Review Article

Recent Advances in Biomedical Applications of Mannans and Xylans

Author(s): Shriya Teli, Kajal Deshmukh, Tabassum Khan and Vasanti Suvarna*

Volume 25, Issue 4, 2024

Published on: 19 February, 2024

Page: [261 - 277] Pages: 17

DOI: 10.2174/0113894501285058240203094846

Price: $65

conference banner
Abstract

Plant-based phytochemicals, including flavonoids, alkaloids, tannins, saponins, and other metabolites, have attracted considerable attention due to their central role in synthesizing nanomaterials with various biomedical applications. Hemicelluloses are the second most abundant among naturally occurring heteropolymers, accounting for one-third of all plant constituents. In particular, xylans, mannans, and arabinoxylans are structured polysaccharides derived from hemicellulose. Mannans and xylans are characterized by their linear configuration of β-1,4-linked mannose and xylose units, respectively. At the same time, arabinoxylan is a copolymer of arabinose and xylose found predominantly in secondary cell walls of seeds, dicotyledons, grasses, and cereal tissues. Their widespread use in tissue engineering, drug delivery, and gene delivery is based on their properties, such as cell adhesiveness, cost-effectiveness, high biocompatibility, biodegradability, and low immunogenicity. Moreover, it can be easily functionalized, which expands their potential applications and provides them with structural diversity. This review comprehensively addresses recent advances in the field of biomedical applications. It explores the potential prospects for exploiting the capabilities of mannans and xylans in drug delivery, gene delivery, and tissue engineering.

Keywords: Mannans, xylans, functionalization, biomedical applications, flavonoids, alkaloids.

Graphical Abstract
[1]
Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008; 54(4): 559-68.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03463.x] [PMID: 18476863]
[2]
Curry TM, Peña MJ, Urbanowicz BR. An update on xylan structure, biosynthesis, and potential commercial applications. Cell Surf 2023; 9: 100101.
[http://dx.doi.org/10.1016/j.tcsw.2023.100101] [PMID: 36748082]
[3]
Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 2008; 79(2): 165-78.
[http://dx.doi.org/10.1007/s00253-008-1423-4] [PMID: 18385995]
[4]
Mercier T, Castagnola E, Marr KA, Wheat LJ, Verweij PE, Maertens JA. Defining galactomannan positivity in the updated EORTC/MSGERC consensus definitions of invasive fungal diseases. Clin Infect Dis 2021; 72(S2): S89-94.
[http://dx.doi.org/10.1093/cid/ciaa1786] [PMID: 33709125]
[5]
Willför S, Sundberg K, Tenkanen M, Holmbom B. Spruce-derived mannans – A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 2008; 72(2): 197-210.
[http://dx.doi.org/10.1016/j.carbpol.2007.08.006]
[6]
Mellerowicz EJ, Gorshkova TA. Tensional stress generation in gelatinous fibres: A review and possible mechanism based on cell-wall structure and composition. J Exp Bot 2012; 63(2): 551-65.
[http://dx.doi.org/10.1093/jxb/err339] [PMID: 22090441]
[7]
Timell TE. Vegetable ivory as a source of a mannan polysaccharide. Can J Chem 1957; 35(4): 333-8.
[http://dx.doi.org/10.1139/v57-048]
[8]
Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like ( Csl ) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci 2005; 102(6): 2221-6.
[http://dx.doi.org/10.1073/pnas.0409179102] [PMID: 15647349]
[9]
Hira D, Onoue T, Oka T. Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in Aspergillus fumigatus. J Biol Chem 2020; 295(45): 15407-17.
[http://dx.doi.org/10.1074/jbc.RA120.013742] [PMID: 32873705]
[10]
Mora-Montes HM, Bates S, Netea MG, et al. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J Biol Chem 2010; 285(16): 12087-95.
[http://dx.doi.org/10.1074/jbc.M109.081513] [PMID: 20164191]
[11]
Alexander DC, Jones JRW, Tan T, Chen JM, Liu J. PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 2004; 279(18): 18824-33.
[http://dx.doi.org/10.1074/jbc.M400791200] [PMID: 14960574]
[12]
Boldrin F, Ventura M, Degiacomi G, et al. The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. J Bacteriol 2014; 196(19): 3441-51.
[http://dx.doi.org/10.1128/JB.01346-13] [PMID: 25049093]
[13]
Bhattacharje G, Ghosh A, Das AK. Understanding the mannose transfer mechanism of mycobacterial phosphatidyl-myo-inositol mannosyltransferase a from molecular dynamics simulations. ACS Omega 2022; 7(23): 19288-304.
[http://dx.doi.org/10.1021/acsomega.2c00832] [PMID: 35721920]
[14]
Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye ZH. The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 2007; 48(11): 1624-34.
[http://dx.doi.org/10.1093/pcp/pcm135] [PMID: 17938130]
[15]
Lee C, Zhong R, Ye ZH. Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 2012; 53(1): 135-43.
[http://dx.doi.org/10.1093/pcp/pcr158] [PMID: 22080591]
[16]
Gong C, Shi S, Dong P, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 2009; 365(1-2): 89-99.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.027] [PMID: 18793709]
[17]
Bromley JR, Busse-Wicher M, Tryfona T, et al. GUX 1 and GUX 2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J 2013; 74(3): 423-34.
[http://dx.doi.org/10.1111/tpj.12135] [PMID: 23373848]
[18]
Mikkonen KS, Tenkanen M. Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans. Trends Food Sci Technol 2012; 28(2): 90-102.
[http://dx.doi.org/10.1016/j.tifs.2012.06.012]
[19]
Hammad H, Plantinga M, Deswarte K, et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 2010; 207(10): 2097-111.
[http://dx.doi.org/10.1084/jem.20101563] [PMID: 20819925]
[20]
Mathiesen R, Eld HMS, Sørensen J, et al. Mannan enhances IL-12 production by increasing bacterial uptake and endosomal degradation in L. acidophilus and S. aureus stimulated dendritic cells. Front Immunol 2019; 10: 2646.
[http://dx.doi.org/10.3389/fimmu.2019.02646] [PMID: 31803184]
[21]
Sheng KC, Pouniotis DS, Wright MD, et al. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology 2006; 118(3): 372-83.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02384.x] [PMID: 16827898]
[22]
Tong C, Cui Z, Sun X, et al. Mannan derivatives instruct dendritic cells to induce Th1/Th2 cells polarization via differential mitogen-activated protein kinase activation. Scand J Immunol 2016; 83(1): 10-7.
[http://dx.doi.org/10.1111/sji.12369] [PMID: 26332129]
[23]
Sheng KC, Kalkanidis M, Pouniotis DS, et al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur J Immunol 2008; 38(2): 424-36.
[http://dx.doi.org/10.1002/eji.200737578] [PMID: 18200633]
[24]
Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 2011; 19(4): 281-92.
[http://dx.doi.org/10.3109/1061186X.2010.499463] [PMID: 20590403]
[25]
Obermajer N, Sattin S, Colombo C, et al. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol Divers 2011; 15(2): 347-60.
[http://dx.doi.org/10.1007/s11030-010-9285-y] [PMID: 21076980]
[26]
He T, Liang X, Li L, et al. A spontaneously formed and self-adjuvanted hydrogel vaccine triggers strong immune responses. Mater Des 2021; 197: 109232.
[http://dx.doi.org/10.1016/j.matdes.2020.109232]
[27]
Wu Q, Gong C, Shi S, et al. Mannan loaded biodegradable and injectable thermosensitive PCL-PEG-PCL hydrogel for vaccine delivery. Soft Mater 2012; 10(4): 472-86.
[http://dx.doi.org/10.1080/1539445X.2010.537422]
[28]
Pogostin BH, Saenz G, Cole CC, Euliano EM, Hartgerink JD, McHugh KJ. Dynamic imine bonding facilitates mannan release from a nanofibrous peptide hydrogel. Bioconjug Chem 2023; 34(1): 193-203.
[http://dx.doi.org/10.1021/acs.bioconjchem.2c00461] [PMID: 36580277]
[29]
Gonçalves C, Ferreira SA, Correia AL, et al. Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems. J Bioact Compat Polym 2016; 31(5): 453-66.
[http://dx.doi.org/10.1177/0883911516631354]
[30]
Kaur A, Jain S, Tiwary A. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 2008; 58(1): 61-74.
[http://dx.doi.org/10.2478/v10007-007-0045-1] [PMID: 18337208]
[31]
Ferreira SA, Pereira P, Sampaio P, Coutinho PJG, Gama FM. Supramolecular assembled nanogel made of mannan. J Colloid Interface Sci 2011; 361(1): 97-108.
[http://dx.doi.org/10.1016/j.jcis.2011.05.020] [PMID: 21658701]
[32]
Ma C, He D, Tian P, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci 2022; 119(6): e2114006119.
[http://dx.doi.org/10.1073/pnas.2114006119] [PMID: 35105806]
[33]
Amit A. 5-Nitroimidazole derivatives: A scope of modification for medicinal chemists. ResJchemsci 2013; 3(7): 104-13.
[34]
Zhang LX, Li KF, Wang H, et al. Preparation and in vitro evaluation of a MRI contrast agent based on aptamer-modified gadolinium-loaded liposomes for tumor targeting. AAPS PharmSciTech 2017; 18(5): 1564-71.
[http://dx.doi.org/10.1208/s12249-016-0600-5] [PMID: 27604884]
[35]
Kunimasa J, Inui K, Hori R, Kawamura Y, Endo K. Mannan-coated liposome delivery of gadolinium-diethylenetriaminepentaacetic acid, a contrast agent for use in magnetic resonance imaging. Chem Pharm Bull 1992; 40(9): 2565-7.
[http://dx.doi.org/10.1248/cpb.40.2565] [PMID: 1446380]
[36]
Hu HG, Li YM. Emerging adjuvants for cancer immunotherapy. Front Chem 2020; 8: 601.
[http://dx.doi.org/10.3389/fchem.2020.00601] [PMID: 32850636]
[37]
Kim S, Lee J, Im S, Kim WJ. Injectable immunogel based on polymerized phenylboronic acid and mannan for cancer immunotherapy. J Control Release 2022; 345: 138-46.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.009] [PMID: 35271910]
[38]
Kumar P, Singh I, Gupta S, Dhawan G. Mannosylated and mannan-modified nanovectors targeting Resident Tissue Macrophages (RTM) for efficient pharmacotherapy 1,2 2 2 1. Trends Carbohydr Res 2021; 13: 71-81.
[39]
Wijaya CJ, Ismadji S, Gunawan S. A review of lignocellulosic-derived nanoparticles for drug delivery applications: lignin nanoparticles, xylan nanoparticles, and cellulose nanocrystals. Molecules 2021; 26(3): 676.
[http://dx.doi.org/10.3390/molecules26030676] [PMID: 33525445]
[40]
Sauraj KA, Kumar A, Kumar B, Kulshreshtha A, Negi YS. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydr Res 2021; 499: 108222.
[http://dx.doi.org/10.1016/j.carres.2020.108222] [PMID: 33401229]
[41]
Sauraj , Kumar SU, Kumar V, Priyadarshi R, Gopinath P, Negi YS. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym 2018; 188: 252-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.006] [PMID: 29525163]
[42]
Daus S, Heinze T. Xylan-based nanoparticles: Prodrugs for ibuprofen release. Macromol Biosci 2010; 10(2): 211-20.
[http://dx.doi.org/10.1002/mabi.200900201] [PMID: 19904721]
[43]
Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide-loaded and biodegradable xylan-based nanocarriers. Biopolymers 2020; 111(12): e23413.
[http://dx.doi.org/10.1002/bip.23413] [PMID: 33306838]
[44]
Chang M, Liu X, Meng L, Wang X, Ren J. Xylan-based hydrogels as a potential carrier for drug delivery: Effect of pore-forming agents. Pharmaceutics 2018; 10(4): 261.
[http://dx.doi.org/10.3390/pharmaceutics10040261] [PMID: 30563073]
[45]
Kong WQ, Gao CD, Hu SF, Ren JL, Zhao LH, Sun RC. Xylan-modified-based hydrogels with temperature/ph dual sensitivity and controllable drug delivery behavior. Materials 2017; 10(3): 304.
[http://dx.doi.org/10.3390/ma10030304] [PMID: 28772664]
[46]
Urtiga SCC, Alves VMO, Melo CO, et al. Xylan microparticles for controlled release of mesalamine: Production and physicochemical characterization. Carbohydr Polym 2020; 250: 116929.
[http://dx.doi.org/10.1016/j.carbpol.2020.116929] [PMID: 33049843]
[47]
Sun XF, Liu B, Jing Z, Wang H. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 2015; 118: 16-23.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.013] [PMID: 25542101]
[48]
Hanif M, Zaman M. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films. Daru 2017; 25(1): 6.
[http://dx.doi.org/10.1186/s40199-017-0172-2] [PMID: 28320456]
[49]
Hirose K, Sasatsu M, Toraishi T, Onishi H. Novel xyloglucan sheet for the treatment of deep wounds: preparation, physicochemical characteristics, and in vivo healing effects. Biol Pharm Bull 2019; 42(8): 1409-14.
[http://dx.doi.org/10.1248/bpb.b18-00764] [PMID: 31366876]
[50]
Alzarea AI, Alruwaili NK, Ahmad MM, et al. Development and characterization of gentamicin-loaded arabinoxylan-sodium alginate films as antibacterial wound dressing. Int J Mol Sci 2022; 23(5): 2899.
[http://dx.doi.org/10.3390/ijms23052899] [PMID: 35270041]
[51]
Tang CK, Lodding J, Minigo G, et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology 2007; 120(3): 325-35.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02506.x] [PMID: 17328786]
[52]
Wu G, Zhou F, Ge L, Liu X, Kong F. Novel mannan-PEG-PE modified bioadhesive PLGA nanoparticles for targeted gene delivery. J Nanomater 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/981670]
[53]
Yu W, Liu C, Liu Y, Zhang N, Xu W. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res 2010; 27(8): 1584-96.
[http://dx.doi.org/10.1007/s11095-010-0149-z] [PMID: 20422265]
[54]
Ruan GX, Li Y, Chen W, et al. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement. Cell Rep 2022; 38(6): 110338.
[http://dx.doi.org/10.1016/j.celrep.2022.110338] [PMID: 35139388]
[55]
Ruan GX, Zhang TY, Li LM, et al. Hepatic-targeted gene delivery using cationic mannan vehicle. Mol Pharm 2014; 11(10): 3322-9.
[http://dx.doi.org/10.1021/mp5000899] [PMID: 24735422]
[56]
Zhou Z, Huang Y, Liu H, Zhao G. 3D bioprinting of modified mannan bioink for tissue engineering. STAR Protocols 2022; 3(3): 101585.
[http://dx.doi.org/10.1016/j.xpro.2022.101585] [PMID: 35880129]
[57]
Huang Y, Zhou Z, Hu Y, et al. Modified mannan for 3D bioprinting: A potential novel bioink for tissue engineering. Biomed Mater 2021; 16(5): 055015.
[http://dx.doi.org/10.1088/1748-605X/ac1ab4] [PMID: 34348252]
[58]
Krishnan R, Rajeswari R, Venugopal J, et al. Polysaccharide nanofibrous scaffolds as a model for in vitro skin tissue regeneration. J Mater Sci Mater Med 2012; 23(6): 1511-9.
[http://dx.doi.org/10.1007/s10856-012-4630-6] [PMID: 22491895]
[59]
Bush JR, Liang H, Dickinson M, Botchwey EA. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym Adv Technol 2016; 27(8): 1050-5.
[http://dx.doi.org/10.1002/pat.3767] [PMID: 27587941]
[60]
Ruan GX, Chen YZ, Yao XL, et al. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. Acta Biomater 2014; 10(5): 1847-55.
[http://dx.doi.org/10.1016/j.actbio.2014.01.012] [PMID: 24440421]
[61]
Saville AB. Functional attributes and health benefits of novel prebiotic oligosaccharides derived from xylan, Arabinan, and Mannan. Prebiotics and Probiotics - Potential Benefits in Nutrition and Health. Intechopen 2020.
[62]
Oba S, Sunagawa T, Tanihiro R, et al. Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model. Sci Rep 2020; 10(1): 17351.
[http://dx.doi.org/10.1038/s41598-020-74379-0] [PMID: 33060635]
[63]
Dhawan S, Singh R, Kaur R, Kaur J. A β-mannanase from Paenibacillus sp.: Optimization of production and its possible prebiotic potential. Biotechnol Appl Biochem 2016; 63(5): 669-78.
[http://dx.doi.org/10.1002/bab.1419] [PMID: 26224294]
[64]
Asano I, Umemura M, Fujii S, Hoshino H, Iino H. Effects of mannooligosaccharides from coffee mannan on fecal microflora and defecation in healthy volunteers. Food Sci Technol Res 2004; 10(1): 93-7.
[http://dx.doi.org/10.3136/fstr.10.93]
[65]
Li T, Yan Q, Wen Y, Liu J, Sun J, Jiang Z. Synbiotic yogurt containing konjac mannan oligosaccharides and Bifidobacterium animalis ssp. lactis BB12 alleviates constipation in mice by modulating the stem cell factor (SCF)/c-Kit pathway and gut microbiota. J Dairy Sci 2021; 104(5): 5239-55.
[http://dx.doi.org/10.3168/jds.2020-19449] [PMID: 33663840]
[66]
Pangsri P, Piwpankaew Y, Ingkakul A, Nitisinprasert S, Keawsompong S. Characterization of mannanase from Bacillus circulans NT 6.7 and its application in mannooligosaccharides preparation as prebiotic. Springerplus 2015; 4(1): 771.
[http://dx.doi.org/10.1186/s40064-015-1565-7] [PMID: 26697281]
[67]
Wang J, Ke S, Strappe P, Ning M, Zhou Z. Structurally orientated rheological and gut microbiota fermentation property of mannans polysaccharides and oligosaccharides. Foods 2023; 12(21): 4002.
[http://dx.doi.org/10.3390/foods12214002] [PMID: 37959121]
[68]
Singh RD, Banerjee J, Arora A. Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact Carbohydr Diet Fibre 2015; 5(1): 19-30.
[http://dx.doi.org/10.1016/j.bcdf.2014.11.003]
[69]
Wang Z, Bai Y, Pi Y, et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 2021; 9(1): 227.
[http://dx.doi.org/10.1186/s40168-021-01175-x] [PMID: 34802456]
[70]
Christensen eg, Licht TR, Leser TD, Bahl MI. Dietary Xylo-oligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res Notes 2014; 7(1): 660.
[http://dx.doi.org/10.1186/1756-0500-7-660] [PMID: 25238818]
[71]
Pang J, Wang S, Wang Z, et al. Xylo-oligosaccharide alleviates Salmonella induced inflammation by stimulating Bifidobacterium animalis and inhibiting Salmonella colonization. FASEB J 2021; 35(11): e21977.
[http://dx.doi.org/10.1096/fj.202100919RR] [PMID: 34613640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy