Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats

Author(s): Xiaojing Zhang, Hongfang Mu, Yan Zhong, Rong Wang* and Wenbin Li*

Volume 25, Issue 1, 2024

Published on: 21 February, 2024

Page: [54 - 62] Pages: 9

DOI: 10.2174/0113892002277930240201101256

Price: $65

Open Access Journals Promotions 2
Abstract

Background: High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear.

Objective: The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats.

Method: Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT.

Results: Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values.

Conclusion: High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.

Keywords: High altitude environment, pharmacokinetic, pharmacodynamic, metabolism, anticoagulant effet, warfarin.

Graphical Abstract
[1]
Zhu, J.; Duan, Y.; Duo, D.; Yang, J.; Bai, X.; Liu, G.; Wang, Q.; Wang, X.; Qu, N.; Zhou, Y.; Li, X. High-altitude hypoxia influences the activities of the drug-metabolizing enzyme CYP3A1 and the pharmacokinetics of four cardiovascular system drugs. Pharmaceuticals, 2022, 15(10), 1303.
[http://dx.doi.org/10.3390/ph15101303] [PMID: 36297415]
[2]
Zhao, A.; Li, W.; Wang, R. The influences and mechanisms of high-altitude hypoxia exposure on drug metabolism. Curr. Drug Metab., 2023, 24(3), 152-161.
[http://dx.doi.org/10.2174/1389200224666221228115526] [PMID: 36579391]
[3]
Frisancho, A.R. Functional adaptation to high altitude hypoxia. Science, 1975, 187(4174), 313-319.
[http://dx.doi.org/10.1126/science.1089311] [PMID: 1089311]
[4]
Wang, R.; Sun, Y.; Yin, Q.; Xie, H.; Li, W.; Wang, C.; Guo, J.; Hao, Y.; Tao, R.; Jia, Z. The effects of metronidazole on Cytochrome P450 Activity and Expression in rats after acute exposure to high altitude of 4300 m. Biomed. Pharmacother., 2017, 85, 296-302.
[http://dx.doi.org/10.1016/j.biopha.2016.11.024] [PMID: 27899252]
[5]
Zhu, J.; Yang, J.; Nian, Y.; Liu, G.; Duan, Y.; Bai, X.; Wang, Q.; Zhou, Y.; Wang, X.; Qu, N.; Li, X. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia. Front. Pharmacol., 2021, 12, 692349.
[http://dx.doi.org/10.3389/fphar.2021.692349] [PMID: 34220516]
[6]
Gola, S.; Gupta, A.; Keshri, G.K.; Nath, M.; Velpandian, T. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J. Pharm. Biomed. Anal., 2016, 121, 114-122.
[http://dx.doi.org/10.1016/j.jpba.2016.01.018] [PMID: 26799979]
[7]
Wang, P.; Li, M.; Guo, Z.; Wang, W.; Li, X.; Yan, N.; Liu, T. Comparison of the pharmacokinetics of Crocin-I in normoxic and hypoxic rats. Toxicol. Appl. Pharmacol., 2022, 447, 116088.
[http://dx.doi.org/10.1016/j.taap.2022.116088] [PMID: 35644267]
[8]
Sun, Y.; Zhang, J.; Zhao, A.; Li, W.; Feng, Q.; Wang, R. Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia. PLoS One, 2020, 15(3), e0230197.
[http://dx.doi.org/10.1371/journal.pone.0230197] [PMID: 32163488]
[9]
Wittkowsky, A.K. Warfarin and other coumarin derivatives: Pharmacokinetics, pharmacodynamics, and drug interactions. Semin. Vasc. Med., 2003, 3(3), 221-230.
[http://dx.doi.org/10.1055/s-2003-44457] [PMID: 15199454]
[10]
Wang, Z.; Xiang, X.; Liu, S.; Tang, Z.; Sun, H.; Parvez, M.; Ghim, J.L.; Shin, J.G.; Cai, W. A physiologically based pharmacokinetic/pharmacodynamic modeling approach for drug-drug interaction evaluation of warfarin enantiomers with sorafenib. Drug Metab. Pharmacokinet., 2021, 39, 100362.
[http://dx.doi.org/10.1016/j.dmpk.2020.10.001] [PMID: 34242938]
[11]
Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; Fauchier, L.; Filippatos, G.; Kalman, J.M.; La Meir, M.; Lane, D.A.; Lebeau, J.P.; Lettino, M.; Lip, G.Y.H.; Pinto, F.J.; Thomas, G.N.; Valgimigli, M.; Van Gelder, I.C.; Van Putte, B.P.; Watkins, C.L.; Kirchhof, P.; Kühne, M.; Aboyans, V.; Ahlsson, A.; Balsam, P.; Bauersachs, J.; Benussi, S.; Brandes, A.; Braunschweig, F.; Camm, A.J.; Capodanno, D.; Casadei, B.; Conen, D.; Crijns, H.J.G.M.; Delgado, V.; Dobrev, D.; Drexel, H.; Eckardt, L.; Fitzsimons, D.; Folliguet, T.; Gale, C.P.; Gorenek, B.; Haeusler, K.G.; Heidbuchel, H.; Iung, B.; Katus, H.A.; Kotecha, D.; Landmesser, U.; Leclercq, C.; Lewis, B.S.; Mascherbauer, J.; Merino, J.L.; Merkely, B.; Mont, L.; Mueller, C.; Nagy, K.V.; Oldgren, J.; Pavlović, N.; Pedretti, R.F.E.; Petersen, S.E.; Piccini, J.P.; Popescu, B.A.; Pürerfellner, H.; Richter, D.J.; Roffi, M.; Rubboli, A.; Scherr, D.; Schnabel, R.B.; Simpson, I.A.; Shlyakhto, E.; Sinner, M.F.; Steffel, J.; Sousa-Uva, M.; Suwalski, P.; Svetlosak, M.; Touyz, R.M.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G-A.; Dilaveris, P.E.; Fauchier, L.; Filippatos, G.; Kalman, J.M.; La Meir, M.; Lane, D.A.; Lebeau, J-P.; Lettino, M.; Lip, G.Y.H.; Pinto, F.J.; Neil Thomas, G.; Valgimigli, M.; Van Gelder, I.C.; Watkins, C.L.; Delassi, T.; Sisakian, H.S.; Scherr, D.; Chasnoits, A.; Pauw, M.D.; Smajić, E.; Shalganov, T.; Avraamides, P.; Kautzner, J.; Gerdes, C.; Alaziz, A.A.; Kampus, P.; Raatikainen, P.; Boveda, S.; Papiashvili, G.; Eckardt, L.; Vassilikos, V.; Csanádi, Z.; Arnar, D.O.; Galvin, J.; Barsheshet, A.; Caldarola, P.; Rakisheva, A.; Bytyçi, I.; Kerimkulova, A.; Kalejs, O.; Njeim, M.; Puodziukynas, A.; Groben, L.; Sammut, M.A.; Grosu, A.; Boskovic, A.; Moustaghfir, A.; Groot, N.; Poposka, L.; Anfinsen, O-G.; Mitkowski, P.P.; Cavaco, D.M.; Siliste, C.; Mikhaylov, E.N.; Bertelli, L.; Kojic, D.; Hatala, R.; Fras, Z.; Arribas, F.; Juhlin, T.; Sticherling, C.; Abid, L.; Atar, I.; Sychov, O.; Bates, M.G.D.; Zakirov, N.U. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J., 2021, 42(5), 373-498.
[http://dx.doi.org/10.1093/eurheartj/ehaa612] [PMID: 32860505]
[12]
Ge, B.; Zhang, Z.; Lam, T.T.; Zuo, Z. Puerarin offsets the anticoagulation effect of warfarin in rats by inducing rCyps, upregulating vitamin K epoxide reductase and inhibiting thrombomodulin. Biopharm. Drug Dispos., 2017, 38(1), 33-49.
[http://dx.doi.org/10.1002/bdd.2054] [PMID: 27925234]
[13]
Guo, C.; Xue, S.; Zheng, X.; Lu, Y.; Zhao, D.; Chen, X.; Li, N. The effect of fenofibric acid on the pharmacokinetics and pharmacodynamics of warfarin in rats. Xenobiotica, 2018, 48(4), 400-406.
[http://dx.doi.org/10.1080/00498254.2017.1306760] [PMID: 28287050]
[14]
Pirmohamed, M.; Kamali, F.; Daly, A.K.; Wadelius, M. Oral anticoagulation: A critique of recent advances and controversies. Trends Pharmacol. Sci., 2015, 36(3), 153-163.
[http://dx.doi.org/10.1016/j.tips.2015.01.003] [PMID: 25698605]
[15]
Wadhera, R.K.; Russell, C.E.; Piazza, G. Cardiology patient page. Warfarin versus novel oral anticoagulants: How to choose? Circulation, 2014, 130(22), e191-e193.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010426] [PMID: 25421049]
[16]
Li, H.; Zhang, C.; Fan, R.; Sun, H.; Xie, H.; Luo, J.; Wang, Y.; Lv, H.; Tang, T. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. J. Ethnopharmacol., 2016, 193, 117-124.
[http://dx.doi.org/10.1016/j.jep.2016.08.005] [PMID: 27497635]
[17]
Jensen, B.P.; Chin, P.K.L.; Roberts, R.L.; Begg, E.J. Influence of adult age on the total and free clearance and protein binding of (R)- and (S)-warfarin. Br. J. Clin. Pharmacol., 2012, 74(5), 797-805.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04259.x] [PMID: 22380743]
[18]
Tan, C.S.S.; Lee, S.W.H. Warfarin and food, herbal or dietary supplement interactions: A systematic review. Br. J. Clin. Pharmacol., 2021, 87(2), 352-374.
[http://dx.doi.org/10.1111/bcp.14404] [PMID: 32478963]
[19]
Zayed, A.; Babaresh, W.M.; Darweesh, R.S.; El-Elimat, T. Simultaneous determination of warfarin and 7-hydroxywarfarin in rat plasma by HPLC-FLD. Acta Pharm., 2020, 70(3), 343-357.
[http://dx.doi.org/10.2478/acph-2020-0025] [PMID: 32074068]
[20]
Flora, D.R.; Rettie, A.E.; Brundage, R.C.; Tracy, T.S. CYP2C9 genotype dependent warfarin pharmacokinetics: Impact of CYP2C9 genotype on R- and S-warfarin and their oxidative metabolites. J. Clin. Pharmacol., 2017, 57(3), 382-393.
[http://dx.doi.org/10.1002/jcph.813] [PMID: 27539372]
[21]
Waring, R.H. Cytochrome P450: Genotype to phenotype. Xenobiotica, 2020, 50(1), 9-18.
[http://dx.doi.org/10.1080/00498254.2019.1648911] [PMID: 31411087]
[22]
Isvoran, A.; Louet, M.; Vladoiu, D.L.; Craciun, D.; Loriot, M.A.; Villoutreix, B.O.; Miteva, M.A. Pharmacogenomics of the cytochrome P450 2C family: Impacts of amino acid variations on drug metabolism. Drug Discov. Today, 2017, 22(2), 366-376.
[http://dx.doi.org/10.1016/j.drudis.2016.09.015] [PMID: 27693711]
[23]
Shah, R.R.; Gaedigk, A.; LLerena, A.; Eichelbaum, M.; Stingl, J.; Smith, R.L. CYP450 genotype and pharmacogenetic association studies: A critical appraisal. Pharmacogenomics, 2016, 17(3), 259-275.
[http://dx.doi.org/10.2217/pgs.15.172] [PMID: 26780308]
[24]
Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther., 1997, 73(1), 67-74.
[http://dx.doi.org/10.1016/S0163-7258(96)00140-4] [PMID: 9014207]
[25]
Pouncey, D.L.; Hartman, J.H.; Moore, P.C.; Dillinger, D.J.; Dickerson, K.W.; Sappington, D.R.; Smith, E.S., III; Boysen, G.; Miller, G.P. Novel isomeric metabolite profiles correlate with warfarin metabolism phenotype during maintenance dosing in a pilot study of 29 patients. Blood Coagul. Fibrinolysis, 2018, 29(7), 602-612.
[http://dx.doi.org/10.1097/MBC.0000000000000752] [PMID: 30334816]
[26]
Locatelli, I.; Kmetec, V.; Mrhar, A.; Grabnar, I. Determination of warfarin enantiomers and hydroxylated metabolites in human blood plasma by liquid chromatography with achiral and chiral separation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 818(2), 191-198.
[http://dx.doi.org/10.1016/j.jchromb.2004.12.024] [PMID: 15734158]
[27]
Miller, G.P.; Jones, D.R.; Sullivan, S.Z.; Mazur, A.; Owen, S.N.; Mitchell, N.C.; Radominska-Pandya, A.; Moran, J.H. Assessing cytochrome P450 and UDP-glucuronosyltransferase contributions to warfarin metabolism in humans. Chem. Res. Toxicol., 2009, 22(7), 1239-1245.
[http://dx.doi.org/10.1021/tx900031z] [PMID: 19408964]
[28]
Klein, K.; Gueorguieva, I.; Aarons, L. Population pharmacokinetic modelling of S-warfarin to evaluate the design of drug–drug interaction studies for CYP2C9. J. Pharmacokinet. Pharmacodyn., 2012, 39(2), 147-160.
[http://dx.doi.org/10.1007/s10928-011-9235-z] [PMID: 22270321]
[29]
Zhang, X.B.; Chen, X.Y.; Chiu, K.Y.; He, X.Z.; Wang, J.M.; Zeng, H.Q.; Zeng, Y. Intermittent hypoxia inhibits hepatic CYP1a2 expression and delays aminophylline metabolism. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/2782702] [PMID: 35529917]
[30]
Duan, Y.; Zhu, J.; Yang, J.; Liu, G.; Bai, X.; Qu, N.; Wang, X.; Li, X. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR. Front. Pharmacol., 2020, 11, 574176.
[http://dx.doi.org/10.3389/fphar.2020.574176] [PMID: 33041817]
[31]
Zhang, J.; Zhu, J.; Yao, X.; Duan, Y.; Zhou, X.; Yang, M.; Li, X. Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese han volunteers living at low altitude and in native han and tibetan chinese volunteers living at high altitude. Pharmacology, 2016, 97(3-4), 107-113.
[http://dx.doi.org/10.1159/000443332] [PMID: 26730802]
[32]
Fradette, C.; Batonga, J.; Teng, S.; Piquette-Miller, M.; du Souich, P. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab. Dispos., 2007, 35(5), 765-771.
[http://dx.doi.org/10.1124/dmd.106.013508] [PMID: 17303624]
[33]
Liu, Y.; Liu, S.; Shi, Y.; Qin, M.; Sun, Z.; Liu, G. Effects of safflower injection on the pharmacodynamics and pharmacokinetics of warfarin in rats. Xenobiotica, 2018, 48(8), 818-823.
[http://dx.doi.org/10.1080/00498254.2017.1361051] [PMID: 28783419]
[34]
Zhou, L.; Wang, S.; Zhang, Z.; Lau, S.B.; Fung, P.K.; Leung, C.P.; Zuo, Z. Pharmacokinetic and pharmacodynamic interaction of Danshen–Gegen extract with warfarin and aspirin. J. Ethnopharmacol., 2012, 143(2), 648-655.
[http://dx.doi.org/10.1016/j.jep.2012.07.029] [PMID: 22867637]
[35]
Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol., 2004, 57(5), 592-599.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02051.x] [PMID: 15089812]
[36]
Zhang, X.; Zhang, X.; Wang, X.; Zhao, M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharm. Biol., 2018, 56(1), 351-356.
[http://dx.doi.org/10.1080/13880209.2018.1478431] [PMID: 29983086]
[37]
Yamamoto, T.; Hasegawa, K.; Onoda, M.; Tanaka, K. Pharmacokinetic and pharmacodynamic analyses of drug-drug interactions between iguratimod and warfarin. Yakugaku Zasshi, 2016, 136(6), 905-911.
[http://dx.doi.org/10.1248/yakushi.15-00261] [PMID: 27252068]
[38]
AlSawy, N.S.; ElKady, E.F.; Mostafa, E.A. AGREE and ESA for greenness assessment of a novel validated RP-HPLC method for simultaneous determination of aspirin, warfarin and clopidogrel in rat plasma: Application to pharmacokinetic study of the possible interaction between the three drugs. J. Chromatogr. Sci., 2023, bmad078.
[http://dx.doi.org/10.1093/chromsci/bmad078] [PMID: 37791421]
[39]
Norwood, D.A.; Parke, C.K.; Rappa, L.R. A comprehensive review of potential warfarin-fruit interactions. J. Pharm. Pract., 2015, 28(6), 561-571.
[http://dx.doi.org/10.1177/0897190014544823] [PMID: 25112306]
[40]
Zhang, X.; Liu, T.; Zhang, Y.; Liu, F.; Li, H.; Fang, D.; Wang, C.; Sun, H.; Xie, S. Elucidation of the differences in cinobufotalin’s pharmacokinetics between normal and diethylnitrosamine-injured rats: The role of P-glycoprotein. Front. Pharmacol., 2019, 10, 521.
[http://dx.doi.org/10.3389/fphar.2019.00521] [PMID: 31156437]
[41]
Lin, C.; Wang, H.; Sun, H.; Xiao, C.; Xue, Y.; Liu, J.; Fu, T.; Wang, Y.; Dong, D.; Li, Z. Development and validation of an ultra-performance liquid chromatography–tandem mass spectrometry method for quantification of SR1001, an inverse agonist of retinoid-related orphan receptors, and its application to pharmacokinetic studies in streptozotocin-induced diabetic mice. J. Pharm. Biomed. Anal., 2017, 143, 94-100.
[http://dx.doi.org/10.1016/j.jpba.2017.05.022] [PMID: 28578255]
[42]
Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.M.; Pirmohamed, M.; Wadelius, M.; Klein, T.E.; Altman, R.B. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther., 2011, 90(4), 625-629.
[http://dx.doi.org/10.1038/clpt.2011.185] [PMID: 21900891]
[43]
Huang, S.M.; Lesko, L.J.; Williams, R.L. Assessment of the quality and quantity of drug-drug interaction studies in recent NDA submissions: study design and data analysis issues. J. Clin. Pharmacol., 1999, 39(10), 1006-1014.
[http://dx.doi.org/10.1177/00912709922011764] [PMID: 10516934]
[44]
Fekete, F.; Mangó, K.; Déri, M.; Incze, E.; Minus, A.; Monostory, K. Impact of genetic and non-genetic factors on hepatic CYP2C9 expression and activity in Hungarian subjects. Sci. Rep., 2021, 11(1), 17081.
[http://dx.doi.org/10.1038/s41598-021-96590-3] [PMID: 34429480]
[45]
Daly, A.; Rettie, A.; Fowler, D.; Miners, J. Pharmacogenomics of CYP2C9: Functional and clinical considerations. J. Pers. Med., 2017, 8(1), 1.
[http://dx.doi.org/10.3390/jpm8010001] [PMID: 29283396]
[46]
Cheng, S.; Flora, D.R.; Rettie, A.E.; Brundage, R.C.; Tracy, T.S. A physiological-based pharmacokinetic model embedded with a target-mediated drug disposition mechanism can characterize single-dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 Genotypes under Different Cotreatments. Drug Metab. Dispos., 2023, 51(2), 257-267.
[http://dx.doi.org/10.1124/dmd.122.001048] [PMID: 36379708]
[47]
Carlquist, J.F.; Horne, B.D.; Muhlestein, J.B.; Lappé, D.L.; Whiting, B.M.; Kolek, M.J.; Clarke, J.L.; James, B.C.; Anderson, J.L. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: A prospective study. J. Thromb. Thrombolysis, 2006, 22(3), 191-197.
[http://dx.doi.org/10.1007/s11239-006-9030-7] [PMID: 17111199]
[48]
Suroowan, S.; Mahomoodally, M.F. Herbal medicine of the 21st century: A focus on the chemistry, pharmacokinetics and toxicity of five widely advocated phytotherapies. Curr. Top. Med. Chem., 2019, 19(29), 2718-2738.
[http://dx.doi.org/10.2174/1568026619666191112121330] [PMID: 31721714]
[49]
Bai, X.; Yang, J.; Liu, G.; Zhu, J.; Wang, Q.; Gu, W.; La, L.; Li, X. Regulation of CYP450 and drug transporter mediated by gut microbiota under high-altitude hypoxia. Front. Pharmacol., 2022, 13, 977370.
[http://dx.doi.org/10.3389/fphar.2022.977370] [PMID: 36188572]
[50]
Li, X.; Wang, X.; Li, Y.; Yuan, M.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology, 2014, 93(1-2), 76-83.
[http://dx.doi.org/10.1159/000358128] [PMID: 24557547]
[51]
Sugawara, I. Expression and functions of P-glycoprotein (mdr1 gene product) in normal and malignant tissues. Acta Pathol. Jpn., 1990, 40(8), 545-553.
[http://dx.doi.org/10.1111/j.1440-1827.1990.tb01598.x.PMID:1978461] [PMID: 1978461]
[52]
Silva, V.; Gil-Martins, E.; Silva, B.; Rocha-Pereira, C.; Sousa, M.E.; Remião, F.; Silva, R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin. Drug Metab. Toxicol., 2021, 17(4), 441-482.
[http://dx.doi.org/10.1080/17425255.2021.1861247] [PMID: 33283552]
[53]
DuBuske, L.M. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf., 2005, 28(9), 789-801.
[http://dx.doi.org/10.2165/00002018-200528090-00004] [PMID: 16119972]
[54]
Wadelius, M.; Sörlin, K.; Wallerman, O.; Karlsson, J.; Yue, Q-Y.; Magnusson, P.K.E.; Wadelius, C.; Melhus, H. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J., 2004, 4(1), 40-48.
[http://dx.doi.org/10.1038/sj.tpj.6500220] [PMID: 14676821]
[55]
Kim, Y.; Smith, A.; Wu, A.H.B. C3435T polymorphism of MDR1 gene with warfarin resistance. Clin. Chim. Acta, 2013, 425, 34-36.
[http://dx.doi.org/10.1016/j.cca.2013.07.010] [PMID: 23872171]
[56]
Brewer, C.T.; Chen, T. PXR variants: The impact on drug metabolism and therapeutic responses. Acta Pharm. Sin. B, 2016, 6(5), 441-449.
[http://dx.doi.org/10.1016/j.apsb.2016.07.002] [PMID: 27709012]
[57]
Vazquez, S.R. Drug-drug interactions in an era of multiple anticoagulants: A focus on clinically relevant drug interactions. Blood, 2018, 132(21), 2230-2239.
[http://dx.doi.org/10.1182/blood-2018-06-848747] [PMID: 30463993]
[58]
Wieland, E.; Shipkova, M. Pharmacokinetic and pharmacodynamic drug monitoring of direct-acting oral anticoagulants: Where do we stand? Ther. Drug Monit., 2019, 41(2), 180-191.
[http://dx.doi.org/10.1097/FTD.0000000000000594] [PMID: 30883512]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy