunwar RM, Nepal BK, Kshhetri HB, Rai SK, Bussmann RW. Ethnomedicine in Himalaya: A case study from Dolpa, Humla, Jumla and Mustang districts of Nepal. J Ethnobiol Ethnomed 2006; 2(1): 27.
[http://dx.doi.org/10.1186/1746-4269-2-27] [PMID: 16749924]
[4]
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210-29.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[5]
Eftekhari A, Kryschi C, Pamies D, et al. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics 2023; 7(3): 236-57.
[http://dx.doi.org/10.7150/ntno.77564] [PMID: 37064613]
[6]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[7]
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[8]
Tang L, et al. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13(11): 1888.
[http://dx.doi.org/10.3390/pharmaceutics13111888]
[9]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[10]
Ahmed MJ, Murtaza G, Rashid F, Iqbal J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev Ind Pharm 2019; 45(10): 1682-94.
[http://dx.doi.org/10.1080/03639045.2019.1656224] [PMID: 31407925]
[11]
Ahmadian E, Dizaj SM, Rahimpour E, et al. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mater Sci Eng C 2018; 93: 465-71.
[http://dx.doi.org/10.1016/j.msec.2018.08.027] [PMID: 30274079]
[12]
Baran A, Keskin C, Baran MF, et al. Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: Anticancer and antimicrobial activities. Bioinorg Chem Appl 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/2058149] [PMID: 34887909]
[13]
Khan DMA. Introduction and Importance of Medicinal Plants and Herbs 2016. Available from: https://www.nhp.gov.in/introduction-and-importance-of-medicinal-plants-and-herbs_mtl#:~:text=Medicinal%20plants%20such%20as%20Aloe,their%20day%20to%20day%20life [cited 2023 24 Feb].
[14]
Herbal medicine market – global industry analysis and forecast (2022-2029). 2023. Available from: https://www.maximizemarketresearch.com/market-report/herbal-medicine-market/148333/ [cited 2023 6 October].
[15]
Prasad V, De Jesús K, Mailankody S. The high price of anticancer drugs: Origins, implications, barriers, solutions. Nat Rev Clin Oncol 2017; 14(6): 381-90.
[http://dx.doi.org/10.1038/nrclinonc.2017.31] [PMID: 28290490]
[16]
Astutik S, Pretzsch J, Ndzifon Kimengsi J. Asian medicinal plants’ production and utilization potentials: A review. Sustainability 2019; 11(19): 5483.
[http://dx.doi.org/10.3390/su11195483]
[17]
Richardson RG, Underwood E. Douglas James and Thomson, William Archibald Robson. History of medicine. Encyclopedia Britannica 2022. Available from: https://www.britannica.com/science/history-of-medicine Accessed 24 February 2023.
[18]
Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn Rev 2012; 6(11): 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[19]
Falodun A. Herbal medicine in africa-distribution, standardization and prospects. Res J Phytochem 2010; 4(3): 154-61.
[http://dx.doi.org/10.3923/rjphyto.2010.154.161]
[20]
Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Rep 2008; (12): 1-23.
[PMID: 19361005]
[21]
Pan SY, Litscher G. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid Based Complementary Altern Med 2014; 525340.
[22]
Teoh ES. Secondary Metabolites of Plants. Medicinal Orchids of Asia 2015; 5.
[23]
Kudumela RG, McGaw LJ, Masoko P. Antibacterial interactions, anti-inflammatory and cytotoxic effects of four medicinal plant species. BMC Complement Altern Med 2018; 18(1): 199.
[http://dx.doi.org/10.1186/s12906-018-2264-z] [PMID: 29970064]
[24]
Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67(2): 113-8.
[PMID: 20369787]
[25]
Ansari P, Uddin MJ, Rahman MM, et al. Anti-inflammatory, anti-diarrheal, thrombolytic and cytotoxic activities of an ornamental medicinal plant: Persicaria orientalis. J Basic Clin Physiol Pharmacol 2017; 28(1): 51-8.
[http://dx.doi.org/10.1515/jbcpp-2016-0023] [PMID: 27487493]
[26]
Tiiu Kull JA. Sek Man Wong, Orchid Biology: Reviews and Perspectives X. 2009.
[27]
Singh R, Kotecha M. A review on the standardization of herbal medicines. Int J Pharm Sci Res 2016; 7: 97-106.
[28]
Fillingim RB, Loeser JD, Baron R, Edwards RR. Assessment of chronic pain: Domains, methods, and mechanisms. J Pain 2016; 17(9) (Suppl.): T10-20.
[http://dx.doi.org/10.1016/j.jpain.2015.08.010] [PMID: 27586827]
[29]
Wallach J. Bibenzyl Derivative (Medicinal Cannabis: an overview for health-care providers). Recent Advances in Phytochemistry 2000. Available from: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/bibenzyl-derivative
[30]
Wei H, Song S, Tian H, Liu T. Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. C R Biol 2014; 337(2): 95-100.
[http://dx.doi.org/10.1016/j.crvi.2013.11.005] [PMID: 24581803]
[31]
Sánchez-Duffhues G, Calzado MA, de Vinuesa AG, et al. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-κB-dependent pathway. Biochem Pharmacol 2008; 76(10): 1240-50.
[http://dx.doi.org/10.1016/j.bcp.2008.09.006] [PMID: 18840408]
[32]
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020; 72(3): 386-97.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[33]
Liu WJH. Traditional Herbal Medicine Research Methods. New Jersey: Wiley 2011.
[http://dx.doi.org/10.1002/9780470921340]
[34]
Gupta N, Malviya R. Role of polysaccharides mimetic components in targeted cancer treatment. Curr Drug Targets 2022; 23(9): 856-68.
[http://dx.doi.org/10.2174/1389450123666220214121505] [PMID: 35156570]
[35]
Kongmany Sydara MX. Souliya Onevilay, Bethany G, Elkington, Djaja D, Soejarto. Inventory of medicinal plants of the Lao people’s democratic republic: A mini review. J Med Plants Res 2014; 8(43): 1262-74.
[36]
Chandra Prakash Kala PPDBSS. Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed 2006; 2(32)
[37]
Faridzadeh A, Salimi Y, Ghasemirad H, et al. Neuroprotective potential of aromatic herbs: Rosemary, sage, and lavender. Front Neurosci 2022; 16: 909833.
[http://dx.doi.org/10.3389/fnins.2022.909833] [PMID: 35873824]
[38]
Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J 2014; 2014: 1-28.
[http://dx.doi.org/10.1155/2014/274905] [PMID: 25950015]
[39]
Saini R, Sharma N, Oladeji OS, et al. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol 2022; 282: 114570.
[http://dx.doi.org/10.1016/j.jep.2021.114570] [PMID: 34480995]
[40]
Poojari R. Embelin – a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin Investig Drugs 2014; 23(3): 427-44.
[http://dx.doi.org/10.1517/13543784.2014.867016] [PMID: 24397264]
[41]
Zhao K, Li L, Lu Y, et al. Characterization and comparative analysis of two rheum complete chloroplast genomes. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/6490164] [PMID: 32685515]
[42]
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: A review of its botany, ethnomedical uses, phytochemistry and pharmacology. Phytochem Rev 2018; 17(3): 573-609.
[http://dx.doi.org/10.1007/s11101-018-9551-7] [PMID: 32214920]
[43]
Ramesh P, Palaniappan A. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine—a review. Pharmaceuticals 2023; 16(1): 126.
[http://dx.doi.org/10.3390/ph16010126] [PMID: 36678623]
[44]
Banazadeh M, Mehrabani M, Banazadeh N, Dabaghzadeh F, Shahabi F. Evaluating the effect of black myrobalan on cognitive, positive, and negative symptoms in patients with chronic schizophrenia: A randomized, double‐blind, placebo‐controlled trial. Phytother Res 2022; 36(1): 543-50.
[http://dx.doi.org/10.1002/ptr.7340] [PMID: 34814232]
[45]
Kumar Suresh, Paul Surender, Kumar Walia Yogesh, Kumar Aditya, Singhal Parul. Therapeutic potential of medicinal plants: A review. J Biol Chem Chron 2015; 1(1): 46-54.
[46]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[47]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[48]
Tadeusz Aniszewski TA. Alkaloids - Secrets of Life: Aklaloid Chemistry, Biological Significance, Applications and Ecological Role. (1st ed.), US: Elsevier 2007.
[49]
Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005; 78(5): 431-41.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[50]
Howes MJR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 2003; 17(1): 1-18.
[http://dx.doi.org/10.1002/ptr.1280] [PMID: 12557240]
[51]
Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine. Drugs Aging 2004; 21(11): 687-709.
[http://dx.doi.org/10.2165/00002512-200421110-00001] [PMID: 15323576]
[52]
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015; 2(3): 251-86.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[53]
Okpe O, et al. Antimalarial potential of carica papaya and vernonia amygdalina in mice infected with plasmodium berghei. J Trop Med. 2016; p. 8738972.
[http://dx.doi.org/10.1155/2016/8738972]
[54]
Oluwasegun Victor O, Sanni Morakinyo D. GC-MS analysis of phyto-components from the leaves of senna alata L. J Plant Sci 2015; 3(3): 133-6.
[http://dx.doi.org/10.11648/j.jps.20150303.14]
[55]
Bianca Garilli MD. A Guide to Common Medicinal Herbs. In: Health Encyclopedia. NY, USA: University of Rochester Medical Center Rochester 2023.
[56]
Wall ME, Wani MC. Antineoplastic agents from plants. Annu Rev Pharmacol Toxicol 1977; 17(1): 117-32.
[http://dx.doi.org/10.1146/annurev.pa.17.040177.001001] [PMID: 326159]
[57]
Huxtable RJ. The pharmacology of extinction. J Ethnopharmacol 1992; 37(1): 1-11.
[http://dx.doi.org/10.1016/0378-8741(92)90002-9] [PMID: 1453701]
[58]
Siddiqui AJ, Jahan S, Singh R, et al. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. BioMed Res Int 2022; 2022: 1-18.
[http://dx.doi.org/10.1155/2022/5425485] [PMID: 35281598]
[59]
Twardziok M, Kleinsimon S, Rolff J, et al. Multiple active compounds from Viscum album L. Synergistically converge to promote apoptosis in ewing sarcoma. PLoS One 2016; 11(9): e0159749.
[http://dx.doi.org/10.1371/journal.pone.0159749] [PMID: 27589063]
[60]
Marvibaigi M, Supriyanto E, Amini N, Abdul Majid FA, Jaganathan SK. Preclinical and clinical effects of mistletoe against breast cancer. BioMed Res Int 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/785479] [PMID: 25136622]
[61]
Lim W, Kim O, Jung J, et al. Dichloromethane fraction from Gardenia jasminoides: DNA topoisomerase 1 inhibition and oral cancer cell death induction. Pharm Biol 2010; 48(12): 1354-60.
[http://dx.doi.org/10.3109/13880209.2010.483246] [PMID: 20738175]
[62]
Sobhani Z, Nami SR, Emami SA, Sahebkar A, Javadi B. Medicinal plants targeting cardiovascular diseases in view of avicenna. Curr Pharm Des 2017; 23(17): 2428-43.
[PMID: 28215156]
[63]
Desai A, Qazi G, Ganju R, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab 2008; 9(7): 581-91.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[64]
Rätsch C. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications. Switzerland: A. Hoffman 1997.
[65]
Wink M, Schmeller T, Latz-Brüning B. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 1998; 24(11): 1881-937.
[http://dx.doi.org/10.1023/A:1022315802264]
[66]
Esteller M. Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet 2007; 16(R1): R50-9.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[67]
Azmi AS, Bhat SH, Hanif S, Hadi SM. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Lett 2006; 580(2): 533-8.
[http://dx.doi.org/10.1016/j.febslet.2005.12.059] [PMID: 16412432]
[68]
Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 2014; 559: 91-9.
[http://dx.doi.org/10.1016/j.abb.2014.06.006] [PMID: 24946050]
[69]
Greenwell M, Rahman PK. Medicinal plants: Their use in anticancer treatment. Int J Pharm Sci Res 2015; 6(10): 4103-12.
[PMID: 26594645]
[70]
Cao J, Xia X, Chen X, Xiao J, Wang Q. Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 2013; 51: 242-50.
[http://dx.doi.org/10.1016/j.fct.2012.09.039] [PMID: 23063594]
[71]
Kumar S, Pathania AS, Saxena AK, Vishwakarma RA, Ali A, Bhushan S. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chem Biol Interact 2013; 205(2): 128-37.
[http://dx.doi.org/10.1016/j.cbi.2013.06.020] [PMID: 23850732]
[72]
Bishop GJ, Koncz C. Brassinosteroids and plant steroid hormone signaling. Plant Cell 2002; 14 (Suppl.): S97-S110.
[http://dx.doi.org/10.1105/tpc.001461]
[73]
Malíková J, Swaczynová J, Kolář Z, Strnad M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 2008; 69(2): 418-26.
[http://dx.doi.org/10.1016/j.phytochem.2007.07.028] [PMID: 17869317]
[74]
Babu TD, Kuttan G, Padikkala J. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.). Urban J Ethnopharmacol 1995; 48(1): 53-7.
[http://dx.doi.org/10.1016/0378-8741(95)01284-K] [PMID: 8569247]
[75]
Henary M, Narayana L, Ahad S, et al. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity. Biochem Pharmacol 2014; 92(2): 192-205.
[http://dx.doi.org/10.1016/j.bcp.2014.07.020] [PMID: 25124704]
[76]
Chen X, Dang TTT, Facchini PJ. Noscapine comes of age. Phytochemistry 2015; 111: 7-13.
[http://dx.doi.org/10.1016/j.phytochem.2014.09.008] [PMID: 25583437]
[77]
Canel C, Moraes RM, Dayan FE, Ferreira D. Podophyllotoxin. Phytochemistry 2000; 54(2): 115-20.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[78]
Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H. Evaluating medicinal plants for anticancer activity. Sci World J 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/721402] [PMID: 25478599]
[79]
Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol 1997; 53(2): 121-33.
[http://dx.doi.org/10.1016/S0006-2952(96)00654-5] [PMID: 9037244]
[80]
Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 2009; 5(1): 1-11.
[http://dx.doi.org/10.59566/IJBS.2009.5001] [PMID: 23675107]
[81]
Son IH, Chung IM, Lee SI, Yang HD, Moon HI. Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 2007; 17(17): 4753-5.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.060] [PMID: 17662606]
[82]
Ajaya Kumar R, Sridevi K, Vijaya Kumar N, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004; 92(2-3): 291-5.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[83]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[PMID: 12680238]
[84]
Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 2001; 480-481: 243-68.
[http://dx.doi.org/10.1016/S0027-5107(01)00183-X] [PMID: 11506818]
[85]
Mitra A, Chakrabarti J, Banerji A, Chatterjee A, Das BR. Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2. J Environ Pathol Toxicol Oncol 2006; 25(4): 679-90.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i4.70] [PMID: 17341208]
[86]
Malik F, Singh J, Khajuria A, et al. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 2007; 80(16): 1525-38.
[http://dx.doi.org/10.1016/j.lfs.2007.01.029] [PMID: 17336338]
[87]
Syrovets T, Gschwend JE, Büchele B, et al. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J Biol Chem 2005; 280(7): 6170-80.
[http://dx.doi.org/10.1074/jbc.M409477200] [PMID: 15576374]
[88]
Potmesil M. Camptothecins: From bench research to hospital wards. Cancer Res 1994; 54(6): 1431-9.
[PMID: 8137244]
[89]
Chiu HF, Chih TT, Hsian YM, Tseng CH, Wu MJ, Wu YC. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells. Biochem Pharmacol 2003; 65(3): 319-27.
[http://dx.doi.org/10.1016/S0006-2952(02)01554-X] [PMID: 12527325]
[90]
Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol 2002; 81(1): 17-22.
[http://dx.doi.org/10.1016/S0378-8741(01)00419-6] [PMID: 12020923]
[91]
Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005; 100(1-2): 72-9.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[92]
Liu Y, Chen Y, Lin L, Li H. Gambogic acid as a candidate for cancer therapy: A review. Int J Nanomedicine 2020; 15: 10385-99.
[http://dx.doi.org/10.2147/IJN.S277645] [PMID: 33376327]
[93]
Chen L, Chen S, Sun P, Liu X, Zhan Z, Wang J. Psoralea corylifolia L.: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics. Chin Med 2023; 18(1): 4.
[http://dx.doi.org/10.1186/s13020-022-00704-6] [PMID: 36627680]
[94]
Kong Y, Li F, Nian Y, et al. KHF16 is a leading structure from cimicifuga foetida that suppresses breast cancer partially by inhibiting the nf-κb signaling pathway. Theranostics 2016; 6(6): 875-86.
[http://dx.doi.org/10.7150/thno.14694] [PMID: 27162557]
[95]
Gurbuz I, et al. Anti-ulcerogenic lignans from Taxus baccata L. Z Naturforsch C J Biosci 2004; 59(3-4): 233-6.
[http://dx.doi.org/10.1515/znc-2004-3-420]
[96]
Espirito Santo BLSd, et al. Medicinal potential of garcinia species and their compounds. Molecules 2020; 25(19): 4513.
[97]
Miao Z-H, et al. Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int J Cancer 2003; 106(1): 108-15.
[http://dx.doi.org/10.1002/ijc.11174]
[98]
Reddy VV, Sirsi M. Effect of Abrus precatorius L. on experimental tumors. Cancer Res 1969; 29(7): 1447-51.
[PMID: 5799161]
[99]
Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C. Screening of Indian plants for biological activity: I. Indian J Exp Biol 1968; 6(4): 232-47.
[PMID: 5720682]
[100]
Aiello P, Sharghi M, Mansourkhani SM, et al. Medicinal plants in the prevention and treatment of colon cancer. Oxid Med Cell Longev 2019; 2019: 1-51.
[http://dx.doi.org/10.1155/2019/2075614] [PMID: 32377288]
[101]
Kim HY, Yu R, Kim JS, Kim YK, Sung MK. Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett 2004; 210(1): 1-6.
[http://dx.doi.org/10.1016/j.canlet.2004.01.009] [PMID: 15172114]
[102]
Zhu Q, Meisinger J, Thiel DHV, Zhang Y, Mobarhan S. Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells. Nutr Cancer 2002; 42(1): 131-40.
[http://dx.doi.org/10.1207/S15327914NC421_18] [PMID: 12235645]
[103]
Saleem M, Adhami VM, Siddiqui IA, Mukhtar H. Tea beverage in chemoprevention of prostate cancer: A mini-review. Nutr Cancer 2003; 47(1): 13-23.
[http://dx.doi.org/10.1207/s15327914nc4701_2] [PMID: 14769533]
[104]
Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 2001; 84(6): 844-50.
[http://dx.doi.org/10.1054/bjoc.2000.1691] [PMID: 11259102]
[105]
Roomi M, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human colon cancer cell HCT 116 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry. Oncol Rep 2005; 13(3): 421-5.
[http://dx.doi.org/10.3892/or.13.3.421] [PMID: 15706410]
[106]
Bosland MC, Horton L, Condon MS. Effects of green tea on prostate carcinogenesis in rat models and a human prostate cancer xenograft model. Prostate 2022; 82(11): 1117-24.
[http://dx.doi.org/10.1002/pros.24364] [PMID: 35485427]
[107]
Perkins S, Verschoyle RD, Hill K, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 2002; 11(6): 535-40.
[PMID: 12050094]
[108]
Park J, Conteas CN. Anti-carcinogenic properties of curcumin on colorectal cancer. World J Gastrointest Oncol 2010; 2(4): 169-76.
[http://dx.doi.org/10.4251/wjgo.v2.i4.169] [PMID: 21160593]
[109]
Danciu C, Vlaia L, Fetea F, et al. Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res 2015; 48(1): 1.
[http://dx.doi.org/10.1186/0717-6287-48-1] [PMID: 25654588]
[110]
Ozaki K, Kawata Y, Amano S, Hanazawa S. Stimulatory effect of curcumin on osteoclast apoptosis. Biochem Pharmacol 2000; 59(12): 1577-81.
[http://dx.doi.org/10.1016/S0006-2952(00)00277-X] [PMID: 10799655]
[111]
Deeb D, Xu YX, Jiang H, et al. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2003; 2(1): 95-103.
[PMID: 12533677]
[112]
Rashmi R, Santhosh Kumar TR, Karunagaran D. Human colon cancer cells differ in their sensitivity to curcumin‐induced apoptosis and heat shock protects them by inhibiting the release of apoptosis‐inducing factor and caspases. FEBS Lett 2003; 538(1-3): 19-24.
[http://dx.doi.org/10.1016/S0014-5793(03)00099-1] [PMID: 12633846]
[113]
Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 2017; 7(12): 2350-94.
[PMID: 29312794]
[114]
Bhargava R, Chasen M, Elten M, MacDonald N. The effect of ginger (Zingiber officinale Roscoe) in patients with advanced cancer. Support Care Cancer 2020; 28(7): 3279-86.
[http://dx.doi.org/10.1007/s00520-019-05129-w] [PMID: 31745695]
[115]
Akram M, et al. Zingiber officinale Roscoe (A Medicinal Plant). Pak J Nutr 2011; 10.
[116]
Jagetia GC, Nayak V, Vidyasagar MS. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells. Cancer Lett 1998; 127(1-2): 71-82.
[http://dx.doi.org/10.1016/S0304-3835(98)00047-0] [PMID: 9619860]
[117]
Jagetia GC, Rao SK. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice. Biol Pharm Bull 2006; 29(3): 460-6.
[http://dx.doi.org/10.1248/bpb.29.460] [PMID: 16508146]
[118]
Ansah C, Mensah KB. A review of the anticancer potential of the antimalarial herbal cryptolepis sanguinolenta and its major alkaloid cryptolepine. Ghana Med J 2013; 47(3): 137-47.
[PMID: 24391229]
[119]
Prajapati R, Kalariya M, Parmar S, Sheth N. Phytochemical and pharmacological review of Lagenaria sicereria. J Ayurveda Integr Med 2010; 1(4): 266-72.
[http://dx.doi.org/10.4103/0975-9476.74431] [PMID: 21731373]
[120]
Osafo N, Mensah KB, Yeboah OK. Phytochemical and pharmacological review of cryptolepis sanguinolenta (lindl.) schlechter. Adv Pharmacol Sci 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/3026370] [PMID: 29750083]
[121]
Zhu H, Gooderham NJ. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Toxicol Sci 2006; 91(1): 132-9.
[http://dx.doi.org/10.1093/toxsci/kfj146] [PMID: 16510557]
[122]
Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25(18): 2677-81.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[123]
Asif M, Rizwani GH, Zahid H, Khan Z, Qasim R. Pharmacognostic studies on Taxus baccata L.: A brilliant source of Anti-cancer agents. Pak J Pharm Sci 2016; 29(1): 105-9.
[PMID: 26826823]
[124]
Majeed M, Hakeem KR, Rehman RU. Mistletoe lectins: From interconnecting proteins to potential tumour inhibiting agents. Phytomedicine Plus 2021; 1(3): 100039.
[http://dx.doi.org/10.1016/j.phyplu.2021.100039]
[125]
Chernyshov VP, Omelchenko LI, Heusser P, et al. Immunomodulatory actions of Viscum album (Iscador) in children with recurrent respiratory disease as a result of the Chernobyl nuclear accident. Complement Ther Med 1997; 5(3): 141-6.
[http://dx.doi.org/10.1016/S0965-2299(97)80056-8]
[126]
Kienle GS, Glockmann A, Schink M, Kiene H. Viscum album L. extracts in breast and gynaecological cancers: A systematic review of clinical and preclinical research. J Exp Clin Cancer Res 2009; 28(1): 79.
[http://dx.doi.org/10.1186/1756-9966-28-79] [PMID: 19519890]
[127]
Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D. Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 2012; 50(6): 2155-70.
[http://dx.doi.org/10.1016/j.fct.2012.04.002] [PMID: 22521445]
[128]
Sahpazidou D, Geromichalos GD, Stagos D, et al. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol Lett 2014; 230(2): 218-24.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.042] [PMID: 24508987]
[129]
Che E, Gao Y, Wan L, et al. Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo. Microporous Mesoporous Mater 2015; 204: 226-34.
[http://dx.doi.org/10.1016/j.micromeso.2014.11.013]
[130]
Bhatnagar P, Pant AB, Shukla Y, Chaudhari B, Kumar P, Gupta KC. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]] anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm 2015; 91: 35-46.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.015] [PMID: 25619920]
[131]
Sivaraj R, Rahman PKSM, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 129: 255-8.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[132]
Balasubramani G, Ramkumar R, Krishnaveni N, et al. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn. J Trace Elem Med Biol 2015; 30: 83-9.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.001] [PMID: 25432487]
[133]
Pawar AP, Vinugala D, Bothiraja C. WITHDRAWN: Nanocochleates derived from nanoliposomes for paclitaxel oral use: Preparation, characterization, in vitro anticancer testing, bioavailability and biodistribution study in rats. Biomed Pharmacother 2014; 3502.
[http://dx.doi.org/10.1016/j.biopha.2014.11.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy