Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Research Article

T Lymphocyte Interferon-gamma Response to Anaplasmataceae-related Major Surface Proteins and Ankyrin A in Fibromyalgia

Author(s): Basant K. Puri*, Rosemarie Preyer, Gary S. Lee and Armin Schwarzbach

Volume 23, Issue 11, 2024

Published on: 16 February, 2024

Page: [1392 - 1399] Pages: 8

DOI: 10.2174/0118715273274091231207101522

Price: $65

Abstract

Background: The aetiology of fibromyalgia is unknown; its symptoms may be related to a T-lymphocyte-mediated response to infectious organisms.

Objectives: First, to test the hypothesis that fibromyalgia is associated with increased interferon (IFN)-γ-secreting T-lymphocytes after stimulation with Anaplasmataceae-related major surface proteins (MSPs) and the macromolecular translocation type IV secretion system effector ankyrin repeat domain-containing protein A (AnkA). Second, to ascertain the relationship in fibromyalgia between (i) the IFN-γ-secreting T-lymphocyte response to stimulation with Anaplasmataceae-related MSPs and AnkA, and (ii) co-infection by Borrelia and Yersinia spp., and antinuclear antibodies.

Methods: Using a case-control design, patients fulfilling the American College of Rheumatology revised criteria for fibromyalgia, and controls, underwent the following blinded assessments: (i) enzyme- linked immune absorbent spot (ELISpot) IFN-γ release assay of T-lymphocyte reactivity to Anaplasmataceae-related MSPs and AnkA; (ii) ELISpot IFN-γ release assays of T-lymphocyte reactivity to three Borrelia antigens, namely Borrelia burgdorferi full antigen (B31); peptide mix (from Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii); and Borrelia burgdorferi lymphocyte function-associated antigen-1; (iii) immunoglobulin (Ig) A assay by enzyme-linked immunosorbent assay (ELISA) of antibodies to Yersinia spp.; (iv) IgG (ELISA) antibodies to Yersinia spp.; (v) serum antinuclear antibodies (immunofluorescence).

Results: The groups were age- and sex-matched. The mean (standard error) value of IFN-γ release for the fibromyalgia group was 1.52 (0.26), compared with 1.00 (0.22) for the controls. Generalised linear modelling (p<0.001) of IFN-γ release in the fibromyalgia patients showed significant main effects of all three indices of Borrelia infection and of antinuclear antibodies.

Conclusion: Anaplasmataceae may play an aetiological role in fibromyalgia.

Keywords: Anaplasma, Anaplasmataceae, antinuclear antibodies, Ehrlichia, enzyme-linked immune absorbent spot, fibromyalgia.

« Previous
Graphical Abstract
[1]
Maes M, Andrés-Rodríguez L, Vojdani A, Sirivichayakul S, Barbosa DS, Kanchanatawan B. In schizophrenia, chronic fatigue syndrome and fibromyalgia-like symptoms are driven by breakdown of the paracellular pathway with increased zonulin and immune activation-associated neurotoxicity. CNS Neurol Disord Drug Targets 2023; 22(2): 215-25.
[http://dx.doi.org/10.2174/1871527321666220806100600] [PMID: 35946099]
[2]
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103: 109976.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109976] [PMID: 32470498]
[3]
Ghafouri B, Edman E, Löf M, et al. Fibromyalgia in women: association of inflammatory plasma proteins, muscle blood flow, and metabolism with body mass index and pain characteristics. Pain Rep 2022; 7(6): e1042.
[http://dx.doi.org/10.1097/PR9.0000000000001042] [PMID: 36213597]
[4]
Dirawi N, Habib G. Effect of intramuscular depot betamethasone injection in patients with fibromyalgia and elevated C-reactive protein levels. J Investig Med 2022; 70(7): 1553-6.
[http://dx.doi.org/10.1136/jim-2021-002293] [PMID: 35649685]
[5]
Fineschi S, Klar J, Gustafsson KA, Jonsson K, Karlsson B, Dahl N. Inflammation and interferon signatures in peripheral B-lymphocytes and sera of individuals with fibromyalgia. Front Immunol 2022; 13: 874490.
[http://dx.doi.org/10.3389/fimmu.2022.874490] [PMID: 35693781]
[6]
Silva AR, Bernardo A, de Mesquita MF, et al. An anti-inflammatory and low fermentable oligo, di, and monosaccharides and polyols diet improved patient reported outcomes in fibromyalgia: A randomized controlled trial. Front Nutr 2022; 9: 856216.
[http://dx.doi.org/10.3389/fnut.2022.856216] [PMID: 36091254]
[7]
Silva AR, Bernardo A, de Mesquita MF, et al. A study protocol for a randomized controlled trial of an anti-inflammatory nutritional intervention in patients with fibromyalgia. Trials 2021; 22(1): 198.
[http://dx.doi.org/10.1186/s13063-021-05146-3] [PMID: 33743794]
[8]
Silva AR, Bernardo A, Costa J, et al. Dietary interventions in fibromyalgia: A systematic review. Ann Med 2019; 51(sup1): 2-14.
[http://dx.doi.org/10.1080/07853890.2018.1564360] [PMID: 30735059]
[9]
Ghavidel-Parsa B, Naeimi A, Gharibpoor F, et al. Effect of vitamin B6 on pain, disease severity, and psychological profile of fibromyalgia patients; a randomized, double-blinded clinical trial. BMC Musculoskelet Disord 2022; 23(1): 664.
[http://dx.doi.org/10.1186/s12891-022-05637-7] [PMID: 35831850]
[10]
Kim PS, Fishman MA. Low-dose naltrexone for chronic pain: Update and systemic review. Curr Pain Headache Rep 2020; 24(10): 64.
[http://dx.doi.org/10.1007/s11916-020-00898-0] [PMID: 32845365]
[11]
Moraes LJ, Miranda MB, Loures LF, Mainieri AG, Mármora CHC. A systematic review of psychoneuroimmunology-based interventions. Psychol Health Med 2018; 23(6): 635-52.
[http://dx.doi.org/10.1080/13548506.2017.1417607] [PMID: 29262731]
[12]
Polli A, Hendrix J, Ickmans K, et al. Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia. J Transl Med 2022; 20(1): 487.
[http://dx.doi.org/10.1186/s12967-022-03662-7] [PMID: 36284330]
[13]
Banfi G, Diani M, Pigatto PD, Reali E. T cell subpopulations in the physiopathology of fibromyalgia: Evidence and perspectives. Int J Mol Sci 2020; 21(4): 1186.
[http://dx.doi.org/10.3390/ijms21041186] [PMID: 32054062]
[14]
Goldenberg DL. Fibromyalgia and its relation to chronic fatigue syndrome, viral illness and immune abnormalities. J Rheumatol Suppl 1989; 19: 91-3.
[PMID: 2607516]
[15]
Goldenberg DL. Do infections trigger fibromyalgia? Arthritis Rheum 1993; 36(11): 1489-92.
[http://dx.doi.org/10.1002/art.1780361102] [PMID: 8240426]
[16]
Lacout A, Mas M, Pajaud J, et al. Real time micro-organisms PCR in 104 patients with polymorphic signs and symptoms that may be related to a tick bite. Eur J Microbiol Immunol (Bp) 2021; 11(3): 62-75.
[http://dx.doi.org/10.1556/1886.2021.00011] [PMID: 34739391]
[17]
Torina A, Villari S, Blanda V, et al. Innate immune response to tick-borne pathogens: Cellular and molecular mechanisms induced in the hosts. Int J Mol Sci 2020; 21(15): 5437.
[http://dx.doi.org/10.3390/ijms21155437] [PMID: 32751625]
[18]
de Macedo LO, Bezerra-Santos MA, Filho CRCU, et al. Vector-borne pathogens of zoonotic concern in dogs from a Quilombola community in northeastern Brazil. Parasitol Res 2022; 121(11): 3305-11.
[http://dx.doi.org/10.1007/s00436-022-07661-x] [PMID: 36102968]
[19]
del Cerro A, Oleaga A, Somoano A, Barandika JF, García-Pérez AL, Espí A. Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick Borne Dis 2022; 13(4): 101961.
[http://dx.doi.org/10.1016/j.ttbdis.2022.101961] [PMID: 35490548]
[20]
Duan R, Lv D, Fan R, et al. Anaplasma phagocytophilum in Marmota himalayana. BMC Genomics 2022; 23(1): 335.
[http://dx.doi.org/10.1186/s12864-022-08557-x] [PMID: 35490230]
[21]
Duron O, Koual R, Musset L, et al. Novel chronic anaplasmosis in splenectomized patient, Amazon rainforest. Emerg Infect Dis 2022; 28(8): 1673-6.
[http://dx.doi.org/10.3201/eid2808.212425] [PMID: 35876693]
[22]
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover, Germany. Ticks Tick Borne Dis 2022; 13(5): 101975.
[http://dx.doi.org/10.1016/j.ttbdis.2022.101975] [PMID: 35662065]
[23]
Hegab AA, Omar HM, Abuowarda M, Ghattas SG, Mahmoud NE, Fahmy MM. Screening and phylogenetic characterization of tick-borne pathogens in a population of dogs and associated ticks in Egypt. Parasit Vectors 2022; 15(1): 222.
[http://dx.doi.org/10.1186/s13071-022-05348-x] [PMID: 35729599]
[24]
Price KJ, Ayres BN, Maes SE, et al. First detection of human pathogenic variant of Anaplasma phagocytophilum in field‐collected Haemaphysalis longicornis, Pennsylvania, USA. Zoonoses Public Health 2022; 69(2): 143-8.
[http://dx.doi.org/10.1111/zph.12901] [PMID: 34958171]
[25]
Mubemba B, Mburu MM, Changula K, et al. Current knowledge of vector-borne zoonotic pathogens in Zambia: A clarion call to scaling-up “One Health” research in the wake of emerging and re-emerging infectious diseases. PLoS Negl Trop Dis 2022; 16(2): e0010193.
[http://dx.doi.org/10.1371/journal.pntd.0010193] [PMID: 35120135]
[26]
Aardema ML, Bates NV, Archer QE, von Loewenich FD. Demographic expansions and the emergence of host specialization in genetically distinct ecotypes of the tick-transmitted bacterium Anaplasma phagocytophilum. Appl Environ Microbiol 2022; 88(14): e00617-22.
[http://dx.doi.org/10.1128/aem.00617-22] [PMID: 35867580]
[27]
Colella V, Huggins L, Hodžić A, et al. High‐throughput microfluidic real‐time PCR for the simultaneous detection of selected vector‐borne pathogens in dogs in Bosnia and Herzegovina. Transbound Emerg Dis 2022; 69(5): e2943-51.
[http://dx.doi.org/10.1111/tbed.14645] [PMID: 35766324]
[28]
Egan SL, Taylor CL, Banks PB, et al. The bacterial biome of ticks and their wildlife hosts at the urban-wildland interface. Microb Genom 2021; 7(12): 7.
[http://dx.doi.org/10.1099/mgen.0.000730] [PMID: 34913864]
[29]
Foster E, Burtis J, Sidge JL, et al. Inter-annual variation in prevalence of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in host-seeking Ixodes scapularis (Acari: Ixodidae) at long-term surveillance sites in the upper midwestern United States: Implications for public health practice. Ticks Tick Borne Dis 2022; 13(2): 101886.
[http://dx.doi.org/10.1016/j.ttbdis.2021.101886] [PMID: 34929604]
[30]
Gandy S, Hansford K, McGinley L, et al. Prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus nymphs across twenty recreational areas in England and Wales. Ticks Tick Borne Dis 2022; 13(4): 101965.
[http://dx.doi.org/10.1016/j.ttbdis.2022.101965] [PMID: 35597188]
[31]
Lagunova EK, Liapunova NA, Tuul D, et al. Co-infections with multiple pathogens in natural populations of Ixodes persulcatus ticks in Mongolia. Parasit Vectors 2022; 15(1): 236.
[http://dx.doi.org/10.1186/s13071-022-05356-x] [PMID: 35765092]
[32]
Hove P, Madesh S, Nair A, et al. Targeted mutagenesis in Anaplasma marginale to define virulence and vaccine development against bovine anaplasmosis. PLoS Pathog 2022; 18(5): e1010540.
[http://dx.doi.org/10.1371/journal.ppat.1010540] [PMID: 35576225]
[33]
Kuleš J, Potocnakova L, Bhide K, et al. The challenges and advances in diagnosis of vector-borne diseases: where do we stand? Vector Borne Zoonotic Dis 2017; 17(5): 285-96.
[http://dx.doi.org/10.1089/vbz.2016.2074] [PMID: 28346867]
[34]
Izenour K, Zohdy S, Kalalah A, et al. Detection of zoonotic vector-borne pathogens in domestic dogs in Giza, Egypt. Vet Parasitol Reg Stud Rep 2022; 32: 100744.
[http://dx.doi.org/10.1016/j.vprsr.2022.100744] [PMID: 35725107]
[35]
Krawczyk AI, Röttjers S, Coimbra-Dores MJ, et al. Tick microbial associations at the crossroad of horizontal and vertical transmission pathways. Parasit Vectors 2022; 15(1): 380.
[http://dx.doi.org/10.1186/s13071-022-05519-w] [PMID: 36271430]
[36]
Krawczyk AI, Röttjers L, Fonville M, et al. Quantitative microbial population study reveals geographical differences in bacterial symbionts of Ixodes ricinus. Microbiome 2022; 10(1): 120.
[http://dx.doi.org/10.1186/s40168-022-01276-1] [PMID: 35927748]
[37]
Karshima SN, Ahmed MI, Kogi CA, Iliya PS. Anaplasma phagocytophilum infection rates in questing and host-attached ticks: A global systematic review and meta-analysis. Acta Trop 2022; 228: 106299.
[http://dx.doi.org/10.1016/j.actatropica.2021.106299] [PMID: 34998998]
[38]
Ismail N, Bloch KC, McBride JW. Human ehrlichiosis and anaplasmosis. Clin Lab Med 2010; 30(1): 261-92.
[http://dx.doi.org/10.1016/j.cll.2009.10.004] [PMID: 20513551]
[39]
Dumler JS, Choi KS, Garcia-Garcia JC, et al. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 2005; 11(12): 1828-34.
[http://dx.doi.org/10.3201/eid1112.050898] [PMID: 16485466]
[40]
Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin North Am 2015; 29(2): 341-55.
[http://dx.doi.org/10.1016/j.idc.2015.02.007] [PMID: 25999228]
[41]
Neumeister MW, Neumeister EL. Fibromyalgia. Clin Plast Surg 2020; 47(2): 203-13.
[http://dx.doi.org/10.1016/j.cps.2019.12.007] [PMID: 32115047]
[42]
Bair MJ, Krebs EE. Fibromyalgia. Ann Intern Med 2020; 172(5): ITC33-48.
[http://dx.doi.org/10.7326/AITC202003030] [PMID: 32120395]
[43]
Clauw DJ. Fibromyalgia. JAMA 2014; 311(15): 1547-55.
[http://dx.doi.org/10.1001/jama.2014.3266] [PMID: 24737367]
[44]
Herron MJ, Nelson CM, Larson J, Snapp KR, Kansas GS, Goodman JL. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 2000; 288(5471): 1653-6.
[http://dx.doi.org/10.1126/science.288.5471.1653] [PMID: 10834846]
[45]
Park J, Kim KJ, Grab DJ, Dumler JS. Anaplasma phagocytophilum major surface protein-2 (Msp2) forms multimeric complexes in the bacterial membrane. FEMS Microbiol Lett 2003; 227(2): 243-7.
[http://dx.doi.org/10.1016/S0378-1097(03)00687-6] [PMID: 14592715]
[46]
Sarkar M, Troese MJ, Kearns SA, Yang T, Reneer DV, Carlyon JA. Anaplasma phagocytophilum MSP2(P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect Immun 2008; 76(5): 2090-8.
[http://dx.doi.org/10.1128/IAI.01594-07] [PMID: 18285495]
[47]
Dunning Hotopp JC, Lin M, Madupu R, et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006; 2(2): e21.
[http://dx.doi.org/10.1371/journal.pgen.0020021] [PMID: 16482227]
[48]
Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003; 1(2): 137-49.
[http://dx.doi.org/10.1038/nrmicro753] [PMID: 15035043]
[49]
Li YG, Hu B, Christie PJ. Biological and structural diversity of type IV secretion systems. Microbiol Spectr 2019; 7(2): 7.2.30..
[http://dx.doi.org/10.1128/microbiolspec.PSIB-0012-2018] [PMID: 30953428]
[50]
Park J, Kim KJ, Choi K, Grab DJ, Dumler JS. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol 2004; 6(8): 743-51.
[http://dx.doi.org/10.1111/j.1462-5822.2004.00400.x] [PMID: 15236641]
[51]
Garcia-Garcia JC, Barat NC, Trembley SJ, Dumler JS. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog 2009; 5(6): e1000488.
[http://dx.doi.org/10.1371/journal.ppat.1000488] [PMID: 19543390]
[52]
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17(11): 1640-52.
[http://dx.doi.org/10.1111/cmi.12461] [PMID: 25996657]
[53]
Bierne H, Pourpre R. Bacterial factors targeting the nucleus: The growing family of nucleomodulins. Toxins 2020; 12(4): 220.
[http://dx.doi.org/10.3390/toxins12040220] [PMID: 32244550]
[54]
Kim Y, Wang J, Clemens EG, Grab DJ, Dumler JS. Anaplasma phagocytophilum ankyrin A protein (AnkA) enters the nucleus using an importin-β-, RanGTP-dependent mechanism. Front Cell Infect Microbiol 2022; 12: 828605.
[http://dx.doi.org/10.3389/fcimb.2022.828605] [PMID: 35719343]
[55]
Glushko GM. Human ehrlichiosis. Postgrad Med 1997; 101(6): 225-30.
[http://dx.doi.org/10.3810/pgm.1997.06.231] [PMID: 9194875]
[56]
Thomas RJ, Dumler JS, Carlyon JA. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti Infect Ther 2009; 7(6): 709-22.
[http://dx.doi.org/10.1586/eri.09.44] [PMID: 19681699]
[57]
Ndip LM, Labruna M, Ndip RN, Walker DH, McBride JW. Molecular and clinical evidence of Ehrlichia chaffeensis infection in Cameroonian patients with undifferentiated febrile illness. Ann Trop Med Parasitol 2009; 103(8): 719-25.
[http://dx.doi.org/10.1179/000349809X12554106963753] [PMID: 20030996]
[58]
Aucott JN. Posttreatment Lyme disease syndrome. Infect Dis Clin North Am 2015; 29(2): 309-23.
[http://dx.doi.org/10.1016/j.idc.2015.02.012] [PMID: 25999226]
[59]
Franck M, Ghozzi R, Pajaud J, et al. Borrelia miyamotoi: 43 cases diagnosed in France by real-time PCR in patients with persistent polymorphic signs and symptoms. Front Med 2020; 7: 55.
[http://dx.doi.org/10.3389/fmed.2020.00055] [PMID: 32181254]
[60]
Franck M, Ghozzi R, Pajaud J, et al. Response: Commentary: Borrelia miyamotoi: 43 cases diagnosed in France by real-time PCR in patients with persistent polymorphic signs and symptoms. Front Med 2020; 7: 586694.
[http://dx.doi.org/10.3389/fmed.2020.586694] [PMID: 33195346]
[61]
Pedra JHF, Tao J, Sutterwala FS, et al. IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis. FEMS Immunol Med Microbiol 2007; 50(3): 401-10.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00270.x] [PMID: 17521390]
[62]
Caro-Gomez E, Gazi M, Cespedes MA, Goez Y, Teixeira B, Valbuena G. Phenotype of the anti-Rickettsia CD8+ T cell response suggests cellular correlates of protection for the assessment of novel antigens. Vaccine 2014; 32(39): 4960-7.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.032] [PMID: 25043277]
[63]
Akkoyunlu M, Fikrig E. Gamma interferon dominates the murine cytokine response to the agent of human granulocytic ehrlichiosis and helps to control the degree of early rickettsemia. Infect Immun 2000; 68(4): 1827-33.
[http://dx.doi.org/10.1128/IAI.68.4.1827-1833.2000] [PMID: 10722570]
[64]
Barnewall RE, Rikihisa Y. Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin. Infect Immun 1994; 62(11): 4804-10.
[http://dx.doi.org/10.1128/iai.62.11.4804-4810.1994] [PMID: 7927758]
[65]
Feng HM, Walker DH. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect Immun 2000; 68(12): 6729-36.
[http://dx.doi.org/10.1128/IAI.68.12.6729-6736.2000] [PMID: 11083788]
[66]
Valbuena G, Feng HM, Walker DH. Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites. Microbes Infect 2002; 4(6): 625-33.
[http://dx.doi.org/10.1016/S1286-4579(02)01581-2] [PMID: 12048032]
[67]
Walker DH. Rickettsiae and rickettsial infections: The current state of knowledge. Clin Infect Dis 2007; 45 (Suppl. 1): S39-44.
[http://dx.doi.org/10.1086/518145] [PMID: 17582568]
[68]
Budachetri K, Teymournejad O, Lin M, et al. An entry-triggering protein of Ehrlichia is a new vaccine candidate against tick-borne human monocytic ehrlichiosis. MBio 2020; 11(4): e00895-20.
[http://dx.doi.org/10.1128/mBio.00895-20] [PMID: 32723916]
[69]
Tanguay S, Killion JJ. Direct comparison of ELISPOT and ELISA-based assays for detection of individual cytokine-secreting cells. Lymphokine Cytokine Res 1994; 13(4): 259-63.
[PMID: 7999925]
[70]
Grant L, Mohamedy I, Loertscher L. One man, three tick-borne illnesses. BMJ Case Rep 2021; 14(4): e241004.
[http://dx.doi.org/10.1136/bcr-2020-241004] [PMID: 33863772]
[71]
Ladha D, Khalife R, Hummel B, Purssell A. Human granulocytic anaplasmosis complicated by hemophagocytic syndrome and coinfection. CMAJ 2022; 194(49): E1685-8.
[http://dx.doi.org/10.1503/cmaj.220638] [PMID: 36535681]
[72]
Zeidner NS, Dolan MC, Massung R, Piesman J, Fish D. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL‐2 and IFNγ production and promotes an IL‐4 response in C3H/HeJ mice. Parasite Immunol 2000; 22(11): 581-8.
[http://dx.doi.org/10.1046/j.1365-3024.2000.00339.x] [PMID: 11116438]
[73]
Nishikai M, Tomomatsu S, Hankins RW, et al. Autoantibodies to a 68/48 kDa protein in chronic fatigue syndrome and primary fibromyalgia: A possible marker for hypersomnia and cognitive disorders. Rheumatology 2001; 40(7): 806-10.
[http://dx.doi.org/10.1093/rheumatology/40.7.806] [PMID: 11477286]
[74]
Jeong J, Kim DH, Park G, Park S, Kim HS. Clinical significance of anti-dense fine speckled 70 antibody in patients with fibromyalgia. Korean J Intern Med (Korean Assoc Intern Med) 2019; 34(2): 426-33.
[http://dx.doi.org/10.3904/kjim.2016.276] [PMID: 29166758]
[75]
Puri BK, Lee GS, Schwarzbach A. Antinuclear antibody seropositivity in fibromyalgia associated with Borrelia-specific T lymphocytes. Curr Rheumatol Rev 2023; 19(3): 352-4.
[http://dx.doi.org/10.2174/1573397119666230215124048] [PMID: 36790001]
[76]
Sambataro G, Orlandi M, Fagone E, et al. Myositis-specific and myositis-associated antibodies in fibromyalgia patients: A prospective study. Biomedicines 2023; 11(3): 658.
[http://dx.doi.org/10.3390/biomedicines11030658] [PMID: 36979638]
[77]
Kötter I, Neuscheler D, Günaydin I, Wernet D, Klein R. Is there a predisposition for the development of autoimmune diseases in patients with fibromyalgia? Retrospective analysis with long term follow-up. Rheumatol Int 2007; 27(11): 1031-9.
[http://dx.doi.org/10.1007/s00296-007-0413-7] [PMID: 17634900]
[78]
Wong SJ, Thomas JA. Cytoplasmic, nuclear, and platelet autoantibodies in human granulocytic ehrlichiosis patients. J Clin Microbiol 1998; 36(7): 1959-63.
[http://dx.doi.org/10.1128/JCM.36.7.1959-1963.1998] [PMID: 9650944]
[79]
Foley JE, Leutenegger CM, Stephen Dumler J, Pedersen NC, Madigan JE. Evidence for modulated immune response to Anaplasma phagocytophila sensu lato in cats with FIV-induced immunosuppression. Comp Immunol Microbiol Infect Dis 2003; 26(2): 103-13.
[http://dx.doi.org/10.1016/S0147-9571(02)00023-1] [PMID: 12493491]
[80]
Wolfe F, Clauw DJ, Fitzcharles MA, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res 2010; 62(5): 600-10.
[http://dx.doi.org/10.1002/acr.20140] [PMID: 20461783]
[81]
R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2022. Available from: https://www.scirp.org/(S (lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=3456808
[82]
JASP Team. JASP (Version 0.17.2.1). 2023. Available from: https://jasp-stats.org/download/
[83]
Fisher RA. Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd 1925.
[84]
Sprent P, Smeeton NC. Applied Nonparametric Statistical Methods. (4th ed.), Boca Raton, FL: Chapman & Hall/CRC Press 2007.
[85]
Yang J, Wen S, Kong J, et al. Forty years of evidence on the efficacy and safety of oral and injectable antibiotics for treating Lyme disease of adults and children: A network meta-analysis. Microbiol Spectr 2021; 9(3): e00761-21.
[http://dx.doi.org/10.1128/Spectrum.00761-21] [PMID: 34756070]
[86]
Bartels EM, Dreyer L, Jacobsen S, Jespersen A, Bliddal H, Danneskiold-Samsøe B. Fibromyalgia, diagnosis and prevalence. Are gender differences explainable? Ugeskr Laeger 2009; 171(49): 3588-92.
[PMID: 19954696]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy