Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy

Author(s): Felipe Pantoja Mesquita, Luina Benevides Lima, Emerson Lucena da Silva, Pedro Filho Noronha Souza*, Maria Elisabete Amaral de Moraes, Rommel Mario Rodrigues Burbano and Raquel Carvalho Montenegro*

Volume 25, Issue 7, 2024

Published on: 28 February, 2024

Page: [539 - 552] Pages: 14

DOI: 10.2174/0113892037291318240130103348

Price: $65

Open Access Journals Promotions 2
Abstract

Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.

Keywords: ALK, gastric cancer, biomarker, targeted therapy, Gastric carcinogenesis, gene fusion.

Graphical Abstract
[1]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[2]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[3]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[4]
Shlyakhtina, Y.; Moran, K.L.; Portal, M.M. Genetic and non-genetic mechanisms underlying cancer evolution. Cancers, 2021, 13(6), 1380.
[http://dx.doi.org/10.3390/cancers13061380] [PMID: 33803675]
[5]
Moran, K.L.; Shlyakhtina, Y.; Portal, M.M. The role of non-genetic information in evolutionary frameworks. Crit. Rev. Biochem. Mol. Biol., 2021, 56(3), 255-283.
[http://dx.doi.org/10.1080/10409238.2021.1908949] [PMID: 33970731]
[6]
Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.L.; Högnäs, G.; Annala, M.; Kivinummi, K.; Goody, V.; Latimer, C.; O’Meara, S.; Dawson, K.J.; Isaacs, W.; Emmert-Buck, M.R.; Nykter, M.; Foster, C.; Kote-Jarai, Z.; Easton, D.; Whitaker, H.C.; Neal, D.E.; Cooper, C.S.; Eeles, R.A.; Visakorpi, T.; Campbell, P.J.; McDermott, U.; Wedge, D.C.; Bova, G.S. The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520(7547), 353-357.
[http://dx.doi.org/10.1038/nature14347] [PMID: 25830880]
[7]
Hao, J.J.; Lin, D.C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.Y.; Chang, C.; Jiang, Y.; Lu, C.C.; Shi, Z.Z.; Xu, X.; Zhang, Y.; Cai, Y.; Wang, J.W.; Zhan, Q.M.; Wei, W.Q.; Berman, B.P.; Wang, M.R.; Koeffler, H.P. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet., 2016, 48(12), 1500-1507.
[http://dx.doi.org/10.1038/ng.3683] [PMID: 27749841]
[8]
Kim, D.W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Sutradhar, S.; Li, S.; Szczudlo, T.; Yovine, A.; Shaw, A.T. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): Updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol., 2016, 17(4), 452-463.
[http://dx.doi.org/10.1016/S1470-2045(15)00614-2] [PMID: 26973324]
[9]
Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000.
[http://dx.doi.org/10.1038/s41467-020-14802-2] [PMID: 32081859]
[10]
Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers, 2020, 12(4), 1009.
[http://dx.doi.org/10.3390/cancers12041009] [PMID: 32325878]
[11]
Levene, P.A.; Alsberg, C.L. The cleavage products of vitellin. J. Biol. Chem., 1906, 2(1), 127-133.
[http://dx.doi.org/10.1016/S0021-9258(17)46054-6]
[12]
Ramazi, S.; Zahiri, J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database, 2021, 2021, baab012.
[http://dx.doi.org/10.1093/database/baab012] [PMID: 33826699]
[13]
Mongre, R.K.; Mishra, C.B.; Shukla, A.K.; Prakash, A.; Jung, S.; Ashraf-Uz-Zaman, M.; Lee, M.S. Emerging importance of tyrosine kinase inhibitors against cancer: Quo vadis to cure? Int. J. Mol. Sci., 2021, 22(21), 11659.
[http://dx.doi.org/10.3390/ijms222111659] [PMID: 34769090]
[14]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[15]
Giusti, V.; Ruzzi, F.; Landuzzi, L.; Ianzano, M.L.; Laranga, R.; Nironi, E.; Scalambra, L.; Nicoletti, G.; De Giovanni, C.; Olivero, M.; Arigoni, M.; Calogero, R.; Nanni, P.; Palladini, A.; Lollini, P.L. Evolution of HER2-positive mammary carcinoma: HER2 loss reveals claudin-low traits in cancer progression. Oncogenesis, 2021, 10(11), 77.
[http://dx.doi.org/10.1038/s41389-021-00360-9] [PMID: 34775465]
[16]
Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; Farjah, F.; Gerdes, H.; Gibson, M.K.; Hochwald, S.; Hofstetter, W.L.; Ilson, D.H.; Keswani, R.N.; Kim, S.; Kleinberg, L.R.; Klempner, S.J.; Lacy, J.; Ly, Q.P.; Matkowskyj, K.A.; McNamara, M.; Mulcahy, M.F.; Outlaw, D.; Park, H.; Perry, K.A.; Pimiento, J.; Poultsides, G.A.; Reznik, S.; Roses, R.E.; Strong, V.E.; Su, S.; Wang, H.L.; Wiesner, G.; Willett, C.G.; Yakoub, D.; Yoon, H.; McMillian, N.; Pluchino, L.A. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2022, 20(2), 167-192.
[http://dx.doi.org/10.6004/jnccn.2022.0008] [PMID: 35130500]
[17]
Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin., 2021, 71(3), 264-279.
[http://dx.doi.org/10.3322/caac.21657] [PMID: 33592120]
[18]
Sunakawa, Y.; Lenz, H.J. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr. Treat. Options Oncol., 2015, 16(4), 17.
[http://dx.doi.org/10.1007/s11864-015-0331-y] [PMID: 25813036]
[19]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284.
[http://dx.doi.org/10.1126/science.8122112] [PMID: 8122112]
[20]
Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor heterogeneity: The rosetta stone of therapy resistance. Cancer Cell, 2020, 37(4), 471-484.
[http://dx.doi.org/10.1016/j.ccell.2020.03.007] [PMID: 32289271]
[21]
Böger, C.; Behrens, H.M.; Krüger, S.; Röcken, C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? OncoImmunology, 2017, 6(4), e1293215.
[http://dx.doi.org/10.1080/2162402X.2017.1293215] [PMID: 28507801]
[22]
Pearson, A.D.J.; Herold, R.; Rousseau, R.; Copland, C.; Bradley-Garelik, B.; Binner, D.; Capdeville, R.; Caron, H.; Carleer, J.; Chesler, L.; Geoerger, B.; Kearns, P.; Marshall, L.V.; Pfister, S.M.; Schleiermacher, G.; Skolnik, J.; Spadoni, C.; Sterba, J.; van den Berg, H.; Uttenreuther-Fischer, M.; Witt, O.; Norga, K.; Vassal, G.; Georger, B.; Iannone, R.; Jakacki, R.; Russo, M. Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur. J. Cancer, 2016, 62, 124-131.
[http://dx.doi.org/10.1016/j.ejca.2016.04.001] [PMID: 27258969]
[23]
Stahl, J.E.; Dossett, M.L.; LaJoie, A.S.; Denninger, J.W.; Mehta, D.H.; Goldman, R.; Fricchione, G.L.; Benson, H. Relaxation response and resiliency training and its effect on healthcare resource utilization. PLoS One, 2015, 10(10), e0140212.
[http://dx.doi.org/10.1371/journal.pone.0140212] [PMID: 26461184]
[24]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[25]
Zhang, Z.; Karthaus, W.R.; Lee, Y.S.; Gao, V.R.; Wu, C.; Russo, J.W.; Liu, M.; Mota, J.M.; Abida, W.; Linton, E.; Lee, E.; Barnes, S.D.; Chen, H.A.; Mao, N.; Wongvipat, J.; Choi, D.; Chen, X.; Zhao, H.; Manova-Todorova, K.; de Stanchina, E.; Taplin, M.E.; Balk, S.P.; Rathkopf, D.E.; Gopalan, A.; Carver, B.S.; Mu, P.; Jiang, X.; Watson, P.A.; Sawyers, C.L. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell, 2020, 38(2), 279-296.e9.
[http://dx.doi.org/10.1016/j.ccell.2020.06.005] [PMID: 32679108]
[26]
Selim, J.H.; Shaheen, S.; Sheu, W.C.; Hsueh, C.T. Targeted and novel therapy in advanced gastric cancer. Exp. Hematol. Oncol., 2019, 8(1), 25.
[http://dx.doi.org/10.1186/s40164-019-0149-6] [PMID: 31632839]
[27]
Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: An emerging paradigm. Nat. Rev. Clin. Oncol., 2021, 18(8), 473-487.
[http://dx.doi.org/10.1038/s41571-021-00492-2] [PMID: 33790428]
[28]
Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; Aprile, G.; Kulikov, E.; Hill, J.; Lehle, M.; Rüschoff, J.; Kang, Y.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742), 687-697.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[29]
Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; Garrido, M.; Golan, T.; Mandala, M.; Wainberg, Z.A.; Catenacci, D.V.; Ohtsu, A.; Shitara, K.; Geva, R.; Bleeker, J.; Ko, A.H.; Ku, G.; Philip, P.; Enzinger, P.C.; Bang, Y.J.; Levitan, D.; Wang, J.; Rosales, M.; Dalal, R.P.; Yoon, H.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol., 2018, 4(5), e180013-e180013.
[http://dx.doi.org/10.1001/jamaoncol.2018.0013] [PMID: 29543932]
[30]
Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; Uchino, K.; Yasui, H.; Tsukuda, H.; Nishikawa, K.; Ishida, H.; Yamanaka, T.; Yamazaki, K.; Hironaka, S.; Esaki, T.; Boku, N.; Hyodo, I.; Muro, K. Randomized, phase II study of trastuzumab beyond progression in patients with HER2-positive advanced gastric or gastroesophageal junction cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol., 2020, 38(17), 1919-1927.
[http://dx.doi.org/10.1200/JCO.19.03077] [PMID: 32208960]
[31]
Ho, S.W.T.; Tan, P. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci., 2019, 110(11), 3405-3414.
[http://dx.doi.org/10.1111/cas.14191] [PMID: 31495054]
[32]
Wakatsuki, T.; Yamamoto, N.; Sano, T.; Chin, K.; Kawachi, H.; Takahari, D.; Ogura, M.; Ichimura, T.; Nakayama, I.; Osumi, H.; Matsushima, T.; Suenaga, M.; Shinozaki, E.; Hiki, N.; Ishikawa, Y.; Yamaguchi, K. Clinical impact of intratumoral HER2 heterogeneity on trastuzumab efficacy in patients with HER2-positive gastric cancer. J. Gastroenterol., 2018, 53(11), 1186-1195.
[http://dx.doi.org/10.1007/s00535-018-1464-0] [PMID: 29633013]
[33]
Lee, J.; Kim, S.T.; Kim, K.; Lee, H.; Kozarewa, I.; Mortimer, P.G.S.; Odegaard, J.I.; Harrington, E.A.; Lee, J.; Lee, T.; Oh, S.Y.; Kang, J.H.; Kim, J.H.; Kim, Y.; Ji, J.H.; Kim, Y.S.; Lee, K.E.; Kim, J.; Sohn, T.S.; An, J.Y.; Choi, M.G.; Lee, J.H.; Bae, J.M.; Kim, S.; Kim, J.J.; Min, Y.W.; Min, B.H.; Kim, N.K.D.; Luke, S.; Kim, Y.H.; Hong, J.Y.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Talasaz, A.; Hollingsworth, S.J.; Kim, K.M.; Kang, W.K. Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: The VIKTORY umbrella trial. Cancer Discov., 2019, 9(10), 1388-1405.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0442] [PMID: 31315834]
[34]
Röcken, C. Predictive biomarkers in gastric cancer. J. Cancer Res. Clin. Oncol., 2023, 149(1), 467-481.
[http://dx.doi.org/10.1007/s00432-022-04408-0] [PMID: 36260159]
[35]
Catenacci, D.V.T.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.Y.; Hart, J.; Siddiqui, U.D.; Hogarth, D.K.; Eng, O.S.; Turaga, K.; Roggin, K.; Posner, M.C.; Chang, P.; Narula, S.; Rampurwala, M.; Ji, Y.; Karrison, T.; Liao, C.Y.; Polite, B.N.; Kindler, H.L. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II study evaluating an individualized treatment strategy for metastatic disease. Cancer Discov., 2021, 11(2), 308-325.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1408] [PMID: 33234578]
[36]
Díaz-Serrano, A.; Angulo, B.; Dominguez, C.; Pazo-Cid, R.; Salud, A.; Jiménez-Fonseca, P.; Leon, A.; Galan, M.C.; Alsina, M.; Rivera, F.; Plaza, J.C.; Paz-Ares, L.; Lopez-Rios, F.; Gómez- Martín, C. Genomic profiling of HER2-Positive gastric cancer: PI3K/Akt/mTOR pathway as predictor of outcomes in HER2-positive advanced gastric cancer treated with trastuzumab. Oncologist, 2018, 23(9), 1092-1102.
[http://dx.doi.org/10.1634/theoncologist.2017-0379] [PMID: 29700210]
[37]
Farran, B.; Müller, S.; Montenegro, R.C. Gastric cancer management: Kinases as a target therapy. Clin. Exp. Pharmacol. Physiol., 2017, 44(6), 613-622.
[http://dx.doi.org/10.1111/1440-1681.12743] [PMID: 28271563]
[38]
Mesquita, F.P.; Lucena da Silva, E.; Souza, P.F.N.; Lima, L.B.; Amaral, J.L.; Zuercher, W.; Albuquerque, L.M.; Rabenhorst, S.H.B.; Moreira-Nunes, C.A.; Amaral de Moraes, M.E.; Montenegro, R.C. Kinase inhibitor screening reveals aurora-a kinase is a potential therapeutic and prognostic biomarker of gastric cancer. J. Cell. Biochem., 2021, 122(10), 1376-1388.
[http://dx.doi.org/10.1002/jcb.30015] [PMID: 34160883]
[39]
Mesquita, F.P.; Moreira-Nunes, C.A.; da Silva, E.L.; Lima, L.B.; Daniel, J.P.; Zuerker, W.J.; Brayner, M.; de Moraes, M.E.A.; Montenegro, R.C. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol. In Vitro, 2020, 66, 104839.
[http://dx.doi.org/10.1016/j.tiv.2020.104839] [PMID: 32243890]
[40]
Mesquita, F.P.; Souza, P.F.N.; da Silva, E.L.; Lima, L.B.; de Oliveira, L.L.B.; Moreira-Nunes, C.A.; Zuercher, W.J.; Burbano, R.M.R.; de Moraes, M.E.A.; Montenegro, R.C. Kinase inhibitor screening displayed ALK as a possible therapeutic biomarker for gastric cancer. Pharmaceutics, 2022, 14(9), 1841.
[http://dx.doi.org/10.3390/pharmaceutics14091841] [PMID: 36145589]
[41]
Morris, S.W.; Naeve, C.; Mathew, P.; James, P.L.; Kirstein, M.N.; Cui, X.; Witte, D.P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene, 1997, 14(18), 2175-2188.
[http://dx.doi.org/10.1038/sj.onc.1201062] [PMID: 9174053]
[42]
Chiarle, R.; Voena, C.; Ambrogio, C.; Piva, R.; Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer, 2008, 8(1), 11-23.
[http://dx.doi.org/10.1038/nrc2291] [PMID: 18097461]
[43]
Wasik, M.A.; Zhang, Q.; Marzec, M.; Kasprzycka, M.; Wang, H.Y.; Liu, X. Anaplastic lymphoma kinase (ALK)-induced malignancies: Novel mechanisms of cell transformation and potential therapeutic approaches. In: Seminars in Oncology; Elsevier, 2009; pp. S27-S35.
[http://dx.doi.org/10.1053/j.seminoncol.2009.02.007]
[44]
Yuan, Y.; Liao, Y.M.; Hsueh, C.T.; Mirshahidi, H.R. Novel targeted therapeutics: Inhibitors of MDM2, ALK and PARP. J. Hematol. Oncol., 2011, 4(1), 16.
[http://dx.doi.org/10.1186/1756-8722-4-16] [PMID: 21504625]
[45]
Iwahara, T.; Fujimoto, J.; Wen, D.; Cupples, R.; Bucay, N.; Arakawa, T.; Mori, S.; Ratzkin, B.; Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene, 1997, 14(4), 439-449.
[http://dx.doi.org/10.1038/sj.onc.1200849] [PMID: 9053841]
[46]
Vernersson, E.; Khoo, N.K.S.; Henriksson, M.L.; Roos, G.; Palmer, R.H.; Hallberg, B. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr. Patterns, 2006, 6(5), 448-461.
[http://dx.doi.org/10.1016/j.modgep.2005.11.006] [PMID: 16458083]
[47]
Pulford, K.; Lamant, L.; Morris, S.W.; Butler, L.H.; Wood, K.M.; Stroud, D.; Delsol, G.; Mason, D.Y. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood, 1997, 89(4), 1394-1404.
[http://dx.doi.org/10.1182/blood.V89.4.1394] [PMID: 9028963]
[48]
Yao, S.; Cheng, M.; Zhang, Q.; Wasik, M.; Kelsh, R.; Winkler, C. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One, 2013, 8(5), e63757.
[http://dx.doi.org/10.1371/journal.pone.0063757] [PMID: 23667670]
[49]
Uçkun, E.; Wolfstetter, G.; Anthonydhason, V.; Sukumar, S.K.; Umapathy, G.; Molander, L.; Fuchs, J.; Palmer, R.H. In vivo profiling of the Alk proximitome in the developing drosophila brain. J. Mol. Biol., 2021, 433(23), 167282.
[http://dx.doi.org/10.1016/j.jmb.2021.167282] [PMID: 34624297]
[50]
Park, J.; Choi, H.; Kim, Y.D.; Kim, S.H.; Kim, Y.; Gwon, Y.; Lee, D.Y.; Park, S.H.; Heo, W.D.; Jung, Y.K. Aberrant role of ALK in tau proteinopathy through autophagosomal dysregulation. Mol. Psychiatry, 2021, 26(10), 5542-5556.
[http://dx.doi.org/10.1038/s41380-020-01003-y] [PMID: 33452442]
[51]
Gouzi, J.Y.; Bouraimi, M.; Roussou, I.G.; Moressis, A.; Skoulakis, E.M.C. The drosophila receptor tyrosine kinase alk constrains long-term memory formation. J. Neurosci., 2018, 38(35), 7701-7712.
[http://dx.doi.org/10.1523/JNEUROSCI.0784-18.2018] [PMID: 30030398]
[52]
Wellstein, A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front. Oncol., 2012, 2, 192.
[http://dx.doi.org/10.3389/fonc.2012.00192] [PMID: 23267434]
[53]
Englund, C.; Lorén, C.E.; Grabbe, C.; Varshney, G.K.; Deleuil, F.; Hallberg, B.; Palmer, R.H. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature, 2003, 425(6957), 512-516.
[http://dx.doi.org/10.1038/nature01950] [PMID: 14523447]
[54]
Stute, C.; Schimmelpfeng, K.; Renkawitz-Pohl, R.; Palmer, R.H.; Holz, A. Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways ( mili Alk ) as receptor for Jeb signalling. Development, 2004, 131(4), 743-754.
[http://dx.doi.org/10.1242/dev.00972] [PMID: 14757637]
[55]
Ishihara, T.; Iino, Y.; Mohri, A.; Mori, I.; Gengyo-Ando, K.; Mitani, S.; Katsura, I. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell, 2002, 109(5), 639-649.
[http://dx.doi.org/10.1016/S0092-8674(02)00748-1] [PMID: 12062106]
[56]
Owada, K.; Sanjo, N.; Kobayashi, T.; Mizusawa, H.; Muramatsu, H.; Muramatsu, T.; Michikawa, M. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J. Neurochem., 1999, 73(5), 2084-2092.
[http://dx.doi.org/10.1046/j.1471-4159.1999.02084.x] [PMID: 10537068]
[57]
Maeda, N.; Ichihara-Tanaka, K.; Kimura, T.; Kadomatsu, K.; Muramatsu, T.; Noda, M. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J. Biol. Chem., 1999, 274(18), 12474-12479.
[http://dx.doi.org/10.1074/jbc.274.18.12474] [PMID: 10212223]
[58]
Mitsiadis, T.A.; Salmivirta, M.; Muramatsu, T.; Muramatsu, H.; Rauvala, H.; Lehtonen, E.; Jalkanen, M.; Thesleff, I. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development, 1995, 121(1), 37-51.
[http://dx.doi.org/10.1242/dev.121.1.37] [PMID: 7867507]
[59]
Wang, S.; Yoshida, Y.; Goto, M.; Moritoyo, T.; Tsutsui, J.; Izumo, S.; Sato, E.; Muramatsu, T.; Osame, M. Midkine exists in astrocytes in the early stage of cerebral infarction. Brain Res. Dev. Brain Res., 1998, 106(1-2), 205-209.
[http://dx.doi.org/10.1016/S0165-3806(97)00213-7] [PMID: 9555016]
[60]
Zhang, L.; Rees, M.C.P.; Bicknell, R. The isolation and long-term culture of normal human endometrial epithelium and stroma: Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges. J. Cell Sci., 1995, 108(1), 323-331.
[http://dx.doi.org/10.1242/jcs.108.1.323] [PMID: 7537745]
[61]
Zhang, H.; Pao, L.I.; Zhou, A.; Brace, A.D.; Halenbeck, R.; Hsu, A.W.; Bray, T.L.; Hestir, K.; Bosch, E.; Lee, E.; Wang, G.; Liu, H.; Wong, B.R.; Kavanaugh, W.M.; Williams, L.T. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc. Natl. Acad. Sci., 2014, 111(44), 15741-15745.
[http://dx.doi.org/10.1073/pnas.1412009111] [PMID: 25331893]
[62]
Guan, J.; Umapathy, G.; Yamazaki, Y.; Wolfstetter, G.; Mendoza, P.; Pfeifer, K.; Mohammed, A.; Hugosson, F.; Zhang, H.; Hsu, A.W.; Halenbeck, R.; Hallberg, B.; Palmer, R.H. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife, 2015, 4, e09811.
[http://dx.doi.org/10.7554/eLife.09811] [PMID: 26418745]
[63]
Mendoza-García, P.; Hugosson, F.; Fallah, M.; Higgins, M.L.; Iwasaki, Y.; Pfeifer, K.; Wolfstetter, G.; Varshney, G.; Popichenko, D.; Gergen, J.P.; Hens, K.; Deplancke, B.; Palmer, R.H. The Zic family homologue Odd-paired regulates Alk expression in Drosophila. PLoS Genet., 2017, 13(4), e1006617.
[http://dx.doi.org/10.1371/journal.pgen.1006617] [PMID: 28369060]
[64]
Bachetti, T.; Di Paolo, D.; Di Lascio, S.; Mirisola, V.; Brignole, C.; Bellotti, M.; Caffa, I.; Ferraris, C.; Fiore, M.; Fornasari, D.; Chiarle, R.; Borghini, S.; Pfeffer, U.; Ponzoni, M.; Ceccherini, I.; Perri, P. PHOX2B-mediated regulation of ALK expression: In vitro identification of a functional relationship between two genes involved in neuroblastoma. PLoS One, 2010, 5(10), e13108.
[http://dx.doi.org/10.1371/journal.pone.0013108] [PMID: 20957039]
[65]
Hasan, M.K.; Nafady, A.; Takatori, A.; Kishida, S.; Ohira, M.; Suenaga, Y.; Hossain, S.; Akter, J.; Ogura, A.; Nakamura, Y.; Kadomatsu, K.; Nakagawara, A. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Sci. Rep., 2013, 3(1), 3450.
[http://dx.doi.org/10.1038/srep03450] [PMID: 24356251]
[66]
Ke, X.X.; Zhang, D.; Zhao, H.; Hu, R.; Dong, Z.; Yang, R.; Zhu, S.; Xia, Q.; Ding, H.F.; Cui, H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol. Lett., 2015, 9(6), 2507-2514.
[http://dx.doi.org/10.3892/ol.2015.3088] [PMID: 26137098]
[67]
Ke, C.; Shi, X.; Chen, A.M.; Li, C.; Jiang, B.; Huang, K.; Zheng, Z.; Liu, Y.; Chen, Z.; Luo, Y.; Lin, H.; Zhang, J. Novel PHOX2B germline mutation in childhood medulloblastoma: A case report. Hered. Cancer Clin. Pract., 2021, 19(1), 12.
[http://dx.doi.org/10.1186/s13053-021-00170-5] [PMID: 33468206]
[68]
Liu, Z.; Chen, S.S.; Clarke, S.; Veschi, V.; Thiele, C.J. Targeting MYCN in pediatric and adult cancers. Front. Oncol., 2021, 10, 623679.
[http://dx.doi.org/10.3389/fonc.2020.623679] [PMID: 33628735]
[69]
Liu, R.; Shi, P.; Wang, Z.; Yuan, C.; Cui, H. Molecular mechanisms of MYCN dysregulation in cancers. Front. Oncol., 2021, 10, 625332.
[http://dx.doi.org/10.3389/fonc.2020.625332] [PMID: 33614505]
[70]
Williamson, D.; Lu, Y.J.; Gordon, T.; Sciot, R.; Kelsey, A.; Fisher, C.; Poremba, C.; Anderson, J.; Pritchard-Jones, K.; Shipley, J. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol., 2005, 23(4), 880-888.
[http://dx.doi.org/10.1200/JCO.2005.11.078] [PMID: 15681534]
[71]
Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target. Oncol., 2020, 15(3), 261-278.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[72]
Vishwamitra, D.; Li, Y.; Wilson, D.; Manshouri, R.; Curry, C.V.; Shi, B.; Tang, X.M.; Sheehan, A.M.; Wistuba, I.I.; Shi, P.; Amin, H.M.; Micro, R.N.A. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. Am. J. Pathol., 2012, 180(5), 1772-1780.
[http://dx.doi.org/10.1016/j.ajpath.2012.01.008] [PMID: 22414602]
[73]
Li, L.L.; Qu, L.L.; Fu, H.J.; Zheng, X.F.; Tang, C.H.; Li, X.Y.; Chen, J.; Wang, W.X.; Yang, S.X.; Wang, L.; Zhao, G.H.; Lv, P.P.; Zhang, M.; Lei, Y.Y.; Qin, H.F.; Wang, H.; Gao, H.J.; Liu, X.Q. Circulating microRNAs as novel biomarkers of ALK-positive non-small cell lung cancer and predictors of response to crizotinib therapy. Oncotarget, 2017, 8(28), 45399-45414.
[http://dx.doi.org/10.18632/oncotarget.17535] [PMID: 28514730]
[74]
Merkel, O.; Hamacher, F.; Laimer, D.; Sifft, E.; Trajanoski, Z.; Scheideler, M.; Egger, G.; Hassler, M.R.; Thallinger, C.; Schmatz, A.; Turner, S.D.; Greil, R.; Kenner, L. Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK) + and ALK anaplastic large-cell lymphoma. Proc. Natl. Acad. Sci., 2010, 107(37), 16228-16233.
[http://dx.doi.org/10.1073/pnas.1009719107] [PMID: 20805506]
[75]
Fuchs, S.; Naderi, J.; Meggetto, F. Non-coding RNA networks in alk-positive anaplastic-large cell lymphoma. Int. J. Mol. Sci., 2019, 20(9), 2150.
[http://dx.doi.org/10.3390/ijms20092150] [PMID: 31052302]
[76]
Du, X.; Shao, Y.; Qin, H.F.; Tai, Y.H.; Gao, H.J. ALK- rearrangement in non-small-cell lung cancer (NSCLC). Thorac. Cancer, 2018, 9(4), 423-430.
[http://dx.doi.org/10.1111/1759-7714.12613] [PMID: 29488330]
[77]
Schoppmann, S.F.; Streubel, B.; Birner, P. Amplification but not translocation of anaplastic lymphoma kinase is a frequent event in oesophageal cancer. Eur. J. Cancer, 2013, 49(8), 1876-1881.
[http://dx.doi.org/10.1016/j.ejca.2013.02.005] [PMID: 23490651]
[78]
Zito Marino, F.; Botti, G.; Aquino, G.; Ferrero, S.; Gaudioso, G.; Palleschi, A.; Rocco, D.; Salvi, R.; Micheli, M.C.; Micheli, P.; Morabito, A.; Rocco, G.; Giordano, A.; De Cecio, R.; Franco, R. Unproductive effects of alk gene amplification and copy number gain in non-small-cell lung cancer. Alk gene amplification and copy gain in nsclc. Int. J. Mol. Sci., 2020, 21(14), 4927.
[http://dx.doi.org/10.3390/ijms21144927] [PMID: 32664698]
[79]
Boi, M.; Zucca, E.; Inghirami, G.; Bertoni, F. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas. Br. J. Haematol., 2015, 168(6), 771-783.
[http://dx.doi.org/10.1111/bjh.13265] [PMID: 25559471]
[80]
André, F.; Arnedos, M.; Baras, A.S.; Baselga, J.; Bedard, P.L.; Berger, M.F.; Bierkens, M.; Calvo, F.; Cerami, E.; Chakravarty, D.; Dang, K.K.; Davidson, N.E.; Del Vecchio Fitz, C.; Dogan, S.; DuBois, R.N.; Ducar, M.D.; Futreal, P.A.; Gao, J.; Garcia, F.; Gardos, S.; Gocke, C.D.; Gross, B.E.; Guinney, J.; Heins, Z.J.; Hintzen, S.; Horlings, H.; Hudeček, J.; Hyman, D.M.; Kamel-Reid, S.; Kandoth, C.; Kinyua, W.; Kumari, P.; Kundra, R.; Ladanyi, M.; Lefebvre, C.; LeNoue-Newton, M.L.; Lepisto, E.M.; Levy, M.A.; Lindeman, N.I.; Lindsay, J.; Liu, D.; Lu, Z.; MacConaill, L.E.; Maurer, I.; Maxwell, D.S.; Meijer, G.A.; Meric-Bernstam, F.; Micheel, C.M.; Miller, C.; Mills, G.; Moore, N.D.; Nederlof, P.M.; Omberg, L.; Orechia, J.A.; Park, B.H.; Pugh, T.J.; Reardon, B.; Rollins, B.J.; Routbort, M.J.; Sawyers, C.L.; Schrag, D.; Schultz, N.; Shaw, K.R.M.; Shivdasani, P.; Siu, L.L.; Solit, D.B.; Sonke, G.S.; Soria, J.C.; Sripakdeevong, P.; Stickle, N.H.; Stricker, T.P.; Sweeney, S.M.; Taylor, B.S.; ten Hoeve, J.J.; Thomas, S.B.; Van Allen, E.M.; Van 'T Veer, L.J.; van de Velde, T.; van Tinteren, H.; Velculescu, V.E.; Virtanen, C.; Voest, E.E.; Wang, L.L.; Wathoo, C.; Watt, S.; Yu, C.; Yu, T.V.; Yu, E.; Zehir, A.; Zhang, H. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov., 2017, 7(8), 818-831.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0151] [PMID: 28572459]
[81]
Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer, 2018, 17(1), 30.
[http://dx.doi.org/10.1186/s12943-018-0776-2] [PMID: 29455642]
[82]
Yang, Y.; Wu, N.; Shen, J.; Teixido, C.; Sun, X.; Lin, Z.; Qian, X.; Zou, Z.; Guan, W.; Yu, L.; Rosell, R.; Liu, B.; Wei, J. MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer, 2016, 19(3), 778-788.
[http://dx.doi.org/10.1007/s10120-015-0545-5] [PMID: 26404902]
[83]
Shiota, M.; Fujimoto, J.; Semba, T.; Satoh, H.; Yamamoto, T.; Mori, S. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene, 1994, 9(6), 1567-1574.
[PMID: 8183550]
[84]
Bischof, D.; Pulford, K.; Mason, D.Y.; Morris, S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol., 1997, 17(4), 2312-2325.
[http://dx.doi.org/10.1128/MCB.17.4.2312] [PMID: 9121481]
[85]
Hofman, P. ALK in non-small cell lung cancer (NSCLC) pathobiology, epidemiology, detection from tumor tissue and algorithm diagnosis in a daily practice. Cancers, 2017, 9(12), 107.
[http://dx.doi.org/10.3390/cancers9080107] [PMID: 28805682]
[86]
Kim, H.; Chung, J-H. Overview of clinicopathologic features of ALK-rearranged lung adenocarcinoma and current diagnostic testing for ALK rearrangement. Transl. Lung Cancer Res., 2015, 4(2), 149-155.
[PMID: 25870797]
[87]
Franco, R.; Rocco, G.; Marino, F.Z.; Pirozzi, G.; Normanno, N.; Morabito, A.; Sperlongano, P.; Stiuso, P.; Luce, A.; Botti, G.; Caraglia, M. Anaplastic lymphoma kinase: A glimmer of hope in lung cancer treatment? Expert Rev. Anticancer Ther., 2013, 13(4), 407-420.
[http://dx.doi.org/10.1586/era.13.18] [PMID: 23560836]
[88]
Roskoski, R., Jr Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol. Res., 2013, 68(1), 68-94.
[http://dx.doi.org/10.1016/j.phrs.2012.11.007] [PMID: 23201355]
[89]
Marzec, M.; Kasprzycka, M.; Liu, X.; El-Salem, M.; Halasa, K.; Raghunath, P.N.; Bucki, R.; Wlodarski, P.; Wasik, M.A. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene, 2007, 26(38), 5606-5614.
[http://dx.doi.org/10.1038/sj.onc.1210346] [PMID: 17353907]
[90]
Kasprzycka, M.; Marzec, M.; Liu, X.; Zhang, Q.; Wasik, M.A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl. Acad. Sci., 2006, 103(26), 9964-9969.
[http://dx.doi.org/10.1073/pnas.0603507103] [PMID: 16766651]
[91]
Andraos, E.; Dignac, J.; Meggetto, F. NPM-ALK: A driver of lymphoma pathogenesis and a therapeutic target. Cancers, 2021, 13(1), 144.
[http://dx.doi.org/10.3390/cancers13010144] [PMID: 33466277]
[92]
Bang, Y.J. Treatment of ALK-positive non-small cell lung cancer. Arch. Pathol. Lab. Med., 2012, 136(10), 1201-1204.
[http://dx.doi.org/10.5858/arpa.2012-0246-RA] [PMID: 23020724]
[93]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[94]
Shaw, A.T.; Yeap, B.Y.; Solomon, B.J.; Riely, G.J.; Gainor, J.; Engelman, J.A.; Shapiro, G.I.; Costa, D.B.; Ou, S.H.I.; Butaney, M.; Salgia, R.; Maki, R.G.; Varella-Garcia, M.; Doebele, R.C.; Bang, Y.J.; Kulig, K.; Selaru, P.; Tang, Y.; Wilner, K.D.; Kwak, E.L.; Clark, J.W.; Iafrate, A.J.; Camidge, D.R. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: A retrospective analysis. Lancet Oncol., 2011, 12(11), 1004-1012.
[http://dx.doi.org/10.1016/S1470-2045(11)70232-7] [PMID: 21933749]
[95]
Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690.
[http://dx.doi.org/10.1016/j.ccr.2011.04.004] [PMID: 21575866]
[96]
Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; Hochmair, M.; Cortot, A.B.; Tsai, C.M.; Moro-Sibilot, D.; Campelo, R.G.; McCulloch, T.; Sen, P.; Dugan, M.; Pantano, S.; Branle, F.; Massacesi, C.; de Castro, G., Jr First-line ceritinib versus platinum-based chemotherapy in advanced ALK -rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet, 2017, 389(10072), 917-929.
[http://dx.doi.org/10.1016/S0140-6736(17)30123-X] [PMID: 28126333]
[97]
Yanagitani, N.; Uchibori, K.; Koike, S.; Tsukahara, M.; Kitazono, S.; Yoshizawa, T.; Horiike, A.; Ohyanagi, F.; Tambo, Y.; Nishikawa, S.; Fujita, N.; Katayama, R.; Nishio, M. Drug resistance mechanisms in Japanese anaplastic lymphoma kinase-positive non–small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Sci., 2020, 111(3), 932-939.
[http://dx.doi.org/10.1111/cas.14314] [PMID: 31961053]
[98]
Makimoto, G.; Ohashi, K.; Tomida, S.; Nishii, K.; Matsubara, T.; Kayatani, H.; Higo, H.; Ninomiya, K.; Sato, A.; Watanabe, H.; Kano, H.; Ninomiya, T.; Kubo, T.; Rai, K.; Ichihara, E.; Hotta, K.; Tabata, M.; Toyooka, S.; Takata, M.; Maeda, Y.; Kiura, K. Rapid acquisition of alectinib resistance in ALK-positive lung cancer with high tumor mutation burden. J. Thorac. Oncol., 2019, 14(11), 2009-2018.
[http://dx.doi.org/10.1016/j.jtho.2019.07.017] [PMID: 31374369]
[99]
Huber, R.M.; Hansen, K.H.; Paz-Ares Rodríguez, L.; West, H.L.; Reckamp, K.L.; Leighl, N.B.; Tiseo, M.; Smit, E.F.; Kim, D.W.; Gettinger, S.N.; Hochmair, M.J.; Kim, S.W.; Langer, C.J.; Ahn, M.J.; Kim, E.S.; Kerstein, D.; Groen, H.J.M.; Camidge, D.R. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J. Thorac. Oncol., 2020, 15(3), 404-415.
[http://dx.doi.org/10.1016/j.jtho.2019.11.004] [PMID: 31756496]
[100]
Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W.S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The Potent ALK Inhibitor Brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0569] [PMID: 27780853]
[101]
Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; Garcia Campelo, M.R.; Kim, D.W.; Griesinger, F.; Felip, E.; Califano, R.; Spira, A.I.; Gettinger, S.N.; Tiseo, M.; Lin, H.M.; Liu, Y.; Vranceanu, F.; Niu, H.; Zhang, P.; Popat, S. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: Final results of phase 3 ALTA-1L trial. J. Thorac. Oncol., 2021, 16(12), 2091-2108.
[http://dx.doi.org/10.1016/j.jtho.2021.07.035] [PMID: 34537440]
[102]
Dagogo-Jack, I.; Rooney, M.; Lin, J.J.; Nagy, R.J.; Yeap, B.Y.; Hubbeling, H.; Chin, E.; Ackil, J.; Farago, A.F.; Hata, A.N.; Lennerz, J.K.; Gainor, J.F.; Lanman, R.B.; Shaw, A.T. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin. Cancer Res., 2019, 25(22), 6662-6670.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1436] [PMID: 31358542]
[103]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK -rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[104]
Sabari, J.K.; Santini, F.; Schram, A.M.; Bergagnini, I.; Chen, R.; Mrad, C.; Lai, W.V.; Arbour, K.C.; Drilon, A. The activity, safety, and evolving role of brigatinib in patients with ALK-rearranged non-small cell lung cancers. OncoTargets Ther., 2017, 10, 1983-1992.
[http://dx.doi.org/10.2147/OTT.S109295] [PMID: 28435288]
[105]
Crinò, L.; Ahn, M.J.; De Marinis, F.; Groen, H.J.M.; Wakelee, H.; Hida, T.; Mok, T.; Spigel, D.; Felip, E.; Nishio, M.; Scagliotti, G.; Branle, F.; Emeremni, C.; Quadrigli, M.; Zhang, J.; Shaw, A.T. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK -rearranged non–small-cell lung cancer previously treated with chemotherapy and crizotinib: Results from ASCEND-2. J. Clin. Oncol., 2016, 34(24), 2866-2873.
[http://dx.doi.org/10.1200/JCO.2015.65.5936] [PMID: 27432917]
[106]
Cho, B.C.; Obermannova, R.; Bearz, A.; McKeage, M.; Kim, D.W.; Batra, U.; Borra, G.; Orlov, S.; Kim, S.W.; Geater, S.L.; Postmus, P.E.; Laurie, S.A.; Park, K.; Yang, C.T.; Ardizzoni, A.; Bettini, A.C.; de Castro, G., Jr; Kiertsman, F.; Chen, Z.; Lau, Y.Y.; Viraswami-Appanna, K.; Passos, V.Q.; Dziadziuszko, R. Efficacy and safety of ceritinib (450 mg/d or 600 mg/d) with food versus 750-mg/d fasted in patients with ALK receptor tyrosine kinase (ALK)–positive NSCLC: Primary efficacy results from the ASCEND-8 study. J. Thorac. Oncol., 2019, 14(7), 1255-1265.
[http://dx.doi.org/10.1016/j.jtho.2019.03.002] [PMID: 30851442]
[107]
Mehlman, C.; Chaabane, N.; Lacave, R.; Kerrou, K.; Ruppert, A.M.; Cadranel, J.; Fallet, V.; Ceritinib, A.L.K. Ceritinib ALK T1151R resistance mutation in lung cancer with initial response to brigatinib. J. Thorac. Oncol., 2019, 14(5), e95-e96.
[http://dx.doi.org/10.1016/j.jtho.2018.12.036] [PMID: 31027750]
[108]
Zhu, V.W.; Cui, J.J.; Fernandez-Rocha, M.; Schrock, A.B.; Ali, S.M.; Ou, S.H.I. Identification of a novel T1151K ALK mutation in a patient with ALK -rearranged NSCLC with prior exposure to crizotinib and ceritinib. Lung Cancer, 2017, 110, 32-34.
[http://dx.doi.org/10.1016/j.lungcan.2017.05.018] [PMID: 28676215]
[109]
Zou, H.Y.; Friboulet, L.; Kodack, D.P.; Engstrom, L.D.; Li, Q.; West, M.; Tang, R.W.; Wang, H.; Tsaparikos, K.; Wang, J.; Timofeevski, S.; Katayama, R.; Dinh, D.M.; Lam, H.; Lam, J.L.; Yamazaki, S.; Hu, W.; Patel, B.; Bezwada, D.; Frias, R.L.; Lifshits, E.; Mahmood, S.; Gainor, J.F.; Affolter, T.; Lappin, P.B.; Gukasyan, H.; Lee, N.; Deng, S.; Jain, R.K.; Johnson, T.W.; Shaw, A.T.; Fantin, V.R.; Smeal, T. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell, 2015, 28(1), 70-81.
[http://dx.doi.org/10.1016/j.ccell.2015.05.010] [PMID: 26144315]
[110]
Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3 rd -generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Med. Chem., 2017, 134, 348-356.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.032] [PMID: 28431340]
[111]
Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; Thurm, H.; Calella, A.M.; Peltz, G.; Solomon, B.J. Solomon, first-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. New England J. Med., 2020, 383, 2018-2029.
[http://dx.doi.org/10.1056/NEJMoa2027187]
[112]
Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F. First-line crizotinib Versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
[http://dx.doi.org/10.1056/NEJMoa1408440] [PMID: 25470694]
[113]
Recondo, G.; Mezquita, L.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Bigot, L.; Rizvi, A.Z.; Frias, R.L.; Thiery, J.P.; Scoazec, J.Y.; Sourisseau, T.; Howarth, K.; Deas, O.; Samofalova, D.; Galissant, J.; Tesson, P.; Braye, F.; Naltet, C.; Lavaud, P.; Mahjoubi, L.; Abou Lovergne, A.; Vassal, G.; Bahleda, R.; Hollebecque, A.; Nicotra, C.; Ngo-Camus, M.; Michiels, S.; Lacroix, L.; Richon, C.; Auger, N.; De Baere, T.; Tselikas, L.; Solary, E.; Angevin, E.; Eggermont, A.M.; Andre, F.; Massard, C.; Olaussen, K.A.; Soria, J.C.; Besse, B.; Friboulet, L. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res., 2020, 26(1), 242-255.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1104] [PMID: 31585938]
[114]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[115]
Takahashi, K.; Seto, Y.; Okada, K.; Uematsu, S.; Uchibori, K.; Tsukahara, M.; Oh-hara, T.; Fujita, N.; Yanagitani, N.; Nishio, M.; Okubo, K.; Katayama, R. Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in non-small cell lung cancer. Thorac. Cancer, 2020, 11(3), 581-587.
[http://dx.doi.org/10.1111/1759-7714.13299] [PMID: 31943796]
[116]
Sharma, G.G.; Cortinovis, D.; Agustoni, F.; Arosio, G.; Villa, M.; Cordani, N.; Bidoli, P.; Bisson, W.H.; Pagni, F.; Piazza, R.; Gambacorti-Passerini, C.; Mologni, L.; Compound, A. A Compound L1196M/G1202R ALK mutation in a patient with ALK-positive lung cancer with acquired resistance to brigatinib also confers primary resistance to lorlatinib. J. Thorac. Oncol., 2019, 14(11), e257-e259.
[http://dx.doi.org/10.1016/j.jtho.2019.06.028] [PMID: 31668326]
[117]
Makuuchi, Y.; Hayashi, H.; Haratani, K.; Tanizaki, J.; Tanaka, K.; Takeda, M.; Sakai, K.; Shimizu, S.; Ito, A.; Nishio, K.; Nakagawa, K. A case of ALK -rearranged non-small cell lung cancer that responded to ceritinib after development of resistance to alectinib. Oncotarget, 2018, 9(33), 23315-23319.
[http://dx.doi.org/10.18632/oncotarget.25143] [PMID: 29796191]
[118]
COSMIC. Available from:https://cancer.sanger.ac.uk/cosmic (Accessed May 17, 2023).
[119]
Machlowska, J.; Kapusta, P.; Baj, J.; Morsink, F.H.M.; Wołkow, P.; Maciejewski, R.; Offerhaus, G.J.A.; Sitarz, R. High-throughput sequencing of gastric cancer patients: Unravelling genetic predispositions towards an early-onset subtype. Cancers, 2020, 12(7), 1981.
[http://dx.doi.org/10.3390/cancers12071981] [PMID: 32708070]
[120]
Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer, 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12943-018-0801-5] [PMID: 29455664]
[121]
Ou, S.H.I.; Zhu, V.W.; Nagasaka, M. Catalog of 5’fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Report, 2020, 1(1), 100015.
[http://dx.doi.org/10.1016/j.jtocrr.2020.100015] [PMID: 34589917]
[122]
Shinmura, K.; Kageyama, S.; Igarashi, H.; Kamo, T.; Mochizuki, T.; Suzuki, K.; Tanahashi, M.; Niwa, H.; Ogawa, H.; Sugimura, H. EML4-ALK fusion transcripts in immunohistochemically ALK-positive non-small cell lung carcinomas. Exp. Ther. Med., 2010, 1(2), 271-275.
[http://dx.doi.org/10.3892/etm_00000042] [PMID: 22993539]
[123]
Chon, H.J.; Kim, H.R.; Shin, E.; Kim, C.; Heo, S.J.; Lee, C.-K.; Park, J.K.; Noh, S.H.; Chung, H.C.; Rha, S.Y. The clinicopathologic features and prognostic impact of ALK positivity in patients with resected gastric cancer. Annal. Surg. Oncol., 2015, 22, 3938-3945.
[http://dx.doi.org/10.1245/s10434-015-4376-8]
[124]
Zhao, R.; Jiang, W.; Li, X.; Zhang, W.; Song, L.; Chang, Z.; Cao, W.; Cao, X.; Zong, H. Anaplastic lymphoma kinase (ALK) gene alteration in gastric signet ring cell carcinoma. Cancer Biomark., 2016, 16(4), 569-574.
[http://dx.doi.org/10.3233/CBM-160599] [PMID: 27002760]
[125]
Alese, O.B.; El-Rayes, B.F.; Sica, G.; Zhang, G.; Alexis, D.; La Rosa, F.G.; Varella-Garcia, M.; Chen, Z.; Rossi, M.R.; Adsay, N.V.; Khuri, F.R.; Owonikoko, T.K. Anaplastic lymphoma kinase (ALK) gene alteration in signet ring cell carcinoma of the gastrointestinal tract. Ther. Adv. Med. Oncol., 2015, 7(2), 56-62.
[http://dx.doi.org/10.1177/1758834014567117] [PMID: 25755678]
[126]
Glückstein, M.-I.; Dintner, S.; Miller, S.; Vlasenko, D.; Schenkirsch, G.; Agaimy, A.; Märkl, B.; Grosser, B. Grosser, ALK, NUT, and TRK do not play relevant roles in gastric cancer-results of an immunohistochemical study in a large series. Diagnostics, 2022, 12, 429.
[http://dx.doi.org/10.3390/diagnostics12020429]
[127]
Wen, Z.; Xiong, D.; Zhang, S.; Liu, J.; Li, B.; Li, R.; Zhang, H. Case report: RAB10-ALK: A novel ALK fusion in a patient with gastric cancer. Front. Oncol., 2021, 11, 645370.
[http://dx.doi.org/10.3389/fonc.2021.645370] [PMID: 33692962]
[128]
Murakami, K.; Terakado, Y.; Saito, K.; Jomen, Y.; Takeda, H.; Oshima, M.; Barker, N. A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc. Natl. Acad. Sci., 2021, 118(4), e2016806118.
[http://dx.doi.org/10.1073/pnas.2016806118] [PMID: 33479180]
[129]
Sa, J.K.; Hong, J.Y.; Lee, I.K.; Kim, J.; Sim, M.H.; Kim, H.J.; An, J.Y.; Sohn, T.S.; Lee, J.H.; Bae, J.M.; Kim, S.; Kim, K.M.; Kim, S.T.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Her, N.G.; Lee, Y.; Cho, H.J.; Shin, Y.J.; Kim, M.; Koo, H.; Kim, M.; Seo, Y.J.; Kim, J.Y.; Choi, M.G.; Nam, D.H.; Lee, J. Comprehensive pharmacogenomic characterization of gastric cancer. Genome Med., 2020, 12(1), 17.
[http://dx.doi.org/10.1186/s13073-020-0717-8] [PMID: 32070411]
[130]
Ribeiro, I.P.; Melo, J.B.; Carreira, I.M. Cytogenetics and cytogenomics evaluation in cancer. Int. J. Mol. Sci., 2019, 20, 4711.
[http://dx.doi.org/10.3390/ijms20194711]
[131]
Dong, Y.; Song, N.; Wang, J.; Shi, L.; Zhang, Z.; Du, J. Driver gene alterations in malignant progression of gastric cancer. Front. Oncol., 2022, 12, 920207.
[http://dx.doi.org/10.3389/fonc.2022.920207] [PMID: 35903675]
[132]
Maleki, S.S.; Röcken, C. Chromosomal instability in gastric cancer biology. Neoplasia, 2017, 19(5), 412-420.
[http://dx.doi.org/10.1016/j.neo.2017.02.012] [PMID: 28431273]
[133]
Ambrosini, M.; Del Re, M.; Manca, P.; Hendifar, A.; Drilon, A.; Harada, G.; Ree, A.H.; Klempner, S.; Mælandsmo, G.M.; Flatmark, K.; Russnes, H.G.; Cleary, J.M.; Singh, H.; Sottotetti, E.; Martinetti, A.; Randon, G.; Sartore-Bianchi, A.; Capone, I.; Milione, M.; Di Bartolomeo, M.; Pietrantonio, F. ALK inhibitors in patients with ALK fusion-positive GI cancers: An international data set and a molecular case series. JCO Precis. Oncol., 2022, 6(6), e2200015.
[http://dx.doi.org/10.1200/PO.22.00015] [PMID: 35476549]
[134]
Sf, S. Amplification but not translocation of anaplastic lymphoma kinase is a frequent event in oesophageal cancer. Europ. J. Cancer, 2013, 49(8), 1876-81.
[http://dx.doi.org/10.1016/j.ejca.2013.02.005]
[135]
Bellini, A.; Pötschger, U.; Bernard, V.; Lapouble, E.; Baulande, S.; Ambros, P.F.; Auger, N.; Beiske, K.; Bernkopf, M.; Betts, D.R.; Bhalshankar, J.; Bown, N.; de Preter, K.; Clément, N.; Combaret, V.; Font de Mora, J.; George, S.L.; Jiménez, I.; Jeison, M.; Marques, B.; Martinsson, T.; Mazzocco, K.; Morini, M.; Mühlethaler-Mottet, A.; Noguera, R.; Pierron, G.; Rossing, M.; Taschner-Mandl, S.; Van Roy, N.; Vicha, A.; Chesler, L.; Balwierz, W.; Castel, V.; Elliott, M.; Kogner, P.; Laureys, G.; Luksch, R.; Malis, J.; Popovic-Beck, M.; Ash, S.; Delattre, O.; Valteau-Couanet, D.; Tweddle, D.A.; Ladenstein, R.; Schleiermacher, G. Frequency and prognostic impact of ALK amplifications and mutations in the european neuroblastoma Study Group (SIOPEN) high-risk neuroblastoma Trial (HR-NBL1). J. Clin. Oncol., 2021, 39(30), 3377-3390.
[http://dx.doi.org/10.1200/JCO.21.00086] [PMID: 34115544]
[136]
Bresler, S.C.; Weiser, D.A.; Huwe, P.J.; Park, J.H.; Krytska, K.; Ryles, H.; Laudenslager, M.; Rappaport, E.F.; Wood, A.C.; McGrady, P.W.; Hogarty, M.D.; London, W.B.; Radhakrishnan, R.; Lemmon, M.A.; Mossé, Y.P. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 2014, 26(5), 682-694.
[http://dx.doi.org/10.1016/j.ccell.2014.09.019] [PMID: 25517749]
[137]
Montavon, G.; Jauquier, N.; Coulon, A.; Peuchmaur, M.; Flahaut, M.; Bourloud, K.B.; Yan, P.; Delattre, O.; Sommer, L.; Joseph, J.M.; Janoueix-Lerosey, I.; Gross, N.; Mühlethaler-Mottet, A. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget, 2014, 5(12), 4452-4466.
[http://dx.doi.org/10.18632/oncotarget.2036] [PMID: 24947326]
[138]
Zhang, B.; Tavaré, J.M.; Ellis, L.; Roth, R.A. The regulatory role of known tyrosine autophosphorylation sites of the insulin receptor kinase domain. An assessment by replacement with neutral and negatively charged amino acids. J. Biol. Chem., 1991, 266(2), 990-996.
[http://dx.doi.org/10.1016/S0021-9258(17)35272-9] [PMID: 1846000]
[139]
Ming Yau, N.; Fong, A.; Leung, H.; Verhoeft, K.; Lim, Q.; Lam, W.; Kei Wong, I.; Yan Lui, V. A pan-cancer review of ALK mutations: Implications for carcinogenesis and therapy. Curr. Cancer Drug Targets, 2015, 15(4), 327-336.
[http://dx.doi.org/10.2174/1568009615666150225123712] [PMID: 25714698]
[140]
Ogawa, S.; Takita, J.; Sanada, M.; Hayashi, Y. Oncogenic mutations of ALK in neuroblastoma. Cancer Sci., 2011, 102(2), 302-308.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01825.x] [PMID: 21205076]
[141]
Janoueix-Lerosey, I.; Lequin, D.; Brugières, L.; Ribeiro, A.; de Pontual, L.; Combaret, V.; Raynal, V.; Puisieux, A.; Schleiermacher, G.; Pierron, G.; Valteau-Couanet, D.; Frebourg, T.; Michon, J.; Lyonnet, S.; Amiel, J.; Delattre, O. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 2008, 455(7215), 967-970.
[http://dx.doi.org/10.1038/nature07398] [PMID: 18923523]
[142]
George, R.E.; Sanda, T.; Hanna, M.; Fröhling, S.; Ii, W.L.; Zhang, J.; Ahn, Y.; Zhou, W.; London, W.B.; McGrady, P.; Xue, L.; Zozulya, S.; Gregor, V.E.; Webb, T.R.; Gray, N.S.; Gilliland, D.G.; Diller, L.; Greulich, H.; Morris, S.W.; Meyerson, M.; Look, A.T. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature, 2008, 455(7215), 975-978.
[http://dx.doi.org/10.1038/nature07397] [PMID: 18923525]
[143]
Pan, Y.; Deng, C.; Qiu, Z.; Cao, C.; Wu, F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol., 2021, 11, 713530.
[144]
Sharma, G.; Mota, I.; Mologni, L.; Patrucco, E.; Gambacorti-Passerini, C.; Chiarle, R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers, 2018, 10(3), 62.
[http://dx.doi.org/10.3390/cancers10030062] [PMID: 29495603]
[145]
Childress, M.A.; Himmelberg, S.M.; Chen, H.; Deng, W.; Davies, M.A.; Lovly, C.M. ALK fusion partners impact response to ALK inhibition: Differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol. Cancer Res., 2018, 16(11), 1724-1736.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0171] [PMID: 30002191]
[146]
Shu, Y.; Zhang, W.; Hou, Q.; Zhao, L.; Zhang, S.; Zhou, J.; Song, X.; Zhang, Y.; Jiang, D.; Chen, X.; Wang, P.; Xia, X.; Liao, F.; Yin, D.; Chen, X.; Zhou, X.; Zhang, D.; Yin, S.; Yang, K.; Liu, J.; Fu, L.; Zhang, L.; Wang, Y.; Zhang, J.; An, Y.; Cheng, H.; Zheng, B.; Sun, H.; Zhao, Y.; Wang, Y.; Xie, D.; Ouyang, L.; Wang, P.; Zhang, W.; Qiu, M.; Fu, X.; Dai, L.; He, G.; Yang, H.; Cheng, W.; Yang, L.; Liu, B.; Li, W.; Dong, B.; Zhou, Z.; Wei, Y.; Peng, Y.; Xu, H.; Hu, J. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat. Commun., 2018, 9(1), 2447.
[http://dx.doi.org/10.1038/s41467-018-04907-0] [PMID: 29961079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy