Review Article

Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System

Author(s): Namish Manchanda, Harish Vishkarma, Muskan Goyal, Saurabh Shah, Paras Famta, Sushama Talegaonkar* and Saurabh Srivastava*

Volume 25, Issue 4, 2024

Published on: 22 February, 2024

Page: [278 - 300] Pages: 23

DOI: 10.2174/0113894501285598240216065627

Price: $65

Abstract

Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.

Keywords: Surface functionalization, lipid nanoparticles, ligands, targeted delivery, theranostics, PEGylation.

« Previous
Graphical Abstract
[1]
Khodabandehloo H, Zahednasab H, Hafez AA. Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Prev 2016; 9(2): e3966.
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[2]
Lee K, Mishra R, Kim T. Review of micro/nanofluidic particle separation mechanisms: Toward combined multiple physical fields for nanoparticles. Sens Actuators A Phys 2023; 363: 114688.
[http://dx.doi.org/10.1016/j.sna.2023.114688]
[3]
Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 1976; 65(12): 1763-6.
[4]
Eroğlu C, Sinani G, Ulker Z. Current state of lipid nanoparticles (SLN and NLC) for skin applications. Curr Pharm Des 2023; 29(21): 1632-44.
[http://dx.doi.org/10.2174/1381612829666230803111120] [PMID: 37534479]
[5]
Varghese J. Use of nanotechnology in medical science: A review. AIP Conf Proc 2023; 2839(1): 80004.
[http://dx.doi.org/10.1063/5.0167675]
[6]
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D. Nanoparticle assembly: From self-organization to controlled micropatterning for enhanced functionalities. Small 2023; 20(6): e2306394.
[http://dx.doi.org/10.1002/smll.202306394]
[7]
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320(320): 180-200.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.035] [PMID: 31978444]
[8]
Nyabadza A, McCarthy É, Makhesana M, et al. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv Colloid Interface Sci 2023; 321: 103010.
[http://dx.doi.org/10.1016/j.cis.2023.103010] [PMID: 37804661]
[9]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[10]
Montiel Schneider MG, Martín MJ, Otarola J, et al. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022; 14(1): 204.
[http://dx.doi.org/10.3390/pharmaceutics14010204] [PMID: 35057099]
[11]
Yang P, Ren J, Yang L. Nanoparticles in the new era of cardiovascular therapeutics: Challenges and opportunities. Int J Mol Sci 2023; 24(6): 5205.
[http://dx.doi.org/10.3390/ijms24065205] [PMID: 36982284]
[12]
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149(19): 17607-34.
[http://dx.doi.org/10.1007/s00432-023-05429-z] [PMID: 37776358]
[13]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[14]
Bonilla L, Esteruelas G, Ettcheto M, et al. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2022; 7(S1): S121-32.
[http://dx.doi.org/10.1002/epi4.12567] [PMID: 34862851]
[15]
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: Nanomedicine as an approach for finding new hope in old medicines. Nano Express 2021; 2(2): 022007.
[16]
Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019; 11(5): 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[17]
Ali M. What function of nanoparticles is the primary factor for their hyper-toxicity? Adv Colloid Interface Sci 2023; 314: 102881.
[http://dx.doi.org/10.1016/j.cis.2023.102881] [PMID: 36934512]
[18]
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6(12): 1078-94.
[http://dx.doi.org/10.1038/s41578-021-00358-0] [PMID: 34394960]
[19]
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int J Mol Sci 2023; 24(7): 6199.
[http://dx.doi.org/10.3390/ijms24076199] [PMID: 37047172]
[20]
Zamani P, Mashreghi M, Rezazade Bazaz M, et al. Characterization of stability, safety and immunogenicity of the mRNA lipid nanoparticle vaccine Iribovax® against COVID-19 in nonhuman primates. J Control Release 2023; 360: 316-34.
[http://dx.doi.org/10.1016/j.jconrel.2023.06.025] [PMID: 37355212]
[21]
Khan MS, Baskoy SA, Yang C, et al. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Adv 2023; 5(7): 1853-69.
[http://dx.doi.org/10.1039/D2NA00795A] [PMID: 36998671]
[22]
Bukhari SI, Imam SS, Ahmad MZ, et al. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges. Pharmaceutics 2021; 13(6): 840.
[http://dx.doi.org/10.3390/pharmaceutics13060840] [PMID: 34200251]
[23]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[24]
Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier 2018; pp. 47-76.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00003-9]
[25]
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101(4): 998-1011.
[http://dx.doi.org/10.1111/cbdd.14201] [PMID: 36597375]
[26]
Masarweh AH, da Silva D, Poley M, Zinger A, Goldman E, Krinsky N. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control release 2019; 307: 331-41.
[27]
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7: 5577-91.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[28]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[29]
Riaz M, Riaz M, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[30]
Fulton MD, Missaoui NW. Liposomes in cancer therapy: How did we start and where are we now. Int J Mol Sci 2023; 24(7): 6615.
[http://dx.doi.org/10.3390/ijms24076615] [PMID: 37047585]
[31]
Schwarz C, Mehnert W, Lucks JS, Müller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 1994; 30(1): 83-96.
[http://dx.doi.org/10.1016/0168-3659(94)90047-7]
[32]
Cortés GJ, Hernández VM, Rafael D, Abasolo I, Andrade F. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment. Pharmaceutics 2023; 15(3): 831.
[http://dx.doi.org/10.3390/pharmaceutics15030831] [PMID: 36986692]
[33]
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023; 15(6): 1593.
[http://dx.doi.org/10.3390/pharmaceutics15061593] [PMID: 37376042]
[34]
Magro DR, Ornaghi F, Cambianica I, et al. ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. J Control Release 2017; 249: 103-10.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.039] [PMID: 28153761]
[35]
Mancini G, Lopes RM, Clemente P, et al. Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. Eur J Lipid Sci Technol 2015; 117(12): 1947-59.
[http://dx.doi.org/10.1002/ejlt.201400431]
[36]
Souto EB, Almeida AJ, Müller RH. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: Structure, protection and skin effects. J Biomed Nanotechnol 2007; 3(4): 317-31.
[http://dx.doi.org/10.1166/jbn.2007.049] [PMID: 20055078]
[37]
Gaspar DP, Faria V, Gonçalves LMD, Taboada P, López RC, Almeida AJ. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int J Pharm 2016; 497(1-2): 199-209.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[38]
Gaspar DP, Gaspar MM, Eleutério CV, et al. Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol Pharm 2017; 14(9): 2977-90.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00169] [PMID: 28809501]
[39]
Silva AC, Mira GE, García ML, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 2011; 86(1): 158-65.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.035] [PMID: 21530187]
[40]
Olbrich C, Gessner A, Kayser O, Müller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002; 10(5): 387-96.
[http://dx.doi.org/10.1080/1061186021000001832] [PMID: 12442809]
[41]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[42]
Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 2012; 23(1): 13-27. [Internet].
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[43]
Shrivastava P, Gautam L, Jain A, Vishwakarma N, Vyas S, Vyas SP. Lipid drug conjugates for improved therapeutic benefits. Curr Pharm Des 2020; 26(27): 3187-202.
[http://dx.doi.org/10.2174/1381612826666200311124003] [PMID: 32160838]
[44]
Pinelli F, Perale G, Rossi F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels 2020; 6(1): 6.
[http://dx.doi.org/10.3390/gels6010006] [PMID: 32033057]
[45]
Fracassi A, Cao J, Sugata YN, et al. LDL-mimetic lipid nanoparticles prepared by surface KAT ligation for in vivo MRI of atherosclerosis. Chem Sci 2020; 11(44): 11998-2008.
[http://dx.doi.org/10.1039/D0SC04106H] [PMID: 34094421]
[46]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[47]
Oriana S, Fracassi A, Archer C, Yamakoshi Y. Covalent surface modification of lipid nanoparticles by rapid potassium acyltrifluoroborate amide ligation. Langmuir 2018; 34(44): 13244-51.
[http://dx.doi.org/10.1021/acs.langmuir.8b01945] [PMID: 30343580]
[48]
Dal Magro R, Albertini B, Beretta S, et al. Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomedicine 2018; 14(2): 429-38.
[http://dx.doi.org/10.1016/j.nano.2017.11.008] [PMID: 29157979]
[49]
Morales SC, Zhang L, Langer R, Farokhzad OC. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009; 30(12): 2231-40.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.005] [PMID: 19167749]
[50]
Lamoot A, Uvyn A, Kasmi S, De Geest BG. Covalent cell surface conjugation of nanoparticles by a combination of metabolic labeling and click chemistry. Angew Chem Int Ed 2021; 60(12): 6320-5.
[http://dx.doi.org/10.1002/anie.202015625] [PMID: 33368900]
[51]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[52]
Nell KM, Fontenot SA, Carter TG, et al. Non-covalent functionalization of high-surface area nanomaterials: A new class of sorbent materials. Environ Sci Nano 2016; 3(1): 138-45.
[http://dx.doi.org/10.1039/C5EN00170F]
[53]
Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5(1): 25-44.
[http://dx.doi.org/10.1517/17425247.5.1.25] [PMID: 18095927]
[54]
Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: An emerging field. Toxicol Pathol 2008; 36(1): 21-9.
[http://dx.doi.org/10.1177/0192623307310960] [PMID: 18337218]
[55]
Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev 2013; 65(1): 21-3.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[56]
Najafi M, Morsali A, Bozorgmehr MR. DFT study of SiO2 nanoparticles as a drug delivery system: Structural and mechanistic aspects. Struct Chem 2019; 30(3): 715-26.
[http://dx.doi.org/10.1007/s11224-018-1227-9]
[57]
Naghavi F, Morsali A, Bozorgmehr MR. Molecular mechanism study of surface functionalization of silica nanoparticle as an anticancer drug nanocarrier in aqueous solution. J Mol Liq 2019; 282: 392-400.
[http://dx.doi.org/10.1016/j.molliq.2019.03.040]
[58]
Bouchareb S, Doufnoune R, Riahi F, Silini CH, Belbahri L. Non-covalent functionalization of graphene oxide using self-assembly of silver-triphenylphosphine for bactericidal formulations. Mater Chem Phys 2020; 243: 122598.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122598]
[59]
Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004; 93(8): 1980-92.
[http://dx.doi.org/10.1002/jps.20098] [PMID: 15236448]
[60]
Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front Mol Biosci 2020; 7(November): 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[61]
Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology 2015; 26(49): 495103.
[http://dx.doi.org/10.1088/0957-4484/26/49/495103] [PMID: 26574295]
[62]
Tian J, Zhang H, Liu M, et al. A bioinspired strategy for surface modification of silica nanoparticles. Appl Surf Sci 2015; 357: 1996-2003.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.171]
[63]
Guyon L, Groo AC, Fréon MA. Relevant physicochemical methods to functionalize, purify, and characterize surface-decorated lipid-based nanocarriers. Mol Pharm 2021; 18(1): 44-64.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00857] [PMID: 33244972]
[64]
Petersen AL, Henriksen JR, Binderup T, et al. In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging 2016; 43(5): 941-52.
[http://dx.doi.org/10.1007/s00259-015-3272-6] [PMID: 26646780]
[65]
Anarjan SF. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct & Nano-Obj 2019; 19: 100370.
[http://dx.doi.org/10.1016/j.nanoso.2019.100370]
[66]
Krook MA, Reeser JW, Ernst G, et al. Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer 2021; 124(5): 880-92.
[http://dx.doi.org/10.1038/s41416-020-01157-0] [PMID: 33268819]
[67]
Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296: 102509.
[http://dx.doi.org/10.1016/j.cis.2021.102509] [PMID: 34455211]
[68]
Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B. Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci 2017; 4(3): 1600279.
[http://dx.doi.org/10.1002/advs.201600279] [PMID: 28331783]
[69]
Thirugnanasambandan T. Functionalization on sensing surfaces for efficient biomolecular capturing. Nanobiosensors for Biomolecular Targeting. Elsevier 2019; pp. 51-94.
[70]
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 2017; 25(1): 1-16.
[http://dx.doi.org/10.3109/1061186X.2016.1172589] [PMID: 27030377]
[71]
Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021; 11(3): 1218-35.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[72]
Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci 2018; 114: 103-13.
[http://dx.doi.org/10.1016/j.ejps.2017.12.006] [PMID: 29229273]
[73]
Patil TS, Deshpande AS. Nanostructured lipid carrier-mediated lung targeted drug delivery system to enhance the safety and bioavailability of clofazimine. Drug Dev Ind Pharm 2021; 47(3): 385-93.
[http://dx.doi.org/10.1080/03639045.2021.1892743] [PMID: 33646851]
[74]
Sultana F, Neog MK, Rasool M. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf B Biointerfaces 2017; 155: 349-65.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.046] [PMID: 28454064]
[75]
Lai C, Duan S, Ye F, et al. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Theranostics 2018; 8(6): 1723-39.
[http://dx.doi.org/10.7150/thno.22056] [PMID: 29556352]
[76]
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16(9): 915-36.
[http://dx.doi.org/10.1080/17425247.2019.1645115] [PMID: 31387408]
[77]
Liu X, Liu H, Wang S, Liu J. Hyaluronic acid derivative-modified nano-structured lipid carrier for cancer targeting and therapy. J Zhejiang Univ Sci B 2020; 21(7): 571-80.
[http://dx.doi.org/10.1631/jzus.B1900624] [PMID: 32633111]
[78]
Sun S, Guan Q, Shang E, et al. Hyaluronic acid-coated nanostructured lipid carriers for loading multiple traditional Chinese medicine components for liver cancer treatment. Pak J Pharm Sci 2020; 33(1): 109-19.
[PMID: 32122838]
[79]
Campos J, Godoy VM, Haidar ZS. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: a proof-of-concept study in breast cancer cells. Nanomedicine 2017; 12(5): 473-90.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
[80]
Wang J, Liu D, Guan S, et al. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr Polym 2020; 235: 115981.
[http://dx.doi.org/10.1016/j.carbpol.2020.115981] [PMID: 32122511]
[81]
Yang Y, Qiu D, Liu Y, Chao L. Topical anesthetic analgesic therapy using the combination of ropivacaine and dexmedetomidine: Hyaluronic acid modified long-acting nanostructured lipid carriers containing a skin penetration enhancer. Drug Des Devel Ther 2019; 13: 3307-19.
[http://dx.doi.org/10.2147/DDDT.S211443] [PMID: 31571832]
[82]
Mahtab A, Rabbani SA, Neupane YR, et al. Facile functionalization of teriflunomide-loaded nanoliposomes with chondroitin sulphate for the treatment of rheumatoid arthritis. Carbohydr Polym 2020; 250(May): 116926.
[http://dx.doi.org/10.1016/j.carbpol.2020.116926] [PMID: 33049840]
[83]
Jain A, Mishra SK, Vuddanda PR, Singh SK, Singh R, Singh S. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomedicine 2014; 10(5): e1031-40.
[http://dx.doi.org/10.1016/j.nano.2014.01.008] [PMID: 24512762]
[84]
Luo J, Gong T, Ma L. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr Polym 2020; 249: 116887.
[http://dx.doi.org/10.1016/j.carbpol.2020.116887] [PMID: 32933700]
[85]
Dossou AS, Mantsch ME, Kapic A, et al. Mannose-coated reconstituted lipoprotein nanoparticles for the targeting of tumor-associated macrophages: Optimization, characterization, and in vitro evaluation of effectiveness. Pharmaceutics 2023; 15(6): 1685.
[86]
Tan X, Hao Y, Ma N, et al. M6P-modified solid lipid nanoparticles loaded with matrine for the treatment of fibrotic liver. Drug Deliv 2023; 30(1): 2219432.
[http://dx.doi.org/10.1080/10717544.2023.2219432] [PMID: 37300371]
[87]
Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Fabrication and evaluation of mannose decorated curcumin loaded nanostructured lipid carriers for hepatocyte targeting: in vivo hepatoprotective activity in Wistar rats. Curr Res Pharmacol drug Discov 2022; 3: 100083.
[88]
Pandey SS, Shaikh FI, Gupta AR, Vaidya RJ. Mannosylated solid lipid nanocarriers of chrysin to target gastric cancer: Optimization and cell line study. Curr Drug Deliv 2021; 18(10): 1574-84.
[http://dx.doi.org/10.2174/1567201818666210319142206] [PMID: 33745434]
[89]
Zhao Y, Wang H, Yang Y, et al. Mannose-modified liposome co-delivery of human papillomavirus type 16 E7 peptide and CpG oligodeoxynucleotide adjuvant enhances antitumor activity against established large TC-1 grafted tumors in mice. Int J Nanomedicine 2020; 15: 9571-86.
[http://dx.doi.org/10.2147/IJN.S275670] [PMID: 33293808]
[90]
Shrivastava P, Gautam L, Sharma R, Dube D, Vyas S, Vyas SP. Dual antitubercular drug loaded liposomes for macrophage targeting: Development, characterisation, ex-vivo and in vivo assessment. J Microencapsul 2021; 38(2): 108-23.
[http://dx.doi.org/10.1080/02652048.2020.1857861] [PMID: 33267623]
[91]
Truzzi E, Nascimento TL, Iannuccelli V, Costantino L, Lima EM, Leo E. In vivo biodistribution of respirable solid lipid nanoparticles surface-decorated with a mannose-based surfactant: A promising tool for pulmonary tuberculosis treatment? Nanomater 2020; 10(3): 568.
[http://dx.doi.org/10.3390/nano10030568]
[92]
Vieira ACC, Magalhães J, Rocha S, et al. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine 2017; 12(24): 2721-36.
[http://dx.doi.org/10.2217/nnm-2017-0248] [PMID: 29119867]
[93]
Vieira ACC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif cells, nanomed Biotechnol 2018; 46(S1): 653-63.
[http://dx.doi.org/10.1080/21691401.2018.1434186]
[94]
Khosravi M, Rahimi MH, Doroud D, Mirsamadi ES, Mirjalali H, Zali MR. In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis. Front Cell Infect Microbiol 2020; 10: 33.
[http://dx.doi.org/10.3389/fcimb.2020.00033] [PMID: 32117807]
[95]
Tian B, Liu R, Chen S, et al. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int J Nanomedicine 2017; 12: 1127-41.
[http://dx.doi.org/10.2147/IJN.S123290] [PMID: 28260882]
[96]
Sinhmar GK, Shah NN, Rawal SU, Chokshi N V, Khatri HN, Patel BM. Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artif Cells Nanomed Biotechnol 2018; 46(S2): 565-78.
[http://dx.doi.org/10.1080/21691401.2018.1463232]
[97]
Neog MK, Rasool M. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur J Pharm Biopharm 2018; 133: 162-75.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.010]
[98]
Sultana F, Neog MK, Rasool M. Targeted delivery of morin, a dietary bioflavanol encapsulated mannosylated liposomes to the macrophages of adjuvant-induced arthritis rats inhibits inflammatory immune response and osteoclastogenesis. Eur J Pharm Biopharm 2017; 115: 229-42.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.009]
[99]
Japiassu BK, Fay F, Marengo A, et al. Hyaluronic acid-conjugated liposomes loaded with dexamethasone: A promising approach for the treatment of inflammatory diseases. Int J Pharm 2023; 639: 122946.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122946] [PMID: 37044230]
[100]
Suksiriworapong J, Pongprasert N, Bunsupa S, Taresco V, Wongrakpanich A. CD44-targeted lipid polymer hybrid nanoparticles enhance anti-breast cancer effect of cordyceps militaris extracts. Pharmaceutics 2023; 15(6): 1771.
[101]
Raut S, Gargate N, Ugale S, Gujar KN, Kapare H. Formulation and development of hyaluronic acid based gel with ketoconazole-loaded nanostructured lipid carriers in fungal infection. Pharm Nanotechnol 2023; 11(4): 344-54.
[http://dx.doi.org/10.2174/2211738511666230310103017] [PMID: 36896905]
[102]
Sabancı AU, Alkan EP, Mujde C, et al. Nanobubble ozone stored in hyaluronic acid decorated liposomes: Antibacterial, anti-SARS-CoV-2 effect and biocompatibility tests. Int J Nanomedicine 2022; 17(17): 351-79.
[http://dx.doi.org/10.2147/IJN.S328090] [PMID: 35115773]
[103]
Daya BSM, Paul V, Awad NS, Al Sawaftah NM, Al Sayah MH, Husseini GA. Targeting breast cancer using hyaluronic acid-conjugated liposomes triggered with ultrasound. J Biomed Nanotechnol 2021; 17(1): 90-9.
[http://dx.doi.org/10.1166/jbn.2021.3012] [PMID: 33653499]
[104]
Wang F, Li L, Liu B, Chen Z, Li C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed Pharmacother 2017; 86: 595-604.
[http://dx.doi.org/10.1016/j.biopha.2016.12.041] [PMID: 28027535]
[105]
Sun S, Shang E, Ju A, et al. Tumor-targeted hyaluronic acid-mPEG modified nanostructured lipid carriers for cantharidin delivery: An in vivo and in vitro study. Fitoterapia 2021; 155: 105033.
[http://dx.doi.org/10.1016/j.fitote.2021.105033] [PMID: 34517057]
[106]
Li Y, Ruan S, Wang Z, Feng N, Zhang Y. Hyaluronic acid coating reduces the leakage of melittin encapsulated in liposomes and increases targeted delivery to melanoma cells. Pharmaceutics 2021; 13(8): 1235.
[http://dx.doi.org/10.3390/pharmaceutics13081235] [PMID: 34452196]
[107]
Pandolfi L, Marengo A, Japiassu KB, et al. Liposomes loaded with everolimus and coated with hyaluronic acid: A promising approach for lung fibrosis. Int J Mol Sci 2021; 22(14): 7743.
[http://dx.doi.org/10.3390/ijms22147743] [PMID: 34299359]
[108]
de Oliveira JK, Ueda-Nakamura T, Corrêa AG, et al. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Mater Sci Eng C 2020; 110: 110720.
[http://dx.doi.org/10.1016/j.msec.2020.110720] [PMID: 32204033]
[109]
Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv 2018; 25(1): 716-22.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
[110]
Mahajan K, Rojekar S, Desai D, et al. Layer-by-layer assembled nanostructured lipid carriers for CD-44 receptor–based targeting in HIV-infected macrophages for efficient HIV-1 inhibition. AAPS PharmSciTech 2021; 22(5): 171.
[http://dx.doi.org/10.1208/s12249-021-01981-4] [PMID: 34100170]
[111]
Aly S, El-Kamel AH, Sheta E, El-Habashy SE. Chondroitin/lactoferrin-dual functionalized pterostilbene-solid lipid nanoparticles as targeted breast cancer therapy. Int J Pharm 2023; 642: 123163.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123163] [PMID: 37353100]
[112]
Zhang Z, Ma L, Luo J. Chondroitin sulfate-modified liposomes for targeted co-delivery of doxorubicin and retinoic acid to suppress breast cancer lung metastasis. Pharmaceutics 2021; 13(3): 1-21.
[113]
Okubo M, Miyazaki M, Yuba E, Harada A. Chondroitin sulfate-based ph-sensitive polymer-modified liposomes for intracellular antigen delivery and induction of cancer immunity. Bioconjug Chem 2019; 30(5): 1518-29.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00221] [PMID: 30945847]
[114]
Barrera BYA, Hause G, Menzel M, et al. Engineering osteogenic microenvironments by combination of multilayers from collagen type I and chondroitin sulfate with novel cationic liposomes. Mater Today Bio 2020; 7: 100071.
[http://dx.doi.org/10.1016/j.mtbio.2020.100071] [PMID: 32924006]
[115]
Cao D, Li H, Luo Y, Feng N, Ci T. Heparin modified photosensitizer-loaded liposomes for tumor treatment and alleviating metastasis in phototherapy. Int J Biol Macromol 2021; 168: 526-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.043] [PMID: 33310104]
[116]
Chen Y, Du Q, Zou Y, et al. Co-delivery of doxorubicin and epacadostat via heparin coated pH-sensitive liposomes to suppress the lung metastasis of melanoma. Int J Pharm 2020; 584: 119446.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119446] [PMID: 32439586]
[117]
Muga JO, Gathirwa JW, Tukulula M, Jura WGZO. In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles. Malar J 2018; 17(1): 133.
[http://dx.doi.org/10.1186/s12936-018-2302-9] [PMID: 29606144]
[118]
Truzzi E, Bongio C, Sacchetti F, et al. Self-assembled lipid nanoparticles for oral delivery of heparin-coated iron oxide nanoparticles for theranostic purposes. Molecules 2017; 22(6): 963.
[http://dx.doi.org/10.3390/molecules22060963] [PMID: 28598368]
[119]
Rong L, Qin SY, Zhang C, et al. Biomedical applications of functional peptides in nano-systems. Mater Today Chem 2018; 9: 91-102.
[http://dx.doi.org/10.1016/j.mtchem.2018.06.001]
[120]
Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 2018; 80: 94-124.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.12.001]
[121]
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem Soc Rev 2018; 47(10): 3574-620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[122]
Jeong W, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide–nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg 2018; 5(1): 38.
[http://dx.doi.org/10.1186/s40580-018-0170-1] [PMID: 30539365]
[123]
Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019; 7(2): 461-71.
[http://dx.doi.org/10.1039/C8BM01340C] [PMID: 30656305]
[124]
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41: 107547.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107547] [PMID: 32294494]
[125]
Martín I, Teixidó M, Giralt E. Building cell selectivity into cpp-mediated strategies. Pharmaceuticals 2010; 3(5): 1456-90.
[http://dx.doi.org/10.3390/ph3051456] [PMID: 27713313]
[126]
Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci 2020; 21(7): 2536.
[http://dx.doi.org/10.3390/ijms21072536] [PMID: 32268473]
[127]
Kogan MJ, Olmedo I, Hosta L, R Guerrero A, Cruz LJ, Albericio F. Peptides and metallic nanoparticles for biomedical applications. Nanomedicine 2007; 2(3): 287-306.
[http://dx.doi.org/10.2217/17435889.2.3.287] [PMID: 17716175]
[128]
Hernando S, Herran E, Figueiro-Silva J, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for parkinson’s disease. Mol Neurobiol 2018; 55(1): 145-55.
[http://dx.doi.org/10.1007/s12035-017-0728-7] [PMID: 28866799]
[129]
Tan A, Hong L, Du JD, Boyd BJ. Self-assembled nanostructured lipid systems: Is there a link between structure and cytotoxicity? Adv Sci 2019; 6(3): 1801223.
[http://dx.doi.org/10.1002/advs.201801223] [PMID: 30775224]
[130]
Yokoo H, Oba M, Uchida S. Cell-penetrating peptides: Emerging tools for mRNA delivery. Pharmaceutics 2021; 14(1): 78.
[http://dx.doi.org/10.3390/pharmaceutics14010078] [PMID: 35056974]
[131]
Silva S, Almeida A, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 2019; 9(1): 22.
[http://dx.doi.org/10.3390/biom9010022] [PMID: 30634689]
[132]
Imperlini E, Massaro F, Buonocore F. Antimicrobial peptides against bacterial pathogens: Innovative delivery nanosystems for pharmaceutical applications. Antibiotics 2023; 12(1): 184.
[133]
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics 2021; 13(11): 1795.
[http://dx.doi.org/10.3390/pharmaceutics13111795] [PMID: 34834210]
[134]
Rima M, Rima M, Fajloun Z, Sabatier J-M, Bechinger B, Naas T. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021; 10(9): 1095.
[http://dx.doi.org/10.3390/antibiotics10091095]
[135]
Kawano Y, Jordan O, Hanawa T, Borchard G, Patrulea V. Are antimicrobial peptide dendrimers an escape from ESKAPE? Adv Wound Care 2020; 9(7): 378-95.
[http://dx.doi.org/10.1089/wound.2019.1113] [PMID: 32320368]
[136]
Sowers A, Wang G, Xing M, Li B. Advances in antimicrobial peptide discovery via machine learning and delivery via nanotechnology. Microorganisms 2023; 11(5): 1129.
[http://dx.doi.org/10.3390/microorganisms11051129] [PMID: 37317103]
[137]
Makowski M, Silva ÍC, do Amaral PC, Gonçalves S, Santos NC. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics 2019; 11(11): 588.
[http://dx.doi.org/10.3390/pharmaceutics11110588] [PMID: 31717337]
[138]
Drayton M, Kizhakkedathu JN, Straus SK. Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules 2020; 25(13): 3048.
[http://dx.doi.org/10.3390/molecules25133048] [PMID: 32635310]
[139]
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured antimicrobial peptides: Crucial steps of overcoming the bottleneck for clinics. Front Microbiol 2021; 12: 710199.
[http://dx.doi.org/10.3389/fmicb.2021.710199] [PMID: 34475862]
[140]
Dang W, Xing B, Jia X, et al. Subcellular organelle-targeted nanostructured lipid carriers for the treatment of metastatic breast cancer. Int J Nanomedicine 2023; 18: 3047-68.
[http://dx.doi.org/10.2147/IJN.S413680] [PMID: 37312934]
[141]
Kadari A, Pooja D, Gora RH, Gudem S, Kolapalli VRM, Kulhari H. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm 2018; 132: 168-79.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.012]
[142]
Asai T, Tsuzuku T, Takahashi S, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014; 444(4): 599-604.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.107] [PMID: 24486551]
[143]
Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm 2018; 130: 39-47.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.020]
[144]
Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces 2018; 10(11): 9315-24.
[http://dx.doi.org/10.1021/acsami.8b00507] [PMID: 29484890]
[145]
Zhang Z-H, Zhang Y-L, Zhou J-P, Lv H-X. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int J Nanomedicine 2012; 7: 3333-9.
[PMID: 22848162]
[146]
Pinilla CMB, Brandelli A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov Food Sci Emerg Technol 2016; 36: 287-93.
[http://dx.doi.org/10.1016/j.ifset.2016.07.017]
[147]
Lo YL, Tu WC. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells. Chem Biol Interact 2015; 242: 13-23.
[http://dx.doi.org/10.1016/j.cbi.2015.08.023] [PMID: 26335193]
[148]
Carneiro SP, Carvalho KV, de Soares OARD, et al. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf B Biointerfaces 2019; 175: 306-13.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.003] [PMID: 30553206]
[149]
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98: 748-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.078] [PMID: 28111295]
[150]
Sedighi M, Mahmoudi Z, Ghasempour A, et al. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354: 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.058] [PMID: 36599396]
[151]
Khayrani AC, Mahmud H, Oo AKK, et al. Targeting ovarian cancer cells overexpressing CD44 with immunoliposomes encapsulating glycosylated paclitaxel. Int J Mol Sci 2019; 20(5): 1042.
[http://dx.doi.org/10.3390/ijms20051042] [PMID: 30818864]
[152]
Gautam N, Vishkarma H, Dutta D, Goyal M, Siddiqui L, Talegaonkar S. Functionalized lipidic nanoparticles: Smartly engineered lipidic theragnostic nanomedicines. In: Jain K, Jain NK, Eds. Multifunctional And Targeted Theranostic Nanomedicines: Formulation, Design And Applications. Singapore: Springer Nature Singapore 2023; pp. 119-44.
[http://dx.doi.org/10.1007/978-981-99-0538-6_6]
[153]
Marques AC, Costa PC, Velho S, Amaral MH. Lipid nanoparticles functionalized with antibodies for anticancer drug therapy. Pharmaceutics 2023; 15(1): 216.
[http://dx.doi.org/10.3390/pharmaceutics15010216] [PMID: 36678845]
[154]
Gao J, Li X, Jia S, Zeng H, Zheng B. Structural characterization and antioxidant activity of a glycoprotein isolated from shiitake mushrooms. Food Biosci 2023; 53: 102608.
[http://dx.doi.org/10.1016/j.fbio.2023.102608]
[155]
Shahinian S, Silvius JR. A novel strategy affords high-yield coupling of antibody Fab′ fragments to liposomes. Biochim Biophys Acta Biomembr 1995; 1239(2): 157-67.
[http://dx.doi.org/10.1016/0005-2736(95)00145-S] [PMID: 7488620]
[156]
Kamat MS, Tolman GL, Brown JM. Formulation development of an antifibrin monoclonal antibody radiopharmaceutical. Pharm Biotechnol 2002; 9: 343-64.
[http://dx.doi.org/10.1007/0-306-47452-2_9] [PMID: 8914198]
[157]
Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Investig 2017; 47(3): 203-27.
[http://dx.doi.org/10.1007/s40005-017-0329-5]
[158]
Ohradanova-Repic A, Nogueira E, Hartl I, et al. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine 2018; 14(1): 123-30.
[http://dx.doi.org/10.1016/j.nano.2017.09.003] [PMID: 28939491]
[159]
Gandomi N, Varshochian R, Atyabi F, et al. Solid lipid nanoparticles surface modified with anti-Contactin-2 or anti-neurofascin for brain-targeted delivery of medicines. Pharm Dev Technol 2017; 22(3): 426-35.
[http://dx.doi.org/10.1080/10837450.2016.1226901] [PMID: 27575893]
[160]
Loureiro J, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017; 22(2): 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[161]
Katakowski JA, Mukherjee G, Wilner SE, et al. Delivery of siRNAs to dendritic cells using DEC205-targeted lipid nanoparticles to inhibit immune responses. Mol Ther 2016; 24(1): 146-55.
[http://dx.doi.org/10.1038/mt.2015.175] [PMID: 26412590]
[162]
Abdolahpour S, Toliyat T, Omidfar K, et al. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artif Cells Nanomed Biotechnol 2018; 46(1): 89-94.
[http://dx.doi.org/10.1080/21691401.2017.1296847] [PMID: 28296511]
[163]
Lee Y, Song S, Yang S, Kim J, Moon Y, Shim N. Photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes to promote PD-L1 multivalent binding for effective immune checkpoint blockade therapy. Acta Pharmaceutica Sinica B. In Press 2023.
[164]
Singh M, Ghose T, Mezei M, Belitsky P. Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer Lett 1991; 56(2): 97-102.
[http://dx.doi.org/10.1016/0304-3835(91)90082-S] [PMID: 1998948]
[165]
Wu Y, Song X, Kebebe D, et al. Brain targeting of baicalin and salvianolic acid B combination by OX26 functionalized nanostructured lipid carriers. Int J Pharm 2019; 571: 118754.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118754] [PMID: 31604118]
[166]
Shi C, Cao H, He W, Gao F, Liu Y, Yin L. Novel drug delivery liposomes targeted with a fully human anti-VEGF165 monoclonal antibody show superior antitumor efficacy in vivo. Biomed Pharmacother 2015; 73: 48-57.
[http://dx.doi.org/10.1016/j.biopha.2015.05.008] [PMID: 26211582]
[167]
Merino M, Contreras A, Casares N, et al. A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomedicine 2019; 17: 13-25.
[http://dx.doi.org/10.1016/j.nano.2018.12.016] [PMID: 30654186]
[168]
Souto EB, Doktorovova S, Campos JR, Lopes MP, Silva AM. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci 2019; 128: 27-35.
[http://dx.doi.org/10.1016/j.ejps.2018.11.022] [PMID: 30472221]
[169]
Gholizadeh S, Dolman EM, Wieriks R, Sparidans RW, Hennink WE, Kok RJ. Anti-GD2 immunoliposomes for targeted delivery of the survivin inhibitor sepantronium bromide (YM155) to neuroblastoma tumor cells. Pharm Res 2018; 35(4): 85.
[http://dx.doi.org/10.1007/s11095-018-2373-x] [PMID: 29516187]
[170]
Nandi U, Onyesom I, Douroumis D. Transferrin conjugated stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol 2021; 66: 102900.
[http://dx.doi.org/10.1016/j.jddst.2021.102900]
[171]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta, Gen Subj 2012; 1820(3): 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[172]
Yang A, Sun Z, Liu R, et al. Transferrin-conjugated erianin-loaded liposomes suppress the growth of liver cancer by modulating oxidative stress. Front Oncol 2021; 11: 727605.
[http://dx.doi.org/10.3389/fonc.2021.727605] [PMID: 34513705]
[173]
Nasiri M, Azadi A, Zanjani MRS, Hamidi M. Indinavir-loaded nanostructured lipid carriers to brain drug delivery: Optimization, characterization and neuropharmacokinetic evaluation. Curr Drug Deliv 2019; 16(4): 341-54.
[http://dx.doi.org/10.2174/1567201816666190123124429] [PMID: 30674257]
[174]
Sharma S, Tyagi A, Dang S. Nose to brain delivery of transferrin conjugated PLGA nanoparticles for clonidine. Int J Biol Macromol 2023; 252: 126471.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126471] [PMID: 37619678]
[175]
AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep 2021; 11(1): 11589.
[http://dx.doi.org/10.1038/s41598-021-90349-6] [PMID: 34078930]
[176]
dos Rodrigues SB, Kanekiyo T, Singh J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine 2020; 28: 102225.
[http://dx.doi.org/10.1016/j.nano.2020.102225] [PMID: 32485318]
[177]
Khonsari F, Heydari M, Dinarvand R, Sharifzadeh M, Atyabi F. Correction: Brain targeted delivery of rapamycin using transferrin decorated nanostructured lipid carriers. Bioimpacts 2022; 12(1): 21-32.
[http://dx.doi.org/10.34172/bi.2022.27678] [PMID: 35087713]
[178]
Kuo YC, Wang LJ. Transferrin-grafted catanionic solid lipid nanoparticles for targeting delivery of saquinavir to the brain. J Taiwan Inst Chem Eng 2014; 45(3): 755-63.
[http://dx.doi.org/10.1016/j.jtice.2013.09.024]
[179]
Asasutjarit R, Managit C, Phanaksri T, Treesuppharat W, Fuongfuchat A. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharm 2020; 577: 119084.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119084] [PMID: 31988033]
[180]
Fernandes AM. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf A Physicochem 2021; 611: 125806.
[181]
Akanda M, Getti G, Nandi U, Mithu MS, Douroumis D. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int J Pharm 2021; 599: 120416.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120416] [PMID: 33647403]
[182]
Arduino I, Iacobazzi RM, Riganti C, et al. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer’s disease. Int J Pharm 2020; 591: 120011.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120011] [PMID: 33115695]
[183]
Kuo YC, Lou YI, Rajesh R, Chen CL. Multiple-component dual-phase solid lipid nanoparticles with conjugated transferrin for formulating antioxidants and nerve growth factor against neuronal apoptosis. J Taiwan Inst Chem Eng 2020; 110: 140-52.
[http://dx.doi.org/10.1016/j.jtice.2020.02.017]
[184]
Onodera R, Morioka S, Unida S, Motoyama K, Tahara K, Takeuchi H. Design and evaluation of folate-modified liposomes for pulmonary administration in lung cancer therapy. Eur J Pharm Sci 2022; 168: 106081.
[http://dx.doi.org/10.1016/j.ejps.2021.106081] [PMID: 34818571]
[185]
Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 2018; 9(4): 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[186]
Xing L, Cheng H, Xu Q, Tan X. Encapsulation of STING agonist cGAMP with folic acid-conjugated liposomes significantly enhances antitumor pharmacodynamic effect. Cancer Biother Radiopharm 2021; 38(8): 543-57.
[PMID: 33719535]
[187]
Omar MM, Hasan OA, Zaki RM, Eleraky NE. Externally triggered novel rapid-release sonosensitive folate-modified liposomes for gemcitabine: Development and characteristics. Int J Nanomedicine 2021; 16: 683-700.
[http://dx.doi.org/10.2147/IJN.S266676] [PMID: 33536754]
[188]
Unnam S, Panduragaiah VM, Sidramappa MA, Eswara MBR. Gemcitabine-loaded folic acid tagged liposomes: Improved pharmacokinetic and biodistribution profile. Curr Drug Deliv 2018; 16(2): 111-22.
[http://dx.doi.org/10.2174/1567201815666181024112252] [PMID: 30360740]
[189]
Pradhan A, Mishra S, Basu SM, et al. Targeted nanoformulation of C1 inhibits the growth of KB spheroids and cancer stem cell-enriched MCF-7 mammospheres. Colloids Surf B Biointerfaces 2021; 202: 111702.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111702] [PMID: 33780906]
[190]
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res 2019; 9(1): 366-78.
[http://dx.doi.org/10.1007/s13346-018-0589-2] [PMID: 30280318]
[191]
Zhou X, Huang D, Wang R, et al. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv 2021; 28(1): 2447-59.
[http://dx.doi.org/10.1080/10717544.2021.2000679] [PMID: 34766540]
[192]
Granja A, Neves AR, Sousa CT, Pinheiro M, Reis S. EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon 2019; 5(7): e02020.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02020] [PMID: 31317081]
[193]
Alyasiri FJ, Ghobeh M, Tabrizi MH. Preparation and characterization of allicin-loaded solid lipid nanoparticles surface-functionalized with folic acid-bonded chitosan: in vitro anticancer and antioxidant activities. Front Biosci 2023; 28(7): 135.
[194]
De A, Roychowdhury P, Bhuyan NR, Ko YT, Singh SK. Folic acid functionalized diallyl trisulfide-solid lipid nanoparticles for targeting triple negative breast cancer. Molecules 2023; 28(3): 1393.
[195]
Guo R, Zhang X, Yan D, et al. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci 2022; 10(2): 499-513.
[http://dx.doi.org/10.1039/D1BM01520F] [PMID: 34904598]
[196]
Zewail M. Folic acid decorated chitosan-coated solid lipid nanoparticles for the oral treatment of rheumatoid arthritis. Ther Deliv 2021; 12(4): 297-310.
[http://dx.doi.org/10.4155/tde-2020-0123] [PMID: 33726498]
[197]
Li D, Yang X, Li B, et al. Lidocaine liposome modified with folic acid suppresses the proliferation and motility of glioma cells via targeting the PI3K/AKT pathway. Exp Ther Med 2021; 22(3): 1025.
[http://dx.doi.org/10.3892/etm.2021.10457] [PMID: 34373711]
[198]
Nwahara N, Abrahams G, Prinsloo E, Nyokong T. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36: 102527.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102527]
[199]
Pan H, Shi H, Fu P, Shi P, Yang J. Liposomal dendritic cell vaccine in breast cancer immunotherapy. ACS Omega 2021; 6(5): 3991-8.
[http://dx.doi.org/10.1021/acsomega.0c05924] [PMID: 33585776]
[200]
Ridha AA, Kashanian S, Azandaryani AH, Rafipour R, Mahdavian E. New folate-modified human serum albumin conjugated to cationic lipid carriers for dual targeting of mitoxantrone against breast cancer. Curr Pharm Biotechnol 2020; 21(4): 305-15.
[http://dx.doi.org/10.2174/1389201020666191114113022] [PMID: 31729941]
[201]
Ma Z, Pi J, Zhang Y, et al. Enhanced anticancer efficacy of dual drug-loaded self-assembled nanostructured lipid carriers mediated by ph-responsive folic acid and human-derived cell penetrating peptide dnp2. Pharmaceutics 2021; 13(5): 600.
[http://dx.doi.org/10.3390/pharmaceutics13050600] [PMID: 33921919]
[202]
Rajpoot K, Jain SK. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J Microencapsul 2020; 37(8): 609-23.
[http://dx.doi.org/10.1080/02652048.2020.1829141] [PMID: 32985297]
[203]
Rajpoot K, Jain SK. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J Microencapsul 2019; 36(7): 659-76.
[http://dx.doi.org/10.1080/02652048.2019.1665723] [PMID: 31495238]
[204]
Zhang Q, Zhao J, Hu H, et al. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 2019; 569: 118595.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118595] [PMID: 31394189]
[205]
Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2020; 127(200): 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[206]
Yu S, Bi X, Yang L, et al. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol 2019; 15(6): 1135-48.
[http://dx.doi.org/10.1166/jbn.2019.2751] [PMID: 31072423]
[207]
Li F, Mei H, Gao Y, Xie X, Nie H, Li T. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017; 145: 56-71.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.030]
[208]
Yu Z, Chen F, Qi X, et al. Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med 2018; 15(2): 1247-56.
[PMID: 29399118]
[209]
Zeng Y, Yu Z, He Y, et al. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol Sin 2018; 39(2): 261-74.
[http://dx.doi.org/10.1038/aps.2017.166] [PMID: 29388568]
[210]
Saify Nabiabad H, Amini M, Demirdas S. Specific delivering of RNAi using Spike’s aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: A strong anti-Covid drug in a clinical case study. Chem Biol Drug Des 2022; 99(2): 233-46.
[http://dx.doi.org/10.1111/cbdd.13978] [PMID: 34714580]
[211]
Husteden C, Barrera BYA, Tegtmeyer S, et al. Lipoplex-functionalized thin-film surface coating based on extracellular matrix components as local gene delivery system to control osteogenic stem cell differentiation. Adv Healthc Mater 2023; 12(5): 2201978.
[http://dx.doi.org/10.1002/adhm.202201978] [PMID: 36377486]
[212]
Lafi Z, Alshaer W, Hatmal MM, et al. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Advances 2021; 11(47): 29164-77.
[http://dx.doi.org/10.1039/D1RA05138E] [PMID: 35479561]
[213]
Jianghong L, Tingting M, Yingping Z, et al. Aptamer and peptide-modified lipid-based drug delivery systems in application of combined sequential therapy of hepatocellular carcinoma. ACS Biomater Sci Eng 2021; 7(6): 2558-68.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00357] [PMID: 34047187]
[214]
Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci 2020; 21(23): 9123.
[http://dx.doi.org/10.3390/ijms21239123] [PMID: 33266216]
[215]
Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers 2019; 11(9): 1515.
[http://dx.doi.org/10.3390/polym11091515] [PMID: 31540426]
[216]
Liang T, Yao Z, Ding J, Min Q, Jiang L, Zhu JJ. Cascaded aptamers-governed multistage drug-delivery system based on biodegradable envelope-type nanovehicle for targeted therapy of HER2-overexpressing breast cancer. ACS Appl Mater Interfaces 2018; 10(40): 34050-9.
[http://dx.doi.org/10.1021/acsami.8b14009] [PMID: 30207689]
[217]
Li T, Zhang Y, Meng YP, Bo LS, Ke WB. miR-542-3p appended sorafenib/all-trans retinoic acid (ATRA)-loaded lipid nanoparticles to enhance the anticancer efficacy in gastric cancers. Pharm Res 2017; 34(12): 2710-9.
[http://dx.doi.org/10.1007/s11095-017-2202-7] [PMID: 29181687]
[218]
Chuang CH, Wu PC, Tsai TH, et al. Development of pH-sensitive cationic PEGylated solid lipid nanoparticles for selective cancer-targeted therapy. J Biomed Nanotechnol 2017; 13(2): 192-203.
[http://dx.doi.org/10.1166/jbn.2017.2338] [PMID: 29377649]
[219]
Bruun J, Larsen TB, Jølck RI, et al. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine 2015; 10: 5995-6008.
[PMID: 26451106]
[220]
Kim CH, Sa CK, Goh MS, et al. pH-sensitive PEGylation of RIPL peptide-conjugated nanostructured lipid carriers: design and in vitro evaluation. Int J Nanomedicine 2018; 13: 6661-75.
[http://dx.doi.org/10.2147/IJN.S184355] [PMID: 30425481]
[221]
Zhao Y, Ren W, Zhong T, Zhang S, Huang D, Guo Y. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release 2016; 222: 56-66.
[222]
Hua L, Wang Z, Zhao L, et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018; 8(18): 5088-105.
[http://dx.doi.org/10.7150/thno.26225] [PMID: 30429888]
[223]
Liu H, Xie Y, Zhang Y, et al. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials 2017; 121: 130-43.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.001] [PMID: 28088075]
[224]
Jung SH, Na K, Lee SA, Cho SH, Seong H, Shin BC. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging. Nanoscale Res Lett 2012; 7(1): 462.
[http://dx.doi.org/10.1186/1556-276X-7-462] [PMID: 22901317]
[225]
Jain A, Jain SK. Stimuli-responsive smart liposomes in cancer targeting. Curr Drug Targets 2018; 19(3): 259-70.
[PMID: 26853324]
[226]
Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer. AAPS PharmSciTech 2023; 24(5): 123.
[http://dx.doi.org/10.1208/s12249-023-02583-y] [PMID: 37226039]
[227]
Alam SB, Wang F, Qian H, Kulka M. Apolipoprotein C3 facilitates internalization of cationic lipid nanoparticles into bone marrow-derived mouse mast cells. Sci Rep 2023; 13(1): 431.
[http://dx.doi.org/10.1038/s41598-022-25737-7] [PMID: 36624108]
[228]
Wang L. Preparation and in vitro evaluation of an acidic environment-responsive liposome for paclitaxel tumor targeting. Asian J Pharm Sci 2017; 12(5): 470-7.
[http://dx.doi.org/10.1016/j.ajps.2017.05.008] [PMID: 32104360]
[229]
Li M, Shi K, Tang X, et al. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur J Pharm Sci 2018; 124: 240-8.
[http://dx.doi.org/10.1016/j.ejps.2018.07.055] [PMID: 30071282]
[230]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[231]
Świętek M, Panchuk R, Skorokhyd N, et al. Magnetic temperature-sensitive solid-lipid particles for targeting and killing tumor cells. Front Chem 2020; 8: 205.
[http://dx.doi.org/10.3389/fchem.2020.00205] [PMID: 32328477]
[232]
Shi D, Mi G, Shen Y, Webster TJ. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood–brain barrier. Nanoscale 2019; 11(32): 15057-71.
[http://dx.doi.org/10.1039/C9NR03931G] [PMID: 31369016]
[233]
Zong Z, Hua L, Wang Z, et al. Self-assembled angiopep-2 modified lipid-poly (hypoxic radiosensitized polyprodrug) nanoparticles delivery TMZ for glioma synergistic TMZ and RT therapy. Drug Deliv 2019; 26(1): 34-44.
[http://dx.doi.org/10.1080/10717544.2018.1534897] [PMID: 30744436]
[234]
McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 2009; 30(23-24): 3986-95.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.012] [PMID: 19427688]
[235]
Chi Y, Yin X, Sun K, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release 2017; 261: 113-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.027] [PMID: 28666726]
[236]
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021; 9(4): 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy