Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

The Fascinating Effects of Flavonoids on Lung Cancer: A Review

Author(s): Dhirendra Singh, Meenakshi Dhanawat, Inderjeet Verma* and Sumeet Gupta

Volume 20, Issue 10, 2024

Published on: 16 February, 2024

Page: [1231 - 1251] Pages: 21

DOI: 10.2174/0115734013269110231113063044

Price: $65

Open Access Journals Promotions 2
Abstract

Lung cancer has emerged as one of the most often reported illnesses and leading causes of mortality worldwide. Inefficient, lack of safety, low therapeutic index, unpleasant effects, and excessive cost have led to a loss of trust in synthetic medications, limiting their use. Natural compounds have good anticancer potential without unwanted toxic effects. Among them, flavonoids are the most important compounds. Flavonoids are polyphenolic chemical compounds abundant in fruits and vegetables and are essential in preventing lung cancer. Their potent anticancer effects are said to be based on a wide range of biological actions, such as antioxidants, anti-mutagenesis, anti-inflammation, and differentiation induction, preventing cancer cell proliferation through regulating signal transduction pathways, triggering cell cycle arrest, and activating apoptosis or autophagy; anti-invasion; anti-metastasis, altering cancer cell drug resistance and increasing sensitization to chemotherapy. This review illustrates the most recent advancements in flavonoids in lung cancer and their associated molecular mechanisms using information from scientific research studies like in vitro and in vivo clinical trials. It takes these data into theory and practice.

Keywords: Flavonoids, lung cancer, oncogenic signaling, anticancer drugs, drug resistance, polyphenolic chemical.

Graphical Abstract
[1]
Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015; 385(9972): 977-1010.
[http://dx.doi.org/10.1016/S0140-6736(14)62038-9] [PMID: 25467588]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Howlader NN, Noone AM, Krapcho ME, et al. SEER cancer statistics review. National Cancer Institute 2019.
[4]
Chae DK, Ban E, Yoo YS, Kim EE, Baik JH, Song EJ. MIR‐27a regulates the TGF‐β signaling pathway by targeting SMAD2 and SMAD4 in lung cancer. Mol Carcinog 2017; 56(8): 1992-8.
[http://dx.doi.org/10.1002/mc.22655] [PMID: 28370334]
[5]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Takahashi T, Tateishi A, Bychkov A, Fukuoka J. Remarkable alteration of PD-L1 expression after immune checkpoint therapy in patients with non-small-cell lung cancer: Two autopsy case reports. Int J Mol Sci 2019; 20(10): 2578.
[http://dx.doi.org/10.3390/ijms20102578] [PMID: 31130676]
[7]
Vigneswaran J, Tan YHC, Murgu SD, et al. Comprehensive genetic testing identifies targetable genomic alterations in most patients with non-small cell lung cancer, specifically adenocarcinoma, single institute investigation. Oncotarget 2016; 7(14): 18876-86.
[http://dx.doi.org/10.18632/oncotarget.7739] [PMID: 26934441]
[8]
Park SJ, More S, Murtuza A, Woodward BD, Husain H. New targets in non–small cell lung cancer. Hematol Oncol Clin North Am 2017; 31(1): 113-29.
[http://dx.doi.org/10.1016/j.hoc.2016.08.010] [PMID: 27912827]
[9]
Snyder-Talkington BN, Dong C, Singh S, et al. Multi-walled carbon nanotube-induced gene expression biomarkers for medical and occupational surveillance. Int J Mol Sci 2019; 20(11): 2635.
[http://dx.doi.org/10.3390/ijms20112635] [PMID: 31146342]
[10]
Altorki NK, Markowitz GJ, Gao D, et al. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19(1): 9-31.
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[11]
Fujimoto D, Uehara K, Sato Y, et al. Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci Rep 2017; 7(1): 11373.
[http://dx.doi.org/10.1038/s41598-017-11949-9] [PMID: 28900290]
[12]
Akhter S, Ahmad J, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[http://dx.doi.org/10.2147/NSA.S49052] [PMID: 26640374]
[13]
Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010; 2(11): 1106-31.
[http://dx.doi.org/10.3390/nu2111106] [PMID: 22254000]
[14]
Budisan L, Gulei D, Zanoaga O, et al. Dietary Intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci 2017; 18(6): 1178.
[http://dx.doi.org/10.3390/ijms18061178] [PMID: 28587155]
[15]
Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000; 55(6): 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[16]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[17]
Batra P, Sharma AK. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech 2013; 3(6): 439-59.
[http://dx.doi.org/10.1007/s13205-013-0117-5]
[18]
Braicu C, Mehterov N, Vladimirov B, et al. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46: 84-106.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.011] [PMID: 28676460]
[19]
Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett 2015; 359(2): 155-64.
[http://dx.doi.org/10.1016/j.canlet.2015.01.038] [PMID: 25644088]
[20]
Braicu C, Pilecki V, Balacescu O, Irimie A, Berindan Neagoe I. The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci 2011; 12(12): 9342-53.
[http://dx.doi.org/10.3390/ijms12129342] [PMID: 22272136]
[21]
Menezes JCJMDS, Orlikova B, Morceau F, Diederich M. Natural and synthetic flavonoids: Structure-activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit Rev Food Sci Nutr 2016; 56(sup1): S4-S28.
[http://dx.doi.org/10.1080/10408398.2015.1074532] [PMID: 26463658]
[22]
Budisan L, Gulei D, Jurj A, et al. Inhibitory effect of CAPE and kaempferol in colon cancer cell lines-possible implications in new therapeutic strategies. Int J Mol Sci 2019; 20(5): 1199.
[http://dx.doi.org/10.3390/ijms20051199] [PMID: 30857282]
[23]
Qiu T, Wu D, Yang L, et al. Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Front Pharmacol 2018; 9: 918.
[http://dx.doi.org/10.3389/fphar.2018.00918] [PMID: 30158870]
[24]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[25]
Iwashina T. Flavonoid properties in plant families synthesizing betalain pigments (Review). Nat Prod Commun 2015; 10(6): 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000675] [PMID: 26197560]
[26]
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26(8): 1001-43.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[27]
Han RM, Tian YX, Liu Y, et al. Comparison of flavonoids and isoflavonoids as antioxidants. J Agric Food Chem 2009; 57(9): 3780-5.
[http://dx.doi.org/10.1021/jf803850p] [PMID: 19296660]
[28]
Tsao R, Yang R, Young JC, Zhu H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 2003; 51(21): 6347-53.
[http://dx.doi.org/10.1021/jf0346298] [PMID: 14518966]
[29]
Laleh GH, Frydoonfar H, Heidary R, Jameei R, Zare S. The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pak J Nutr 2006; 5(1): 90-2.
[http://dx.doi.org/10.3923/pjn.2006.90.92]
[30]
Li Y, Zhang T, Chen G. Flavonoids and colorectal cancer prevention. Antioxidants 2018; 7(12): 187.
[http://dx.doi.org/10.3390/antiox7120187] [PMID: 30544686]
[31]
Hodek P, Trefil P, Stiborová M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 2002; 139(1): 1-21.
[http://dx.doi.org/10.1016/S0009-2797(01)00285-X] [PMID: 11803026]
[32]
Jang HS, Kook SH, Son YO, et al. Flavonoids purified from Rhus verniciflua Stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim Biophys Acta, Gen Subj 2005; 1726(3): 309-16.
[http://dx.doi.org/10.1016/j.bbagen.2005.08.010] [PMID: 16213662]
[33]
Moon YJ, Wang X, Morris ME. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006; 20(2): 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[34]
Zamora-Ros R, Agudo A, Luján-Barroso L, et al. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 2012; 96(6): 1398-408.
[http://dx.doi.org/10.3945/ajcn.112.037358] [PMID: 23076618]
[35]
Frankenfeld CL, Cerhan JR, Cozen W, et al. Dietary flavonoid intake and non-hodgkin lymphoma risk. Am J Clin Nutr 2008; 87(5): 1439-45.
[http://dx.doi.org/10.1093/ajcn/87.5.1439] [PMID: 18469269]
[36]
Shin S, Lee Y, Kim B, et al. Inhibitory effect of synthetic flavone derivatives on pan-aurora kinases: induction of G2/M cell-cycle arrest and apoptosis in HCT116 human colon cancer cells. Int J Mol Sci 2018; 19(12): 4086.
[http://dx.doi.org/10.3390/ijms19124086] [PMID: 30562979]
[37]
Kanwal R, Datt M, Liu X, Gupta S. Dietary flavones as dual inhibitors of DNA methyltransferases and histone methyltransferases. PLoS One 2016; 11(9): e0162956.
[http://dx.doi.org/10.1371/journal.pone.0162956] [PMID: 27658199]
[38]
Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules 2020; 25(22): 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[39]
Pfeffer C, Singh A. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19(2): 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[40]
Li X, Chen G, Zhang X, et al. A new class of flavonol-based anti-prostate cancer agents: Design, synthesis, and evaluation in cell models. Bioorg Med Chem Lett 2016; 26(17): 4241-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.050] [PMID: 27476422]
[41]
Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: What is their role in cardiovascular protection? J Agric Food Chem 2012; 60(36): 8809-22.
[http://dx.doi.org/10.1021/jf300669s] [PMID: 22574825]
[42]
Lee Y, Shin SY, Hyun J, Lee SD, Lee YH, Lim Y. Flavanones inhibit the clonogenicity of HCT116 cololectal cancer cells. Int J Mol Med 2011; 29(3): 403-8.
[http://dx.doi.org/10.3892/ijmm.2011.857] [PMID: 22160193]
[43]
Abotaleb M, Samuel S, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[44]
Shin HJ, Hwang KA, Choi KC. Antitumor effect of various phytochemicals on diverse types of thyroid cancers. Nutrients 2019; 11(1): 125.
[http://dx.doi.org/10.3390/nu11010125] [PMID: 30634497]
[45]
de Sousa Moraes LF, Sun X, Peluzio MCG, Zhu MJ. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Crit Rev Food Sci Nutr 2019; 59(1): 59-71.
[http://dx.doi.org/10.1080/10408398.2017.1357533] [PMID: 28799785]
[46]
Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res Int 2019; 2019: 1-18.
[http://dx.doi.org/10.1155/2019/7010467] [PMID: 31737673]
[47]
Zhou Z, Tang M, Liu Y, Zhang Z, Lu R, Lu J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs 2017; 28(4): 446-56.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[48]
Liu R, Ji P, Liu B, et al. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett 2017; 13(2): 1024-30.
[http://dx.doi.org/10.3892/ol.2016.5495] [PMID: 28356995]
[49]
Park KI, Park HS, Kim MK, et al. Flavonoids identified from korean citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. J Funct Foods 2014; 7: 287-97.
[http://dx.doi.org/10.1016/j.jff.2014.01.032]
[50]
Chen M, Wang X, Zha D, et al. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 2016; 6(1): 35468.
[http://dx.doi.org/10.1038/srep35468] [PMID: 27752089]
[51]
Chang JH, Cheng CW, Yang YC, et al. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J Exp Clin Cancer Res 2018; 37(1): 199.
[http://dx.doi.org/10.1186/s13046-018-0869-1] [PMID: 30134935]
[52]
Li Y, Chen X, He W, et al. Apigenin enhanced antitumor effect of cisplatin in lung cancer via inhibition of cancer stem cells. Nutr Cancer 2021; 73(8): 1489-97.
[http://dx.doi.org/10.1080/01635581.2020.1802494] [PMID: 32757802]
[53]
Liu X, Zhao T, Shi Z, Hu C, Li Q, Sun C. Synergism antiproliferative effects of apigenin and naringenin in NSCLC cells. Molecules 2023; 28(13): 4947.
[http://dx.doi.org/10.3390/molecules28134947] [PMID: 37446609]
[54]
Ji RS, Wang ZL, Wu T, et al. Effect of apigenin in combination with oxymatrine on non-small cell lung cancer and mechanism. Zhongguo Zhong Yao Za Zhi 2023; 48(3): 752-61.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20221012.401]
[55]
Cao J, Zhang Y, Chen W, Zhao X. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Br J Nutr 2010; 103(2): 249-55.
[http://dx.doi.org/10.1017/S000711450999170X] [PMID: 19747418]
[56]
Ma L, Peng H, Li K, et al. Luteolin exerts an anticancer effect on NCI-H460 human non-small cell lung cancer cells through the induction of Sirt1-mediated apoptosis. Mol Med Rep 2015; 12(3): 4196-202.
[http://dx.doi.org/10.3892/mmr.2015.3956] [PMID: 26096576]
[57]
Cai X, Ye T, Liu C, et al. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol In Vitro 2011; 25(7): 1385-91.
[http://dx.doi.org/10.1016/j.tiv.2011.05.009] [PMID: 21601631]
[58]
Jiang ZQ, Li MH, Qin YM, Jiang HY, Zhang X, Wu MH. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. Int J Mol Sci 2018; 19(2): 447.
[http://dx.doi.org/10.3390/ijms19020447] [PMID: 29393891]
[59]
Yu Q, Zhang M, Ying Q, et al. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis 2019; 10(3): 218.
[http://dx.doi.org/10.1038/s41419-019-1447-y] [PMID: 30833546]
[60]
Zheng H, Zhu X, Gong E, Lv Y, Li Y, Cai X. Luteolin suppresses lung cancer progression through targeting the circ_0000190/miR-130a-3p/notch-1 signaling pathway. J Chemother 2023; 35(4): 330-42.
[http://dx.doi.org/10.1080/1120009X.2022.2102303] [PMID: 35943044]
[61]
Li X, Tang Y, Liang P, et al. Luteolin inhibits A549 cells proliferation and migration by down-regulating androgen receptors. Eur J Med Res 2023; 28(1): 353.
[http://dx.doi.org/10.1186/s40001-023-01302-4] [PMID: 37716981]
[62]
Sampson L, Rimm E, Hollman PCH, de Vries JHM, Katan MB. Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 2002; 102(10): 1414-20.
[http://dx.doi.org/10.1016/S0002-8223(02)90314-7] [PMID: 12396158]
[63]
Xingyu Z, Peijie M, Dan P, et al. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med 2016; 5(11): 3156-65.
[http://dx.doi.org/10.1002/cam4.891] [PMID: 27704720]
[64]
Cincin ZB, Unlu M, Kiran B, Bireller ES, Baran Y, Cakmakoglu B. Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res 2014; 45(6): 445-54.
[http://dx.doi.org/10.1016/j.arcmed.2014.08.002] [PMID: 25193878]
[65]
Kuo PC, Liu HF, Chao JI. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem 2004; 279(53): 55875-85.
[http://dx.doi.org/10.1074/jbc.M407985200] [PMID: 15456784]
[66]
Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45(12): 2821-31.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[67]
Lee SH, Lee EJ, Min KH, et al. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin Lung Cancer 2015; 16(6): e235-43.
[http://dx.doi.org/10.1016/j.cllc.2015.05.006] [PMID: 26050647]
[68]
Sonoki H, Sato T, Endo S, et al. Quercetin decreases claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells. Nutrients 2015; 7(6): 4578-92.
[http://dx.doi.org/10.3390/nu7064578] [PMID: 26061016]
[69]
Wang Y, Yu H, Wang S, et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C 2021; 119: 111442.
[http://dx.doi.org/10.1016/j.msec.2020.111442] [PMID: 33321583]
[70]
Chang JH, Lai SL, Chen WS, et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent Akt activation and snail-independent ADAM9 expression pathways. Biochim Biophys Acta Mol Cell Res 2017; 1864(10): 1746-58.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.017] [PMID: 28648644]
[71]
Yousuf M, Khan P, Shamsi A, et al. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega 2020; 5(42): 27480-91.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[72]
Zhao MH, Yuan L, Meng LY, Qiu JL, Wang CB. Quercetin loaded mixed micelles exhibit enhanced cytotoxic efficacy in non small cell lung cancer in vitro. Exp Ther Med 2017; 14(6): 5503-8.
[http://dx.doi.org/10.3892/etm.2017.5230] [PMID: 29285083]
[73]
Baby B, Antony P, Vijayan R. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Nat Prod Res 2018; 32(24): 2928-31.
[http://dx.doi.org/10.1080/14786419.2017.1385015] [PMID: 29022361]
[74]
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165: 115071.
[http://dx.doi.org/10.1016/j.biopha.2023.115071] [PMID: 37390710]
[75]
Bai W, Wang C, Ren C. Intakes of total and individual flavonoids by US adults. Int J Food Sci Nutr 2014; 65(1): 9-20.
[http://dx.doi.org/10.3109/09637486.2013.832170] [PMID: 24020353]
[76]
Han X, Liu CF, Gao N, Zhao J, Xu J. RETRACTED: Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed Pharmacother 2018; 108: 809-16.
[http://dx.doi.org/10.1016/j.biopha.2018.09.087] [PMID: 30253373]
[77]
Nguyen TTT, Tran E, Ong CK, et al. Kaempferol‐induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK‐MAPK. J Cell Physiol 2003; 197(1): 110-21.
[http://dx.doi.org/10.1002/jcp.10340] [PMID: 12942547]
[78]
Jo E, Park SJ, Choi YS, Jeon WK, Kim BC. Kaempferol suppresses transforming growth factor-β1–induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia 2015; 17(7): 525-37.
[http://dx.doi.org/10.1016/j.neo.2015.06.004] [PMID: 26297431]
[79]
Leung HWC, Lin CJ, Hour MJ, Yang WH, Wang MY, Lee HZ. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem Toxicol 2007; 45(10): 2005-13.
[http://dx.doi.org/10.1016/j.fct.2007.04.023] [PMID: 17583406]
[80]
Kuo WT, Tsai YC, Wu HC, et al. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep 2015; 34(5): 2351-6.
[http://dx.doi.org/10.3892/or.2015.4204] [PMID: 26323894]
[81]
Sonoki H, Tanimae A, Endo S, et al. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients 2017; 9(6): 597.
[http://dx.doi.org/10.3390/nu9060597] [PMID: 28608828]
[82]
Wang R, Deng Z, Zhu Z, et al. Kaempferol promotes non-small cell lung cancer cell autophagy via restricting Met pathway. Phytomedicine 2023; 121: 155090.
[http://dx.doi.org/10.1016/j.phymed.2023.155090] [PMID: 37738907]
[83]
Valls RM, Pedret A, Calderón-Pérez L, et al. Effects of hesperidin in orange juice on blood and pulse pressures in mildly hypertensive individuals: A randomized controlled trial (Citrus study). Eur J Nutr 2021; 60(3): 1277-88.
[http://dx.doi.org/10.1007/s00394-020-02279-0] [PMID: 32661681]
[84]
Xia R, Sheng X, Xu X, Yu C, Lu H. Hesperidin induces apoptosis and G0/G1 arrest in human non-small cell lung cancer A549 cells. Int J Mol Med 2017; 41(1): 464-72.
[http://dx.doi.org/10.3892/ijmm.2017.3250] [PMID: 29138795]
[85]
Kamaraj S, Anandakumar P, Jagan S, et al. Hesperidin inhibits cell proliferation and induces mitochondrial-mediated apoptosis in human lung cancer cells through down regulation of β-catenin/c-myc. Biocatal Agric Biotechnol 2019; 18: 101065.
[http://dx.doi.org/10.1016/j.bcab.2019.101065]
[86]
Tan S, Dai L, Tan P, et al. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR 132/ZEB2 signalling pathway. Int J Mol Med 2020; 46(6): 2069-77.
[http://dx.doi.org/10.3892/ijmm.2020.4756] [PMID: 33125117]
[87]
Birsu Cincin Z, Unlu M, Kiran B, Sinem Bireller E, Baran Y, Cakmakoglu B. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell Oncol 2015; 38(3): 195-204.
[http://dx.doi.org/10.1007/s13402-015-0222-z] [PMID: 25860498]
[88]
Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules 2019; 24(6): 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[89]
Zhang L, Ma X, Dong Y. Effect of genistein on apoptosis of lung adenocarcinoma A549 cells and expression of apoptosis factors. J BUON 2018; 23(3): 641-6.
[PMID: 30003731]
[90]
Tian T, Li J, Li B, et al. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumour Biol 2014; 35(5): 4137-45.
[http://dx.doi.org/10.1007/s13277-013-1542-0] [PMID: 24379139]
[91]
Yang Y, Zang A, Jia Y, et al. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol Lett 2016; 12(3): 2189-93.
[http://dx.doi.org/10.3892/ol.2016.4817] [PMID: 27602162]
[92]
Fu Z, Cao X, Liu L, et al. Genistein inhibits lung cancer cell stem like characteristics by modulating MnSOD and FoxM1 expression. Oncol Lett 2020; 20(3): 2506-15.
[http://dx.doi.org/10.3892/ol.2020.11802] [PMID: 32782570]
[93]
Zhang Z, Jin F, Lian X, et al. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Sci Rep 2018; 8(1): 328.
[http://dx.doi.org/10.1038/s41598-017-18755-3] [PMID: 29321496]
[94]
Yu Y, Xing Y, Zhang Q, et al. Soy isoflavone genistein inhibits hsa_circ_0031250/miR ‐873‐5p/FOXM1 axis to suppress non‐small‐cell lung cancer progression. IUBMB Life 2021; 73(1): 92-107.
[http://dx.doi.org/10.1002/iub.2404] [PMID: 33159503]
[95]
Liu X, Sun C, Liu B, et al. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget 2016; 7(19): 27267-79.
[http://dx.doi.org/10.18632/oncotarget.8403] [PMID: 27029077]
[96]
Zhang J, Su H, Li Q, Li J, Zhao Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF-1α/VEGF and NF-κB/COX-2 signaling pathways. Mol Med Rep 2017; 15(4): 2296-302.
[http://dx.doi.org/10.3892/mmr.2017.6260] [PMID: 28259980]
[97]
Noori-Daloii M. Study of antimetastatic effect of genistein through inhibition of expression of matrix metalloproteinase in A-549 cell line. J Sci Islam Repub Iran 2021; 23: 115-22.
[98]
Jun S, Shin S, Joung H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr 2016; 115(3): 480-9.
[http://dx.doi.org/10.1017/S0007114515004006] [PMID: 26489826]
[99]
Chen Z, Miao H, Zhu Z, Zhang H, Huang H. Daidzein induces apoptosis of non-small cell lung cancer cells by restoring STK 4/YAP 1 signalling. Int J Clin Exp Med 2017; 10: 15205-12.
[100]
Guo S, Wang Y, Li Y, Li Y, Feng C, Li Z. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway. Immunol Lett 2020; 222: 67-72.
[http://dx.doi.org/10.1016/j.imlet.2020.03.004] [PMID: 32197974]
[101]
Liu H, Wang X, Jin O. Effect of daidzein on the proliferation of lung cancer cells involved in the apoptotic signalling pathway. Res Square 2020; 2020: 127789.
[http://dx.doi.org/10.21203/rs.3.rs-127789/v1]
[102]
Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 1998; 8(3): 168-75.
[http://dx.doi.org/10.2188/jea.8.168] [PMID: 9782673]
[103]
Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med 2017; 15(3): 2667-73.
[http://dx.doi.org/10.3892/etm.2017.5666] [PMID: 29467859]
[104]
Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: A synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int 2016; 16(1): 10.
[http://dx.doi.org/10.1186/s12935-016-0288-3] [PMID: 26884726]
[105]
Tabasum S, Singh RP, Tabasum S, Singh RP. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem Biol Interact 2019; 303(303): 14-21.
[http://dx.doi.org/10.1016/j.cbi.2019.02.020] [PMID: 30802432]
[106]
Shi B, Wang LF, Meng WS, Chen L, Meng ZL. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol 2017; 50(6): 2123-35.
[http://dx.doi.org/10.3892/ijo.2017.3970] [PMID: 28440400]
[107]
Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 2012; 130(7): 1695-705.
[http://dx.doi.org/10.1002/ijc.26178] [PMID: 21618507]
[108]
Aranganathan S, Selvam JP, Nalini N. Effect of hesperetin, a citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: A dose-dependent study. J Pharm Pharmacol 2010; 60(10): 1385-92.
[http://dx.doi.org/10.1211/jpp.60.10.0015] [PMID: 18812032]
[109]
Elango R, Athinarayanan J, Subbarayan VP, Lei DKY, Alshatwi AA. Hesperetin induces an apoptosis-triggered extrinsic pathway and a p53- independent pathway in human lung cancer H522 cells. J Asian Nat Prod Res 2018; 20(6): 559-69.
[http://dx.doi.org/10.1080/10286020.2017.1327949] [PMID: 28537448]
[110]
Ramteke P, Yadav UCS. Hesperetin, a Citrus bioflavonoid, prevents IL-1_-induced inflammation and cell proliferation in lung epithelial A549 cells. Indian J Exp Biol 2019; 57: 7-14.
[111]
Wang Y, Liu S, Dong W, et al. Combination of hesperetin and platinum enhances anticancer effect on lung adenocarcinoma. Biomed Pharmacother 2019; 113: 108779.
[http://dx.doi.org/10.1016/j.biopha.2019.108779] [PMID: 30889488]
[112]
Kong W, Ling X, Chen Y, et al. Hesperetin reverses P glycoprotein mediated cisplatin resistance in DDP resistant human lung cancer cells via modulation of the nuclear factor κB signaling pathway. Int J Mol Med 2020; 45(4): 1213-24.
[http://dx.doi.org/10.3892/ijmm.2020.4485] [PMID: 32124932]
[113]
Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Rinaldi Alvarenga JF, Leal LN, Lamuela-Raventos RM. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 2014; 154: 299-307.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.106]
[114]
Chang HL, Chang YM, Lai SC, et al. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and −9. Exp Ther Med 2017; 13(2): 739-44.
[http://dx.doi.org/10.3892/etm.2016.3994] [PMID: 28352360]
[115]
Jin CY, Park C, Hwang HJ, et al. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 2011; 55(2): 300-9.
[http://dx.doi.org/10.1002/mnfr.201000024] [PMID: 20669244]
[116]
Shi X, Luo X, Chen T, et al. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021; 25(5): 2563-71.
[http://dx.doi.org/10.1111/jcmm.16226] [PMID: 33523599]
[117]
Lin J, Zhang SM, Wu K, Willett WC, Fuchs CS, Giovannucci E. Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 2006; 164(7): 644-51.
[http://dx.doi.org/10.1093/aje/kwj296] [PMID: 16923774]
[118]
Kang HR, Moon JY, Ediriweera MK, et al. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549‐IR) by suppressing MMP‐2 and MMP‐9 expressions through inhibition of the FAK‐ERK signaling pathway. Food Sci Nutr 2020; 8(4): 2059-67.
[http://dx.doi.org/10.1002/fsn3.1495] [PMID: 32328272]
[119]
Zhang S, Wang L, Liu H, Zhao G, Ming L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn Pathol 2014; 9(1): 68.
[http://dx.doi.org/10.1186/1746-1596-9-68] [PMID: 24650056]
[120]
Gu L, Li Z, Zhang X, Chen M, Zhang X. Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161: 114460.
[http://dx.doi.org/10.1016/j.biopha.2023.114460] [PMID: 36870282]
[121]
Zhou H, Xu L, Shi Y, et al. A novel myricetin derivative with anti-cancer properties induces cell cycle arrest and apoptosis in A549 Cells. Biol Pharm Bull 2023; 46(1): 42-51.
[http://dx.doi.org/10.1248/bpb.b22-00483] [PMID: 36596525]
[122]
Han J, Cheng C, Zhang J, et al. Myricetin activates the Caspase-3/GSDME pathway via ER stress induction of pyroptosis in lung cancer cells. Front Pharmacol 2022; 13: 959938.
[http://dx.doi.org/10.3389/fphar.2022.959938] [PMID: 36091790]
[123]
Dusemund B. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16(4): e05239.
[http://dx.doi.org/10.2903/j.efsa.2018.5239]
[124]
Zhong Z, Dong Z, Yang L, Chen X, Gong Z. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp Ther Med 2012; 4(2): 267-72.
[http://dx.doi.org/10.3892/etm.2012.580] [PMID: 22970031]
[125]
Ma YC, Li C, Gao F, et al. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncol Rep 2014; 31(3): 1343-9.
[http://dx.doi.org/10.3892/or.2013.2933] [PMID: 24366444]
[126]
Gu JJ, Qiao KS, Sun P, Chen P, Li Q. Study of EGCG induced apoptosis in lung cancer cells by inhibiting PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 2018; 22(14): 4557-63.
[http://dx.doi.org/10.26355/eurrev_201807_15511] [PMID: 30058690]
[127]
Liu LC, Tsao TCY, Hsu SR, et al. EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of Smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells. J Agric Food Chem 2012; 60(39): 9863-73.
[http://dx.doi.org/10.1021/jf303690x] [PMID: 22957988]
[128]
Ko H, So Y, Jeon H, et al. TGF-β1-induced epithelial–mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in Human A549 lung cancer cells. Cancer Lett 2013; 335(1): 205-13.
[http://dx.doi.org/10.1016/j.canlet.2013.02.018] [PMID: 23419524]
[129]
Bhardwaj V, Mandal A. next-generation sequencing reveals the role of epigallocatechin-3-gallate in regulating putative novel and known micrornas which target the mapk pathway in non-small-cell lung cancer A549 cells. Molecules 2019; 24(2): 368.
[http://dx.doi.org/10.3390/molecules24020368] [PMID: 30669618]
[130]
Zhou DH, Wang X, Feng Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr Cancer 2014; 66(4): 636-44.
[http://dx.doi.org/10.1080/01635581.2014.894101] [PMID: 24712372]
[131]
Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis 2011; 32(12): 1881-9.
[http://dx.doi.org/10.1093/carcin/bgr218] [PMID: 21965273]
[132]
Jiang P, Wu X, Wang X, Huang W, Feng Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget 2016; 7(28): 43337-51.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[133]
Yu C, Jiao Y, Xue J, et al. Metformin sensitizes non-small cell lung cancer cells to an Epigallocatechin-3-Gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 2017; 13(12): 1560-9.
[http://dx.doi.org/10.7150/ijbs.18830] [PMID: 29230104]
[134]
Namiki K, Wongsirisin P, Yokoyama S, et al. (−)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep 2020; 10(1): 2444.
[http://dx.doi.org/10.1038/s41598-020-59281-z] [PMID: 32051483]
[135]
Chen BH, Hsieh CH, Tsai SY, Wang CY, Wang CC. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci Rep 2020; 10(1): 5163.
[http://dx.doi.org/10.1038/s41598-020-62136-2] [PMID: 32198390]
[136]
Wang J, Sun P, Wang Q, et al. (−)-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells. Cancer Cell Int 2019; 19(1): 266.
[http://dx.doi.org/10.1186/s12935-019-0981-0] [PMID: 31636509]
[137]
Zhang L, Xie J, Gan R, et al. Synergistic inhibition of lung cancer cells by EGCG and NF-κB inhibitor BAY11-7082. J Cancer 2019; 10(26): 6543-56.
[http://dx.doi.org/10.7150/jca.34285] [PMID: 31777584]
[138]
Jiang P, Xu C, Zhang P, et al. Epigallocatechin 3 gallate inhibits self renewal ability of lung cancer stem like cells through inhibition of CLOCK. Int J Mol Med 2020; 46(6): 2216-24.
[http://dx.doi.org/10.3892/ijmm.2020.4758] [PMID: 33125096]
[139]
Li L, Gao H, Lou K, et al. Safety, tolerability, and pharmacokinetics of oral baicalein tablets in healthy Chinese subjects: A single‐center, randomized, double‐blind, placebo‐controlled multiple‐ascending‐dose study. Clin Transl Sci 2021; 14(5): 2017-24.
[http://dx.doi.org/10.1111/cts.13063] [PMID: 34156161]
[140]
Su G, Chen H, Sun X. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway. Cancer Biomark 2018; 22(1): 13-8.
[http://dx.doi.org/10.3233/CBM-170673] [PMID: 29614624]
[141]
Yu M, Qi B, Xiaoxiang W, Xu J, Liu X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother 2017; 90: 677-85.
[http://dx.doi.org/10.1016/j.biopha.2017.04.001] [PMID: 28415048]
[142]
Zhang Z, Nong L, Chen M, et al. Baicalein suppresses vasculogenic mimicry through inhibiting RhoA/ROCK expression in lung cancer A549 cell line. Acta Biochim Biophys Sin 2020; 52(9): 1007-15.
[http://dx.doi.org/10.1093/abbs/gmaa075] [PMID: 32672788]
[143]
Zhang X, Ruan Q, Zhai Y, et al. Baicalein inhibits NSCLC invasion and metastasis by reducing ezrin tension in inflammation microenvironment. Cancer Sci 2020; 111(10): 3802-12.
[http://dx.doi.org/10.1111/cas.14577] [PMID: 32691974]
[144]
Zhao Z, Liu B, Sun J, et al. Scutellaria Flavonoids effectively inhibit the malignant phenotypes of non-small cell lung cancer in an Id1-dependent manner. Int J Biol Sci 2019; 15(7): 1500-13.
[http://dx.doi.org/10.7150/ijbs.33146] [PMID: 31337979]
[145]
Diao X, Yang D, Chen Y, Liu W. Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase. Biosci Rep 2019; 39(4): BSR20181692.
[http://dx.doi.org/10.1042/BSR20181692] [PMID: 30898980]
[146]
Gu L, Xu F, Zhang X, Gu Z. Baicalein inhibits the SMYD2/RPS7 signaling pathway to inhibit the occurrence and metastasis of lung cancer. J Oncol 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/3796218] [PMID: 35432530]
[147]
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2)
[http://dx.doi.org/10.1177/1559325817711782] [PMID: 28694744]
[148]
Mehdi SH, Zafaryab M, Nafees S, et al. Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pacific J Cancer Biol 2019; 4(2): 27-33.
[http://dx.doi.org/10.31557/apjcb.2019.4.2.27-33]
[149]
Maruhashi R, Eguchi H, Akizuki R, et al. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci Rep 2019; 9(1): 13753.
[http://dx.doi.org/10.1038/s41598-019-50276-z] [PMID: 31551535]
[150]
Brechbuhl HM, Kachadourian R, Min E, Chan D, Day BJ. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione. Toxicol Appl Pharmacol 2012; 258(1): 1-9.
[http://dx.doi.org/10.1016/j.taap.2011.08.004] [PMID: 21856323]
[151]
Wu TC, Chan ST, Chang CN, Yu PS, Chuang CH, Yeh SL. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem Biol Interact 2018; 292: 101-9.
[http://dx.doi.org/10.1016/j.cbi.2018.07.010] [PMID: 30016632]
[152]
Shao J, Zhang A, Qin W, Zheng L, Zhu Y, Chen X. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem Biophys Res Commun 2012; 423(3): 448-53.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.123] [PMID: 22659738]
[153]
Lirdprapamongkol K, Sakurai H, Abdelhamed S, et al. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 2013; 43(1): 329-37.
[http://dx.doi.org/10.3892/ijo.2013.1926] [PMID: 23636231]
[154]
Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem 2006; 70(1): 178-92.
[http://dx.doi.org/10.1271/bbb.70.178] [PMID: 16428836]
[155]
Da C, Liu Y, Zhan Y, Liu K, Wang R. Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway. Oncol Rep 2016; 35(5): 2767-74.
[http://dx.doi.org/10.3892/or.2016.4661] [PMID: 26986176]
[156]
Gao XJ, Liu JW, Zhang QG, Zhang JJ, Xu HT, Liu HJ. Nobiletin inhibited hypoxia-induced epithelial-mesenchymal transition of lung cancer cells by inactivating of Notch-1 signaling and switching on miR-200b. Pharmazie 2015; 70(4): 256-62.
[PMID: 26012256]
[157]
Li Y, Fan F, Wang Y, et al. The novel small molecule BH3 mimetic nobiletin synergizes with vorinostat to induce apoptosis and autophagy in small cell lung cancer. Biochem Pharmacol 2023; 216: 115807.
[http://dx.doi.org/10.1016/j.bcp.2023.115807] [PMID: 37716621]
[158]
Han SH, Han JH, Chun WJ, Lee SS, Kim HS, Lee JW. Nobiletin inhibits non-small-cell lung cancer by inactivating WNT/β-catenin signaling through downregulating miR-15-5p. Evid Based Complement Alternat Med 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/7782963] [PMID: 35003309]
[159]
Yu G, Wan R, Yin G, et al. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB. Int J Clin Exp Pathol 2014; 7(5): 2133-42.
[PMID: 24966921]
[160]
Chen X, Wu Q, Chen Y, et al. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non‐small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol 2019; 176(12): 2079-94.
[http://dx.doi.org/10.1111/bph.14652] [PMID: 30825187]
[161]
Xu Z, Yan Y, Xiao L, et al. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS One 2017; 12(4): e0175977.
[http://dx.doi.org/10.1371/journal.pone.0175977] [PMID: 28414793]
[162]
Husain A, Chanana H, Khan SA, et al. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front Nutr 2022; 9: 746881.
[http://dx.doi.org/10.3389/fnut.2022.746881] [PMID: 35369062]
[163]
Zamora-Ros R, Knaze V, Luján-Barroso L, et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Br J Nutr 2011; 106(12): 1915-25.
[http://dx.doi.org/10.1017/S000711451100239X] [PMID: 21679483]
[164]
Kim MH, Jeong YJ, Cho HJ, et al. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep 2017; 37(2): 777-84.
[http://dx.doi.org/10.3892/or.2016.5296] [PMID: 27959445]
[165]
Pal HC, Sharma S, Strickland LR, et al. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One 2013; 8(10): e77270.
[http://dx.doi.org/10.1371/journal.pone.0077270] [PMID: 24124611]
[166]
Kang SH, Bak DH, Chung BY, Bai HW, Kang BS. Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer. Korean J Physiol Pharmacol 2020; 24(5): 413-22.
[http://dx.doi.org/10.4196/kjpp.2020.24.5.413] [PMID: 32830148]
[167]
Bąkowska-Barczak A. Acylated anthocyanins as stable, natural food colorants – A review. Pol J Food Nutr Sci 2005; 14/55(2): 107-16.
[168]
Ho ML, Chen PN, Chu SC, et al. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer 2010; 62(4): 505-16.
[http://dx.doi.org/10.1080/01635580903441261] [PMID: 20432172]
[169]
Deng Z, Hassan S, Rafiq M, et al. Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone. Evid Based Complement Alternat Med 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/6681352] [PMID: 33414838]
[170]
Zhang Y, Zhang R, Ni H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch Med Sci 2020; 16(2): 446-52.
[http://dx.doi.org/10.5114/aoms.2019.85152] [PMID: 32190156]
[171]
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190: 105-27.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.006] [PMID: 29742480]
[172]
Cao P, Liu B, Du F, et al. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac Cancer 2019; 10(3): 492-500.
[http://dx.doi.org/10.1111/1759-7714.12962] [PMID: 30666790]
[173]
Zhang GY, Chen WY, Li XB, Ke H, Zhou XL. Scutellarin-induced A549 cell apoptosis depends on activation of the transforming growth factor-β1/smad2/ROS/caspase-3 pathway. Open Life Sci 2021; 16(1): 961-8.
[http://dx.doi.org/10.1515/biol-2021-0085] [PMID: 34568577]
[174]
Naveenkumar C, Raghunandhakumar S, Asokkumar S, Devaki T. Baicalein abrogates reactive oxygen species (ROS)-mediated mitochondrial dysfunction during experimental pulmonary carcinogenesis in vivo. Basic Clin Pharmacol Toxicol 2013; 112(4): 270-81.
[http://dx.doi.org/10.1111/bcpt.12025] [PMID: 23061789]
[175]
Kasala ER, Bodduluru LN, Barua CC, Gogoi R. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed Pharmacother 2016; 82: 568-77.
[http://dx.doi.org/10.1016/j.biopha.2016.05.042] [PMID: 27470398]
[176]
Zhang M, Wang R, Tian J, et al. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J Cell Mol Med 2021; 25(12): 5560-71.
[http://dx.doi.org/10.1111/jcmm.16568] [PMID: 33982869]
[177]
Kasala ER, Bodduluru LN, Barua CC, et al. Chemopreventive effect of chrysin, a dietary flavone against benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Pharmacol Rep 2016; 68(2): 310-8.
[http://dx.doi.org/10.1016/j.pharep.2015.08.014] [PMID: 26922533]
[178]
Ravichandran N, Suresh G, Ramesh B, Vijaiyan Siva G. Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol 2011; 49(5): 1141-7.
[http://dx.doi.org/10.1016/j.fct.2011.02.005] [PMID: 21315788]
[179]
Ravichandran N, Suresh G, Ramesh B, Manikandan R, Choi YW, Vijaiyan Siva G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem 2014; 390(1-2): 225-34.
[http://dx.doi.org/10.1007/s11010-014-1973-y] [PMID: 24496750]
[180]
Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Modulatory effect of hesperidin on benzo(a)pyrene induced experimental lung carcinogenesis with reference to COX-2, MMP-2 and MMP-9. Eur J Pharmacol 2010; 649(1-3): 320-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.017] [PMID: 20883688]
[181]
Kamaraj S, Ramakrishnan G, Anandakumar P, Jagan S, Devaki T. Antioxidant and anticancer efficacy of hesperidin in benzo(a)pyrene induced lung carcinogenesis in mice. Invest New Drugs 2009; 27(3): 214-22.
[http://dx.doi.org/10.1007/s10637-008-9159-7] [PMID: 18704264]
[182]
Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Hesperidin attenuates mitochondrial dysfunction during benzo(a)pyrene-induced lung carcinogenesis in mice. Fundam Clin Pharmacol 2011; 25(1): 91-8.
[http://dx.doi.org/10.1111/j.1472-8206.2010.00812.x] [PMID: 20199583]
[183]
Kamaraj S, Vinodhkumar R, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol Pharm Bull 2007; 30(12): 2268-73.
[http://dx.doi.org/10.1248/bpb.30.2268] [PMID: 18057710]
[184]
Jin N, Zhu Y, Zhou J, et al. Preventive effects of quercetin against benzo[a]pyrene-induced DNA damages and pulmonary precancerous pathologic changes in mice. Basic Clin Pharmacol Toxicol 2006; 98(6): 593-8.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_382.x] [PMID: 16700823]
[185]
Manna S, Mukherjee S, Roy A, Das S, Panda CK. Tea polyphenols can restrict benzo[a]pyrene-induced lung carcinogenesis by altered expression of p53-associated genes and H-ras, c-myc and cyclin D1. J Nutr Biochem 2009; 20(5): 337-49.
[http://dx.doi.org/10.1016/j.jnutbio.2008.04.001] [PMID: 18656336]
[186]
Bodduluru LN, Kasala ER, Madhana RM, et al. Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression. Int Immunopharmacol 2016; 30: 102-10.
[http://dx.doi.org/10.1016/j.intimp.2015.11.036] [PMID: 26655880]
[187]
Shahid A, Ali R, Ali N, et al. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food Chem Toxicol 2016; 92: 64-74.
[http://dx.doi.org/10.1016/j.fct.2016.03.021] [PMID: 27020533]
[188]
Bodduluru LN, Kasala ER, Barua CC, Karnam KC, Dahiya V, Ellutla M. Antiproliferative and antioxidant potential of hesperetin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact 2015; 242: 345-52.
[http://dx.doi.org/10.1016/j.cbi.2015.10.020] [PMID: 26546711]
[189]
Shahid A, Ali R, Ali N, et al. Attenuation of genotoxicity, oxidative stress, apoptosis and inflammation by rutin in benzo(a)pyrene exposed lungs of mice: Plausible role of NF-κB, TNF-α and Bcl-2. J Complement Integr Med 2016; 13(1): 17-29.
[http://dx.doi.org/10.1515/jcim-2015-0078] [PMID: 26829483]
[190]
Zhao Z, Liu B, Sun J, et al. Baicalein inhibits orthotopic human non-small cell lung cancer xenografts via Src/Id1 pathway. Evid Based Complement Alternat Med 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/9806062] [PMID: 30949224]
[191]
Jiang ZB, Wang WJ, Xu C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett 2021; 515: 36-48.
[http://dx.doi.org/10.1016/j.canlet.2021.05.019] [PMID: 34052328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy