Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Medical Image Fusion Based on Local Saliency Energy and Multi-scale Fractal Dimension

Author(s): Yaoyong Zhou, Xiaoliang Zhu*, Panyun Zhou, Zhenwei Xu, Tianliang Liu, Wangjie Li and Renxian Ge

Volume 20, 2024

Published on: 27 February, 2024

Article ID: e15734056273589 Pages: 18

DOI: 10.2174/0115734056273589231226052622

open_access

Open Access Journals Promotions 2
Abstract

Background: At present, there are some problems in multimodal medical image fusion, such as texture detail loss, leading to edge contour blurring and image energy loss, leading to contrast reduction.

Objective: To solve these problems and obtain higher-quality fusion images, this study proposes an image fusion method based on local saliency energy and multi-scale fractal dimension.

Methods: First, by using a non-subsampled contourlet transform, the medical image was divided into 4 layers of high-pass subbands and 1 layer of low-pass subband. Second, in order to fuse the high-pass subbands of layers 2 to 4, the fusion rules based on a multi-scale morphological gradient and an activity measure were used as external stimuli in pulse coupled neural network. Third, a fusion rule based on the improved multi-scale fractal dimension and new local saliency energy was proposed, respectively, for the low-pass subband and the 1st closest to the low-pass subband. Layerhigh pass sub-bands were fused. Lastly, the fused image was created by performing the inverse non-subsampled contourlet transform on the fused sub-bands.

Results: On three multimodal medical image datasets, the proposed method was compared with 7 other fusion methods using 5 common objective evaluation metrics.

Conclusion: Experiments showed that this method can protect the contrast and edge of fusion image well and has strong competitiveness in both subjective and objective evaluation.

Keywords: Image fusion, Local saliency energy, Multi-scale fractal dimension, Non-subsampled contourlet transform, Pulse coupled neural network, Phase consistency.


© 2024 Bentham Science Publishers | Privacy Policy