Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Rapid Quantitation of Non-chromophoric Vigabatrin and Gabapentin by a Validated qNMR Method in Bulk Drug and Marketed Formulations

Author(s): Pooja Bedage, Archana Sahu and Inder Pal Singh*

Volume 20, Issue 2, 2024

Published on: 20 February, 2024

Page: [131 - 142] Pages: 12

DOI: 10.2174/0115734129283110240131044647

Abstract

Background: Vigabatrin and gabapentin, commonly used antiepileptic drugs in clinics, lack a UV active chromophore and, therefore, require cumbersome derivatization methods for analysis by HPLC using fluorescence detection. This study demonstrated the use of NMR for their quantitative determination in pure form and their pharmaceutical formulations.

Objectives: To develop a validated qNMR method for non-chromophoric drugs Vigabatrin and Gabapentin.

Methods: The signal of methine proton of vigabatrin at 3.67 ppm relative to the signal of maleic acid at 6.17 ppm and the methylene signal of gabapentin at 2.88 ppm relative to the signal of caffeine at 7.75 ppm was used for qNMR. The developed method was validated with respect to linearity, limits of detection and quantitation, accuracy, precision, specificity and solution state stability.

Results: Linearity range and r2 were found to be from 2.66 to 42.11 mg/mL and 0.9999. The limit of detection and quantification were 0.0129 mg/mL and 0.0391 mg/mL, respectively, for vigabatrin. This method was found to be linear (0.9998) and specific within the gabapentin concentration range from 1.07 to 34.24 mg/mL of D2O. The limits of detection and quantification were 0.0248 mg/mL and 0.0751 mg/mL, respectively.

Conclusion: Both methods were highly precise, with a calculated RSD of 0.60% and 0.76%, respectively. The robustness of the methods was revealed by changing pre and post-processing NMR parameters. The developed methods provide a simple and straight approach for the absolute determination of gabapentin and vigabatrin in bulk drugs and their marketed formulations without any pre-procedures.

Keywords: Vigabatrin, gabapentin, quantitative NMR, validation, assay, quality control.

Graphical Abstract
[1]
Engel, J., Jr Concepts of epilepsy. Epilepsia, 1995, 36(s1)(Suppl. 1), 23-29.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb01648.x] [PMID: 23057107]
[2]
Patil, VR; Sarode, VV; Chaudhari, YA; Patil, SG; Tadavi, SB; Patil, RS A concise review on analytical profile of Vigabatrin. World J. Adv. Res. Rev, 2023, 17(2), 61-67.
[3]
Goa, K.L.; Sorkin, E.M. Gabapentin. Drugs, 1993, 46(3), 409-427.
[http://dx.doi.org/10.2165/00003495-199346030-00007] [PMID: 7693432]
[4]
Magnus, L. Nonepileptic uses of gabapentin. Epilepsia, 1999, 40(s6)(Suppl. 6), S66-S72.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00936.x] [PMID: 10530686]
[5]
Johannessen, S.I.; Battino, D.; Berry, D.J.; Bialer, M.; Krämer, G.; Tomson, T.; Patsalos, P.N. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther. Drug Monit., 2003, 25(3), 347-363.
[http://dx.doi.org/10.1097/00007691-200306000-00016] [PMID: 12766564]
[6]
Petroff, O.A.C.; Rothman, D.L.; Behar, K.L.; Lamoureux, D.; Mattson, R.H. The effect of gabapentin on brain gamma aminobutyric acid in patients with epilepsy. Ann. Neurol., 1996, 39(1), 95-99.
[http://dx.doi.org/10.1002/ana.410390114] [PMID: 8572673]
[7]
Taylor, C.P.; Gee, N.S.; Su, T.Z.; Kocsis, J.D.; Welty, D.F.; Brown, J.P.; Dooley, D.J.; Boden, P.; Singh, L. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res., 1998, 29(3), 233-249.
[http://dx.doi.org/10.1016/S0920-1211(97)00084-3] [PMID: 9551785]
[8]
Singh, N.; Pannu, S.; Singh, K.; Akhtar, M.J.; Anchliya, A.; Alam Khan, S. Application of the different analytical methods for non-chromophoric pharmaceutical compounds. Curr. Pharm. Anal., 2023, 19(8), 629-651.
[http://dx.doi.org/10.2174/0115734129255201230925103348]
[9]
Anuse, V.V.; Kalkotawar, R.; Ghule, G.A. Stability indicating spectrophotometric and chromatographic method development and validation of Vigabatrin using ICH guidelines. World J. Pharm. Res., 2020, 10(1), 1112-1140.
[10]
Mohammad Bkhaitan, M.; Zeeshan Mirza, A. A novel quantitative spectrophotometric method for the analysis of vigabatrin in pure form and in pharmaceutical formulation. Curr. Pharm. Anal., 2016, 12(4), 365-370.
[http://dx.doi.org/10.2174/1573412912666151217182339]
[11]
Hassan, E.M.; Belal, F.; Al-Deeb, O.A.; Khalil, N.Y. Spectrofluorimetric determination of vigabatrin and gabapentin in dosage forms and spiked plasma samples through derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. J. AOAC Int., 2001, 84(4), 1017-1024.
[http://dx.doi.org/10.1093/jaoac/84.4.1017] [PMID: 11501899]
[12]
Belal, F.; Abdine, H.; Al-Majed, A.; Khalil, N.Y. Spectrofluorimetric determination of vigabatrin and gabapentin in urine and dosage forms through derivatization with fluorescamine. J. Pharm. Biomed. Anal., 2002, 27(1-2), 253-260.
[http://dx.doi.org/10.1016/S0731-7085(01)00503-9] [PMID: 11682233]
[13]
Erturk, S.; Aktas, E.S.; Atmaca, S. Determination of vigabatrin in human plasma and urine by high-performance liquid chromatography with fluorescence detection. J. Chromatogr., Biomed. Appl., 2001, 760(2), 207-212.
[http://dx.doi.org/10.1016/S0378-4347(01)00268-7] [PMID: 11530978]
[14]
Çetin, S.M.; Atmaca, S. Determination of vigabatrin in tablets by high performance liquid chromatography. Acta Pharm. Sci., 2002, 44(2), 57-62.
[15]
Franco, V.; Mazzucchelli, I.; Fattore, C.; Marchiselli, R.; Gatti, G.; Perucca, E. Stereoselective determination of vigabatrin enantiomers in human plasma by high performance liquid chromatography using UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 854(1-2), 63-67.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.042] [PMID: 17481975]
[16]
Vermeij, T.A.C.; Edelbroek, P.M. High-performance liquid chromatographic analysis of vigabatrin enantiomers in human serum by precolumn derivatization with o-phthaldialdehyde–N-acetyl-l-cysteine and fluorescence detection. J. Chromatogr., Biomed. Appl., 1998, 716(1-2), 233-238.
[http://dx.doi.org/10.1016/S0378-4347(98)00269-2] [PMID: 9824236]
[17]
Çetin, S.M.; Atmaca, S. Determination of vigabatrin in human plasma and urine by high-performance liquid chromatography with UV-Vis detection. J. Chromatogr. A, 2004, 1031(1-2), 237-242.
[http://dx.doi.org/10.1016/j.chroma.2003.11.020] [PMID: 15058588]
[18]
Sayare, S.; Lode, R.; Ghode, P.; Pachauri, A. Development and validation of RP-HPLC Method for estimation of vigabatrin using derivatization with 9-fluorenylmethyloxycarbonyl chloride. J. Pharm. Sci., 2019, 11(6), 2224-2227.
[19]
Zhao, J.; Shin, Y.; Jin, Y.; Jeong, K.M.; Lee, J. Determination of enantiomeric vigabatrin by derivatization with diacetyl-l-tartaric anhydride followed by ultra-high performance liquid chromatography-qTOF-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 199-207.
[http://dx.doi.org/10.1016/j.jchromb.2016.11.016] [PMID: 27866846]
[20]
Kolocouri, F.; Dotsikas, Y.; Loukas, Y.L. Dried plasma spots as an alternative sample collection technique for the quantitative LC-MS/MS determination of gabapentin. Anal. Bioanal. Chem., 2010, 398(3), 1339-1347.
[http://dx.doi.org/10.1007/s00216-010-4048-2] [PMID: 20694811]
[21]
Abualhasan, M.; Shraim, F.; Alawni, H.; Hamdan, S.; Khaseeb, H. HPLC analytical method development and validation of gabapentin through chemical derivatization with catechol as a chromophore. Int. J. Anal. Chem., 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/3882682] [PMID: 36225344]
[22]
Hengy, H.; Kölle, E.U. Determination of gabapentin in plasma and urine by high-performance liquid chromatography and pre-column labelling for ultraviolet detection. J. Chromatogr., Biomed. Appl., 1985, 341(2), 473-478.
[http://dx.doi.org/10.1016/S0378-4347(00)84064-5] [PMID: 4030992]
[23]
Jalalizadeh, H.; Souri, E.; Tehrani, M.B.; Jahangiri, A. Validated HPLC method for the determination of gabapentin in human plasma using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 854(1-2), 43-47.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.039] [PMID: 17517538]
[24]
Amini, M.; Rouini, M.R.; Asad-Paskeh, A.; Shafiee, A. A new pre-column derivatization method for determination of gabapentin in human serum by HPLC using UV detection. J. Chromatogr. Sci., 2010, 48(5), 358-361.
[http://dx.doi.org/10.1093/chromsci/48.5.358] [PMID: 20515528]
[25]
Ulu, S.T.; Kel, E. Highly sensitive determination and validation of gabapentin in pharmaceutical preparations by HPLC with 4-fluoro-7-nitrobenzofurazan derivatization and fluorescence detection. J. Chromatogr. Sci., 2011, 49(6), 417-421.
[http://dx.doi.org/10.1093/chrsci/49.6.417] [PMID: 21682989]
[26]
Yagi, T.; Naito, T.; Mino, Y.; Takashina, Y.; Umemura, K.; Kawakami, J. Rapid and validated fluorometric HPLC method for determination of gabapentin in human plasma and urine for clinical application. J. Clin. Pharm. Ther., 2012, 37(1), 89-94.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01243.x] [PMID: 21276028]
[27]
Manjusha, A.; Madhuri Balasaheb, K.; Sarika, B.; Ramanlal, N.K. Development and validation of HPLC method of gabapentin. J. Coast. Life Med., 2023, 11(2), 632-643.
[28]
Mahgoub, S.M.; Elsherief, A.H.; Mahmoud, R.; Mahmoud, M.R.; Mohamed, M.A. Validated stability indicating eco-friendly RP HPLC method for the concurrent quantification of gabapentin and diclofenac K in wastewater and pharmaceutical formulations. Egypt. J. Chem., 2024, 67(1), 411-422.
[29]
Chung, T.C.; Tai, C.T.; Wu, H.L. Simple and sensitive liquid chromatographic method with fluorimetric detection for the analysis of gabapentin in human plasma. J. Chromatogr. A, 2006, 1119(1-2), 294-298.
[http://dx.doi.org/10.1016/j.chroma.2005.12.081] [PMID: 16426629]
[30]
Lehner, A.F.; Stewart, J.; Dafalla, A.; Ely, K.J.; Connerly, A.L.; Jones, C.N. ElkHoly, H.; Thompson, K.; Tobin, T.; Dirikolu, L. Gabapentin in horses: Validation of an analytical method for gabapentin quantitation. J. Anal. Toxicol., 2007, 31(9), 555-565.
[http://dx.doi.org/10.1093/jat/31.9.555] [PMID: 18093414]
[31]
Souri, E.; Jalalizadeh, H.; Shafiee, A. Optimization of an HPLC method for determination of gabapentin in dosage forms through derivatization with 1-fluoro-2,4-dinitrobenzene. Chem. Pharm. Bull., 2007, 55(10), 1427-1430.
[http://dx.doi.org/10.1248/cpb.55.1427] [PMID: 17917283]
[32]
Borrey, D.C.R.; Godderis, K.O.; Engelrelst, V.I.L.; Bernard, D.R.; Langlois, M.R. Quantitative determination of vigabatrin and gabapentin in human serum by gas chromatography–mass spectrometry. Clin. Chim. Acta, 2005, 354(1-2), 147-151.
[http://dx.doi.org/10.1016/j.cccn.2004.11.023] [PMID: 15748611]
[33]
Liliana Garcia, L.; Shihabi, Z.K.; Oles, K. Determination of gabapentin in serum by capillary electrophoresis. J. Chromatogr., Biomed. Appl., 1995, 669(1), 157-162.
[http://dx.doi.org/10.1016/0378-4347(95)00081-S] [PMID: 7581881]
[34]
Nagaraju, P.; Kodali, B.; Datla, PV; Kovvasu, SP LC-MS/MS quantification of tramadol and gabapentin utilizing solid phase extraction. Int. J. Anal. Chem., 2018.
[35]
Palte, M.J.; Basu, S.S.; Dahlin, J.L.; Gencheva, R.; Mason, D.; Jarolim, P.; Petrides, A.K. Development and validation of an ultra performance liquid chromatography–tandem mass spectrometry method for the concurrent measurement of gabapentin, lamotrigine, levetiracetam, monohydroxy derivative of oxcarbazepine, and zonisamide concentrations in serum in a clinical setting. Ther. Drug Monit., 2018, 40(4), 469-476.
[http://dx.doi.org/10.1097/FTD.0000000000000516] [PMID: 29994986]
[36]
Tůma, P.; Hložek, T.; Sommerová, B.; Koval, D. Large volume sample stacking of antiepileptic drugs in counter current electrophoresis performed in PAMAPTAC coated capillary. Talanta, 2021, 221, 121626.
[http://dx.doi.org/10.1016/j.talanta.2020.121626] [PMID: 33076153]
[37]
Gambelunghe, C.; Mariucci, G.; Tantucci, M.; Ambrosini, M.V. Gas chromatography-tandem mass spectrometry analysis of gabapentin in serum. Biomed. Chromatogr., 2005, 19(1), 63-67.
[http://dx.doi.org/10.1002/bmc.417] [PMID: 15470697]
[38]
Martinc, B.; Roškar, R.; Grabnar, I.; Vovk, T. Simultaneous determination of gabapentin, pregabalin, vigabatrin, and topiramate in plasma by HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 962, 82-88.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.030] [PMID: 24907547]
[39]
Mercolini, L.; Mandrioli, R.; Amore, M.; Raggi, M.A. Simultaneous HPLC-F analysis of three recent antiepileptic drugs in human plasma. J. Pharm. Biomed. Anal., 2010, 53(1), 62-67.
[http://dx.doi.org/10.1016/j.jpba.2010.02.036] [PMID: 20363577]
[40]
Al-Majed, A.A. A direct HPLC method for the resolution and quantitation of the R-(−)- and S-(+)-enantiomers of vigabatrin (γ-vinyl-GABA) in pharmaceutical dosage forms using teicoplanin aglycone chiral stationary phase. J. Pharm. Biomed. Anal., 2009, 50(1), 96-99.
[http://dx.doi.org/10.1016/j.jpba.2009.03.030] [PMID: 19446423]
[41]
Uekusa, S.; Onozato, M.; Sakamoto, T.; Umino, M.; Ichiba, H.; Fukushima, T. Fluorimetric determination of the enantiomers of vigabatrin, an antiepileptic drug, by reversed phase HPLC with a novel diastereomer derivatization reagent. Biomed. Chromatogr., 2021, 35(5), e5060.
[http://dx.doi.org/10.1002/bmc.5060] [PMID: 33377241]
[42]
Al-Majed, A.A. A derivatization reagent for vigabatrin and gabapentin in HPLC with fluorescence detection. J. Liq. Chromatogr. Relat. Technol., 2005, 28(19), 3119-3129.
[http://dx.doi.org/10.1080/10826070500295229]
[43]
Abualhasan, M; Odeh, NW; Younis, GN; Zeidan, OF Analytical method development for sodium valproate through chemical derivatization. Int. J. Anal. Chem 2020, 2020.
[http://dx.doi.org/10.1155/2020/5672183]
[44]
Martinc, B.; Vovk, T. A simple high-throughput method for determination of antiepileptic analogues of γ-aminobutyric acid in pharmaceutical dosage forms using microplate fluorescence reader. Chem. Pharm. Bull., 2013, 61(10), 1009-1014.
[http://dx.doi.org/10.1248/cpb.c13-00322] [PMID: 23856517]
[45]
Abualhasan, M.N.; Watson, D.G. Tagging fatty acids via choline coupling for the detection of carboxylic acid metabolites in biological samples. Curr. Anal. Chem., 2019, 15(6), 642-647.
[http://dx.doi.org/10.2174/1573411014666180516093353]
[46]
Zhang, B.; Li, X.; Yan, B. Advances in HPLC detection—towards universal detection. Anal. Bioanal. Chem., 2008, 390(1), 299-301.
[http://dx.doi.org/10.1007/s00216-007-1633-0] [PMID: 17924099]
[47]
Sahu, A.; Narayanam, M.; Kurmi, M.; Ladumor, M.K.; Singh, S. Quantitation of memantine hydrochloride bulk drug and its tablet formulation using proton nuclear magnetic resonance spectrometry. Magn. Reson. Chem., 2016, 54(8), 632-636.
[http://dx.doi.org/10.1002/mrc.4421] [PMID: 26923624]
[48]
Malz, F.; Jancke, H. Validation of quantitative NMR. J. Pharm. Biomed. Anal., 2005, 38(5), 813-823.
[http://dx.doi.org/10.1016/j.jpba.2005.01.043] [PMID: 15893442]
[49]
Kasler, F. Quantitative analysis by NMR spectroscopy. In: Analytical chemistry; , 1973.
[50]
Hollis, D.P. Quantitative analysis of aspirin, phenacetin, and caffeine mixtures by nuclear magnetic resonance spectrometry. Anal. Chem., 1963, 35(11), 1682-1684.
[http://dx.doi.org/10.1021/ac60204a043]
[51]
Salem, A.A.; Abdou, I.M.; Saleh, H.A. Application of quantitative nuclear magnetic resonance spectroscopy for the determination ofamantadine and acyclovir in plasma and pharmaceutical samples. J. AOAC Int., 2012, 95(6), 1644-1651.
[http://dx.doi.org/10.5740/jaoacint.11-165] [PMID: 23451380]
[52]
Sun, S.; Jin, M.; Zhou, X.; Ni, J.; Jin, X.; Liu, H.; Wang, Y. The application of quantitative 1HNMR for the determination of orlistat in tablets. Molecules, 2017, 22(9), 1517.
[http://dx.doi.org/10.3390/molecules22091517] [PMID: 28891958]
[53]
El-Adl, S.M.; El-sadek, M.E.; Hasan, M.H. Determination and validation of piracetam in pharmaceuticals using quantitative nuclear magnetic resonance spectroscopy. Anal. Chem. Lett., 2017, 7(2), 271-279.
[http://dx.doi.org/10.1080/22297928.2017.1320227]
[54]
Jaroszewski, J.W.; Berenstein, D.; Sløk, F.A.; Simonsen, P.E.; Agger, M.K. Determination of diethylcarbamazine, an antifilarial drug, in human urine by 1H-NMR spectroscopy. J. Pharm. Biomed. Anal., 1996, 14(5), 543-549.
[http://dx.doi.org/10.1016/0731-7085(95)01664-3] [PMID: 8738183]
[55]
Tanwar, A.K.; Jadhav, S.; Gore, D.D.; Singh, I.P. qNMR as an analytical technique for essential oils: Quantitative analysis of Eucalyptus tereticornis leaf oil. Chem. Zvesti, 2023, 77(6), 3241-3252.
[http://dx.doi.org/10.1007/s11696-023-02700-y]
[56]
Chatterjee, D.; Narzish, F.; Borade, P.; Singh, I.P. Simultaneous quantitation of nine carbazole alkaloids from Murraya koenigii (L.) Spreng by 1 H qNMR spectroscopy. Nat. Prod. Res., 2023, 1-9.
[http://dx.doi.org/10.1080/14786419.2023.2219819] [PMID: 37322993]
[57]
Pauli, G.F.; Jaki, B.U.; Lankin, D.C. Quantitative 1H NMR: Development and potential of a method for natural products analysis. J. Nat. Prod., 2005, 68(1), 133-149.
[http://dx.doi.org/10.1021/np0497301] [PMID: 15679337]
[58]
Mahajan, S.; Singh, I.P. Determining and reporting purity of organic molecules: Why qNMR. Magn. Reson. Chem., 2013, 51(2), 76-81.
[http://dx.doi.org/10.1002/mrc.3906] [PMID: 23233454]
[59]
Holzgrabe, U.; Deubner, R.; Schollmayer, C.; Waibel, B. Quantitative NMR spectroscopy—Applications in drug analysis. J. Pharm. Biomed. Anal., 2005, 38(5), 806-812.
[http://dx.doi.org/10.1016/j.jpba.2005.01.050] [PMID: 15893899]
[60]
Jones, I.C.; Sharman, G.J.; Pidgeon, J. 1H and13C NMR data to aid the identification and quantification of residual solvents by NMR spectroscopy. Magn. Reson. Chem., 2005, 43(6), 497-509.
[http://dx.doi.org/10.1002/mrc.1578] [PMID: 15809983]
[61]
Pinciroli, V.; Biancardi, R.; Visentin, G.; Rizzo, V. The well-characterized synthetic molecule: A role for Quantitative 1H NMR. Org. Process Res. Dev., 2004, 8(3), 381-384.
[http://dx.doi.org/10.1021/op0341925]
[62]
Rizzo, V.; Pinciroli, V. Quantitative NMR in synthetic and combinatorial chemistry. J. Pharm. Biomed. Anal., 2005, 38(5), 851-857.
[http://dx.doi.org/10.1016/j.jpba.2005.01.045] [PMID: 16087047]
[63]
Saito, T.; Nakaie, S.; Kinoshita, M.; Ihara, T.; Kinugasa, S.; Nomura, A.; Maeda, T. Practical guide for accurate quantitative solution state NMR analysis. Metrologia, 2004, 41(3), 213-218.
[http://dx.doi.org/10.1088/0026-1394/41/3/015]
[64]
Wells, R.; Cheung, J.; Hook, J. Dimethylsulfone as a universal standard for analysis of organics by QNMR. Accredit. Qual. Assur., 2004, 9(8), 450-456.
[http://dx.doi.org/10.1007/s00769-004-0779-0]
[65]
Pauli, G.F.; Gödecke, T.; Jaki, B.U.; Lankin, D.C. Quantitative 1H NMR. Development and potential of an analytical method: An update. J. Nat. Prod., 2012, 75(4), 834-851.
[http://dx.doi.org/10.1021/np200993k] [PMID: 22482996]
[66]
Martino, R.; Gilard, V.; Desmoulin, F.; Malet-Martino, M. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs. J. Pharm. Biomed. Anal., 2005, 38(5), 871-891.
[http://dx.doi.org/10.1016/j.jpba.2005.01.047] [PMID: 16087049]
[67]
Sharma, R.; Gupta, P.K.; Mazumder, A.; Dubey, D.K.; Ganesan, K.; Vijayaraghavan, R. A quantitative NMR protocol for the simultaneous analysis of atropine and obidoxime in parenteral injection devices. J. Pharm. Biomed. Anal., 2009, 49(4), 1092-1096.
[http://dx.doi.org/10.1016/j.jpba.2009.01.035] [PMID: 19299099]
[68]
Nasr, J.J.; Shalan, S. Validated 1H and 19F nuclear magnetic resonance for the quantitative determination of the hepatitis C antiviral drugs sofosbuvir, ledipasvir, and daclatasvir in tablet dosage forms. Microchem. J., 2020, 152, 104437.
[http://dx.doi.org/10.1016/j.microc.2019.104437]
[69]
Franco, PHC; Braga, SFP; de Oliveira, RB; César, IC Purity determination of a new antifungal drug candidate using quantitative 1H NMR spectroscopy: Method validation and comparison of calibration approaches. Magn. Reson. Chem, 2020, 8(1), 97-105.
[70]
Aggarwal, D.; Gupta, R.D.; Ain, S.; Sharma, V. Quantitative determination and validation of clarithromycin in pharmaceutical using quantitative nuclear magnetic resonance spectroscopy. World J. Pharm. Res., 2021, 10(4), 1665-1694.
[71]
Liang, X.; Du, L.; Su, F.; Parekh, H.S.; Su, W. The application of quantitative NMR for the facile, rapid and reliable determination of clindamycin phosphate in a conventional tablet formulation. Magn. Reson. Chem., 2014, 52(4), 178-182.
[http://dx.doi.org/10.1002/mrc.4048] [PMID: 24464591]
[72]
ICH, validation of Analytical Procedures: Text and MethodologyQ2 (R1) In: Harmonized Tripartite Guideline , 2005.
[73]
Holzgrabe, U.; Wawer, I.; Diehl, B. NMR spectroscopy in drug development and analysis, Ist ed; Wiley-VCH, Weinheim , 1999.
[74]
Bali, A.; Gaur, P. A novel method for spectrophotometric determination of pregabalin in pure form and in capsules. Chem. Cent. J., 2011, 5(1), 59.
[http://dx.doi.org/10.1186/1752-153X-5-59] [PMID: 21982305]
[75]
Indian Pharmacopoeia; Gabapentin, 2018, p. 2147.
[76]
Shafaati, A.; Lucy, C. Application of capillary zone electrophoresis with indirect UV detection to the determination of a model drug, vigabatrin, in dosage forms. J. Pharm. Pharm. Sci., 2005, 8(2), 190-198.
[PMID: 16124930]
[77]
Olgun, N.; Erturk, S.; Atmaca, S. Spectrofluorimetric and spectrophotometric methods for the determination of vigabatrin in tablets. J. Pharm. Biomed. Anal., 2002, 29(1-2), 1-5.
[http://dx.doi.org/10.1016/S0731-7085(02)00055-9] [PMID: 12062659]
[78]
Adegbolagun, O.M.; Thomas, O.E.; Aiyenale, E.O.; Adegoke, O.A. A new spectrophotometric method for the determination of gabapentin using chromotropic acid. ACTA Pharmaceutica Sciencia, 2018, 56(3), 93-110.
[http://dx.doi.org/10.23893/1307-2080.APS.05621]
[79]
Ciavarella, A.B.; Gupta, A.; Sayeed, V.A.; Khan, M.A.; Faustino, P.J. Development and application of a validated HPLC method for the determination of gabapentin and its major degradation impurity in drug products. J. Pharm. Biomed. Anal., 2007, 43(5), 1647-1653.
[http://dx.doi.org/10.1016/j.jpba.2006.12.020] [PMID: 17275240]
[80]
Almasri, I.M.; Ramadan, M.; Algharably, E. Development and validation of spectrophotometric method for determination of gabapentin in bulk and pharmaceutical dosage forms based on Schiff base formation with salicylaldehyde. J. Appl. Pharm. Sci, 2019, 9(3), 21-26.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy