Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction

Author(s): Antonietta Santoro, Marianna Marino, Laura N. Vandenberg, Marta Anna Szychlinska, Erwin Pavel Lamparelli, Federica Scalia, Natalia Della Rocca, Raffaella D’Auria, Grazia Maria Giovanna Pastorino, Giovanna Della Porta, Francesca Felicia Operto, Andrea Viggiano, Francesco Cappello and Rosaria Meccariello*

Volume 22, Issue 11, 2024

Published on: 16 February, 2024

Page: [1870 - 1898] Pages: 29

DOI: 10.2174/1570159X22666240216085947

Abstract

Background: Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health.

Objective: This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed.

Results: MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics.

Conclusion: The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.

Keywords: Microplastics, nano plastics, brain, neuroinflammation, neurotoxicity, gonads, gametes, reproduction.

Graphical Abstract
[1]
Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med., 2020, 25(1), 29.
[http://dx.doi.org/10.1186/s12199-020-00870-9] [PMID: 32664857]
[2]
Schmid, C.; Cozzarini, L.; Zambello, E. Microplastic’s story. Mar. Pollut. Bull., 2021, 162, 111820.
[http://dx.doi.org/10.1016/j.marpolbul.2020.111820] [PMID: 33203604]
[3]
Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio, 2021, 11(4), 954-966.
[http://dx.doi.org/10.1002/2211-5463.13120] [PMID: 33595903]
[4]
Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci., 2021, 86(7), 2816-2837.
[http://dx.doi.org/10.1111/1750-3841.15802] [PMID: 34146409]
[5]
Blackburn, K.; Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 2022, 51(3), 518-530.
[http://dx.doi.org/10.1007/s13280-021-01589-9] [PMID: 34185251]
[6]
D’Angelo, S.; Meccariello, R. Microplastics: A threat for male fertility. Int. J. Environ. Res. Public Health, 2021, 18(5), 2392.
[http://dx.doi.org/10.3390/ijerph18052392] [PMID: 33804513]
[7]
Zhang, Q.; He, Y.; Cheng, R.; Li, Q.; Qian, Z.; Lin, X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res. Int., 2022, 29(27), 40415-40448.
[http://dx.doi.org/10.1007/s11356-022-19745-3] [PMID: 35347608]
[8]
Maradonna, F.; Meccariello, R. EDCs: Focus on reproductive alterations in mammalian and nonmammalian models. In: Environmental Contaminants and Endocrine Health; Elsevier, 2023; pp. 89-108.
[http://dx.doi.org/10.1016/B978-0-12-824464-7.00003-9]
[9]
Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol., 2023, 13, 1084236.
[http://dx.doi.org/10.3389/fendo.2022.1084236] [PMID: 36726457]
[10]
Viršek, M.K.; Lovšin, M.N.; Koren, Š.; Kržan, A.; Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull., 2017, 125(1-2), 301-309.
[http://dx.doi.org/10.1016/j.marpolbul.2017.08.024] [PMID: 28889914]
[11]
Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and translocation of micro- and nanoplastics in fish. Crit. Rev. Toxicol., 2021, 51(9), 740-753.
[http://dx.doi.org/10.1080/10408444.2021.2024495] [PMID: 35166176]
[12]
Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf., 2020, 189, 109913.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109913] [PMID: 31735369]
[13]
Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ., 2020, 703, 134699.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134699] [PMID: 31726297]
[14]
Deidda, I.; Russo, R.; Bonaventura, R.; Costa, C.; Zito, F.; Lampiasi, N. Neurotoxicity in marine invertebrates: An update. Biology, 2021, 10(2), 161.
[http://dx.doi.org/10.3390/biology10020161] [PMID: 33670451]
[15]
Yong, C.; Valiyaveettil, S.; Tang, B. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health, 2020, 17(5), 1509.
[http://dx.doi.org/10.3390/ijerph17051509] [PMID: 32111046]
[16]
Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ., 2020, 728, 138707.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138707] [PMID: 32361115]
[17]
Windheim, J.; Colombo, L.; Battajni, N.C.; Russo, L.; Cagnotto, A.; Diomede, L.; Bigini, P.; Vismara, E.; Fiumara, F.; Gabbrielli, S.; Gautieri, A.; Mazzuoli-Weber, G.; Salmona, M.; Colnaghi, L. Micro- and nanoplastics’ effects on protein folding and amyloidosis. Int. J. Mol. Sci., 2022, 23(18), 10329.
[http://dx.doi.org/10.3390/ijms231810329] [PMID: 36142234]
[18]
Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; D’Amore, E.; Rinaldo, D.; Matta, M.; Giorgini, E. Plasticenta: First evidence of microplastics in human placenta. Environ. Int., 2021, 146, 106274.
[http://dx.doi.org/10.1016/j.envint.2020.106274] [PMID: 33395930]
[19]
Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ., 2023, 877, 162713.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162713] [PMID: 36948312]
[20]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[21]
Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[22]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2)(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[23]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[24]
Meccariello, R.; Marino, M.; Mele, E.; Pastorino, G.M.G.; Operto, F.F.; Santoro, A.; Viggiano, A. Neuroinflammation: Molecular mechanisms and therapeutic perspectives. Cent. Nerv. Syst. Agents Med. Chem., 2022, 22(3), 160-174.
[http://dx.doi.org/10.2174/1871524922666220929153215] [PMID: 36177627]
[25]
Fried, J.R. Polymer science and technology, 3rd ed; Prentice Hall: Upper Saddle River, NJ, 2014.
[26]
Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res., 2017, 35(2), 132-140.
[http://dx.doi.org/10.1177/0734242X16683272] [PMID: 28064843]
[27]
Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol., 2015, 99(21), 8857-8874.
[http://dx.doi.org/10.1007/s00253-015-6879-4] [PMID: 26318446]
[28]
Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod., 2021, 294, 126218.
[http://dx.doi.org/10.1016/j.jclepro.2021.126218]
[29]
Lee, W.T.; van Muyden, A.; Bobbink, F.D.; Mensi, M.D.; Carullo, J.R.; Dyson, P.J. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat. Commun., 2022, 13(1), 4850.
[http://dx.doi.org/10.1038/s41467-022-32563-y] [PMID: 35977921]
[30]
Elgharbawy, A.S.; Ali, R.M. A comprehensive review of the polyolefin composites and their properties. Heliyon, 2022, 8(7), e09932.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09932] [PMID: 35859640]
[31]
Hees, T.; Zhong, F.; Stürzel, M.; Mülhaupt, R. Tailoring hydrocarbon polymers and all‐hydrocarbon composites for circular economy. Macromol. Rapid Commun., 2019, 40(1), 1800608.
[http://dx.doi.org/10.1002/marc.201800608] [PMID: 30417498]
[32]
ChemicalBook , Available from: https://www.chemicalbook.com/
[33]
Yao, Z.; Seong, H.J.; Jang, Y.S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Saf., 2022, 242, 113933.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113933] [PMID: 35930840]
[34]
Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical applications of polyethylene. Eur. Polym. J., 2019, 118, 412-428.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.037]
[35]
Kumar, L.; Saha, A. Khushbu, ; Warkar, S. G. Chapter 11 - Biodegradability of automotive plastics and composites. In: Biodegradability of Conventional Plastics; Sarkar, A., Sharma, B., Shekhar, S., Eds.: Elsevier, 2023; p. 221-242.
[36]
Rani, M. Meenu; Shanker, U. The role of nanomaterials in plastics biodegradability.Biodegradability of Conventional Plastics; Elsevier, 2023, pp. 283-308.
[http://dx.doi.org/10.1016/B978-0-323-89858-4.00012-9]
[37]
Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and application of polypropylene carbonate composite materials: A review. Polymers, 2022, 14(11), 2159.
[http://dx.doi.org/10.3390/polym14112159] [PMID: 35683832]
[38]
Blackley, D.C. Plasticised polyvinyl chloride (PVC). In: Synthetic Rubbers: Their Chemistry and Technology; Springer Netherlands: Dordrecht, 1983; pp. 244-269.
[http://dx.doi.org/10.1007/978-94-009-6619-2_8]
[39]
Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag., 2016, 48, 300-314.
[http://dx.doi.org/10.1016/j.wasman.2015.11.041] [PMID: 26687228]
[40]
Peng, B.Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.M.; Zhang, Y. Biodegradation of polyvinyl chloride (PVC) in tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int., 2020, 145, 106106.
[http://dx.doi.org/10.1016/j.envint.2020.106106] [PMID: 32947161]
[41]
Lewandowski, K.; Skórczewska, K. A brief review of poly(vinyl chloride) (PVC) recycling. Polymers, 2022, 14(15), 3035.
[http://dx.doi.org/10.3390/polym14153035] [PMID: 35893999]
[42]
Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv., 2022, 60, 107991.
[http://dx.doi.org/10.1016/j.biotechadv.2022.107991] [PMID: 35654281]
[43]
Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut., 2020, 262, 114297.
[http://dx.doi.org/10.1016/j.envpol.2020.114297] [PMID: 32155552]
[44]
Pulido, B.A.; Habboub, O.S.; Aristizabal, S.L.; Szekely, G.; Nunes, S.P. Recycled poly(ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mater., 2019, 1(9), 2379-2387.
[http://dx.doi.org/10.1021/acsapm.9b00493]
[45]
Hiraga, K.; Taniguchi, I.; Yoshida, S.; Kimura, Y.; Oda, K. Biodegradation of waste PET. EMBO Rep., 2019, 20(11), e49365.
[http://dx.doi.org/10.15252/embr.201949365] [PMID: 31646721]
[46]
Kushwaha, A.; Goswami, L.; Singhvi, M.; Kim, B.S. Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chem. Eng. J., 2023, 457, 141230.
[http://dx.doi.org/10.1016/j.cej.2022.141230]
[47]
Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test., 2020, 90, 106707.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106707]
[48]
Siracusa, V.; Blanco, I. Bio-polyethylene (bio-pe), bio-polypropylene (bio-pp) and bio-poly(ethylene terephthalate) (bio-pet): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 2020, 12(8), 1641.
[http://dx.doi.org/10.3390/polym12081641] [PMID: 32718011]
[49]
Wei, B.; Zhao, Y.; Wei, Y.; Yao, J.; Chen, X.; Shao, Z. Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega, 2019, 4(3), 5609-5616.
[http://dx.doi.org/10.1021/acsomega.9b00210] [PMID: 31459715]
[50]
İlhan, Z.; Gümüşderelioğlu, M. Oriented fibrous poly (butylene adipate-co-terephthalate) matrices with nanotopographic features: Production and characterization. Colloids Surf. A Physicochem. Eng. Asp., 2023, 672, 131667.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131667]
[51]
Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (pbat), poly(lactic acid) (pla), and their blend in freshwater with sediment. Molecules, 2020, 25(17), 3946.
[http://dx.doi.org/10.3390/molecules25173946] [PMID: 32872416]
[52]
Jia, H.; Zhang, M.; Weng, Y.; Zhao, Y.; Li, C.; Kanwal, A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci., 2021, 103, 50-58.
[http://dx.doi.org/10.1016/j.jes.2020.10.001] [PMID: 33743918]
[53]
Rafiqah, S.A.; Khalina, A.; Harmaen, A.S.; Tawakkal, I.A.; Zaman, K.; Asim, M.; Nurrazi, M.N.; Lee, C.H. A review on properties and application of bio-based poly(butylene succinate). Polymers, 2021, 13(9), 1436.
[http://dx.doi.org/10.3390/polym13091436] [PMID: 33946989]
[54]
Boucher, D.S. Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. J. Appl. Polym. Sci., 2020, 137(30), 48908.
[http://dx.doi.org/10.1002/app.48908]
[55]
Heimowska, A.; Morawska, M.; Bocho-Janiszewska, A. Biodegradation of poly(ε-caprolactone) in natural water environments. Pol. J. Chem. Technol., 2017, 19(1), 120-126.
[http://dx.doi.org/10.1515/pjct-2017-0017]
[56]
Atanasova, N.; Paunova-Krasteva, T.; Stoitsova, S.; Radchenkova, N.; Boyadzhieva, I.; Petrov, K.; Kambourova, M. Degradation of poly(ε-caprolactone) by a thermophilic community and brevibacillus thermoruber strain 7 isolated from bulgarian hot spring. Biomolecules, 2021, 11(10), 1488.
[http://dx.doi.org/10.3390/biom11101488] [PMID: 34680121]
[57]
Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed., 2018, 29(7-9), 863-893.
[http://dx.doi.org/10.1080/09205063.2017.1394711] [PMID: 29053081]
[58]
Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly (butylene succinate) (pbs) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers, 2022, 14(4), 844.
[http://dx.doi.org/10.3390/polym14040844] [PMID: 35215757]
[59]
Cooper, C.J.; Mohanty, A.K.; Misra, M. Electrospinning process and structure relationship of biobased poly(butylene succinate) for nanoporous fibers. ACS Omega, 2018, 3(5), 5547-5557.
[http://dx.doi.org/10.1021/acsomega.8b00332] [PMID: 31458758]
[60]
Kim, S.H.; Cho, J.Y.; Cho, D.H.; Jung, H.J.; Kim, B.C.; Bhatia, S.K.; Park, S.H.; Park, K.; Yang, Y.H. Acceleration of polybutylene succinate biodegradation by Terribacillus sp. JY49 isolated from a marine environment. Polymers, 2022, 14(19), 3978.
[http://dx.doi.org/10.3390/polym14193978] [PMID: 36235926]
[61]
Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res., 2021, 4(3), 159-177.
[http://dx.doi.org/10.1016/j.aiepr.2021.06.006]
[62]
Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259.
[http://dx.doi.org/10.3389/fbioe.2019.00259] [PMID: 31681741]
[63]
da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14.
[http://dx.doi.org/10.1016/j.cej.2018.01.010] [PMID: 31384170]
[64]
Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stabil., 2018, 152, 75-85.
[http://dx.doi.org/10.1016/j.polymdegradstab.2018.03.023]
[65]
Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 2021, 13(11), 1822.
[http://dx.doi.org/10.3390/polym13111822] [PMID: 34072917]
[67]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[68]
Kemme, M.; Prokesch, I.; Heinzel-Wieland, R. Comparative study on the enzymatic degradation of poly(lactic-co-glycolic acid) by hydrolytic enzymes based on the colorimetric quantification of glycolic acid. Polym. Test., 2011, 30(7), 743-748.
[http://dx.doi.org/10.1016/j.polymertesting.2011.06.009]
[69]
Virlan, M.J.R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.; Calenic, B. Current uses of poly(lactic-co-glycolic acid) in the dental field: A comprehensive. Rev. J. Chem., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/525832]
[70]
Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner, M. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem., 2017, 89(12), 1841-1848.
[http://dx.doi.org/10.1515/pac-2017-0401]
[71]
Vandi, L.J.; Chan, C.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers, 2018, 10(7), 751.
[http://dx.doi.org/10.3390/polym10070751] [PMID: 30960676]
[72]
Sehgal, R.; Gupta, R. Polyhydroxyalkanoate and its efficient production: An eco-friendly approach towards development. 3 Biotech, 2020, 10(12), 549.
[http://dx.doi.org/10.1007/s13205-020-02550-5]
[73]
Volova, T.G. Biodegradation of polyhydroxyalkanoates in natural soils. J. Sib. Fed. Univ. Biol., 2015, 8(2), 152-167.
[http://dx.doi.org/10.17516/1997-1389-2015-8-2-152-167]
[74]
Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb. Ecol., 2017, 73(2), 353-367.
[http://dx.doi.org/10.1007/s00248-016-0852-3] [PMID: 27623963]
[75]
Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (pha): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 2018, 23(2), 362.
[http://dx.doi.org/10.3390/molecules23020362] [PMID: 29419813]
[76]
Koster, S.; Bani-Estivals, M.; Bonuomo, M.; Bradley, E.; Chagnon, M.; Garcia, M.L.; Godts, F.; Gude, T.; Helling, R.; Paseiro-Losada, P.; Pieper, G.; Rennen, M.; Simat, T.; Spack, L. Guidance on best practices on the risk assessment of non-intentionally added substances (NIAS) in food contact materials and articles. In: ILSI Europe Report Series; , 2016.
[77]
Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater., 2018, 344, 179-199.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.014] [PMID: 29035713]
[78]
Tsochatzis, E.; Lopes, J.; Gika, H.; Theodoridis, G. Polystyrene biodegradation by tenebrio molitor larvae: Identification of generated substances using a GC-MS untargeted screening method. Polymers, 2020, 13(1), 17.
[http://dx.doi.org/10.3390/polym13010017] [PMID: 33374608]
[79]
Arianna, P.; Paola, S.; Luciano, D.M.; Loredana, I. Non-listed nias exposure assessment: Comparison of different tools. Chem. Eng. Trans., 2019, 74, 1399-1404.
[http://dx.doi.org/10.3303/CET1974234]
[80]
Geueke, B. Fpf Dossier: Non-Intentionally Added Substances (Nias); 2nd Edition, 2018.
[http://dx.doi.org/10.5281/ZENODO.1265331]
[81]
Guidance on best available techniques and best environmental practices for the recycling and disposal of articles containing polybrominated diphenyl ethers (pbdes) listed under the stockholm convention on persistent organic pollutants 2015.
[82]
He, Y.J.; Qin, Y.; Zhang, T.L.; Zhu, Y.Y.; Wang, Z.J.; Zhou, Z.S.; Xie, T.Z.; Luo, X.D. Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. J. Hazard. Mater., 2021, 417, 126074.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126074] [PMID: 34015709]
[83]
Muncke, J.; Andersson, A-M.; Backhaus, T.; Boucher, J.M.; Carney Almroth, B.; Castillo Castillo, A.; Chevrier, J.; Demeneix, B.A.; Emmanuel, J.A.; Fini, J-B. Impacts of food contact chemicals on human health: A consensus statement. Environ. Health, 2020, 19(1), 25.
[http://dx.doi.org/10.1186/s12940-020-0572-5]
[84]
Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; Meccariello, R. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol., 2019, 17(12), 1109-1132.
[http://dx.doi.org/10.2174/1570159X17666190726112101] [PMID: 31362658]
[85]
Di Pietro, P.; D’Auria, R.; Viggiano, A.; Ciaglia, E.; Meccariello, R.; Russo, R.D.; Puca, A.A.; Vecchione, C.; Nori, S.L.; Santoro, A. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 2020, 254, 126819.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126819] [PMID: 32334263]
[86]
Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y-J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 2023, 263, 109498.
[http://dx.doi.org/10.1016/j.cbpc.2022.109498]
[87]
Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycling, 2013, 78, 54-66.
[http://dx.doi.org/10.1016/j.resconrec.2013.06.010]
[88]
Porta, R. The plastics sunset and the bio-plastics sunrise. Coatings, 2019, 9(8), 526.
[http://dx.doi.org/10.3390/coatings9080526]
[89]
Cao, G.; Cai, Z. Getting health hazards of inhaled nano/] microplastics into focus: Expectations and challenges. Environ. Sci. Technol., 2023, 57(9), 3461-3463.
[http://dx.doi.org/10.1021/acs.est.3c00029] [PMID: 36812144]
[90]
Nor, N.H.M.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol., 2021, 55(8), 5084-5096.
[http://dx.doi.org/10.1021/acs.est.0c07384] [PMID: 33724830]
[91]
Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health, 2017, 14(10), 1265.
[http://dx.doi.org/10.3390/ijerph14101265] [PMID: 29053641]
[92]
Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ., 2020, 702, 134455.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134455] [PMID: 31733547]
[93]
Grote, K.; Brüstle, F.; Vlacil, A.K. Cellular and systemic effects of micro- and nanoplastics in mammals—what we know so far. Materials, 2023, 16(8), 3123.
[http://dx.doi.org/10.3390/ma16083123] [PMID: 37109957]
[94]
Karlsson, H.; Lindbom, J.; Ghafouri, B.; Lindahl, M.; Tagesson, C.; Gustafsson, M.; Ljungman, A.G. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: A proteomic study. Chem. Res. Toxicol., 2011, 24(1), 45-53.
[http://dx.doi.org/10.1021/tx100281f] [PMID: 21117676]
[95]
Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; Zheng, Y.; Tang, J. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int., 2022, 164, 107257.
[http://dx.doi.org/10.1016/j.envint.2022.107257] [PMID: 35486965]
[96]
Mantecca, P.; Sancini, G.; Moschini, E.; Farina, F.; Gualtieri, M.; Rohr, A.; Miserocchi, G.; Palestini, P.; Camatini, M. Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicol. Lett., 2009, 189(3), 206-214.
[http://dx.doi.org/10.1016/j.toxlet.2009.05.023] [PMID: 19501637]
[97]
Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[98]
Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16(6-7), 437-445.
[http://dx.doi.org/10.1080/08958370490439597] [PMID: 15204759]
[99]
Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J.; Oberdörster, G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect., 2006, 114(8), 1172-1178.
[http://dx.doi.org/10.1289/ehp.9030] [PMID: 16882521]
[100]
Qi, Y.; Wei, S.; Xin, T.; Huang, C.; Pu, Y.; Ma, J.; Zhang, C.; Liu, Y.; Lynch, I.; Liu, S. Passage of exogeneous fine particles from the lung into the brain in humans and animals. Proc. Natl. Acad. Sci. USA, 2022, 119(26), e2117083119.
[http://dx.doi.org/10.1073/pnas.2117083119] [PMID: 35737841]
[101]
Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ., 2020, 703, 135504.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135504] [PMID: 31753503]
[102]
Karami, A.; Golieskardi, A.; Ho, Y.B.; Larat, V.; Salamatinia, B. Microplastics in eviscerated flesh and excised organs of dried fish. Sci. Rep., 2017, 7(1), 5473.
[http://dx.doi.org/10.1038/s41598-017-05828-6] [PMID: 28710445]
[103]
Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull., 2022, 181, 113832.
[http://dx.doi.org/10.1016/j.marpolbul.2022.113832] [PMID: 35716489]
[104]
Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the mediterranean sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut., 2017, 223, 286-294.
[http://dx.doi.org/10.1016/j.envpol.2017.01.025] [PMID: 28117186]
[105]
Han, J.; Yan, J.; Li, K.; Lin, B.; Lai, W.; Bian, L.; Jia, R.; Liu, X.; Xi, Z. Distribution of micro-nano PS, DEHP, and/or MEHP in mice and nerve cell models in vitro after exposure to micro-nano PS and DEHP. Toxics, 2023, 11(5), 441.
[http://dx.doi.org/10.3390/toxics11050441] [PMID: 37235255]
[106]
Yang, Z.S.; Bai, Y.L.; Jin, C.H.; Na, J.; Zhang, R.; Gao, Y.; Pan, G.W.; Yan, L.J.; Sun, W. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure: Nanoplastics versus microplastics. Biomed. Environ. Sci., 2022, 35(11), 1025-1037.
[http://dx.doi.org/10.3967/bes2022.131] [PMID: 36443255]
[107]
Lamparelli, E.P.; Marino, M.; Szychlinska, M.A.; Rocca, N.D.; Ciardulli, M.C.; Scala, P.; D’Auria, R.; Testa, A.; Viggiano, A.; Cappello, F.; Meccariello, R.; Porta, G.D.; Santoro, A. The other side of plastics: Bioplastic-based nanoparticles for drug delivery systems in the brain. Pharmaceutics, 2023, 15(11), 2549.
[http://dx.doi.org/10.3390/pharmaceutics15112549] [PMID: 38004530]
[108]
Lee, J.A.; Kim, M.K.; Paek, H.J.; Kim, Y.R.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J.; Choi, S-J. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 251-260.
[http://dx.doi.org/10.2147/IJN.S57939] [PMID: 25565843]
[109]
Khan, A.W.; Farooq, M.; Hwang, M.J.; Haseeb, M.; Choi, S. Autoimmune neuroinflammatory diseases: Role of interleukins. Int. J. Mol. Sci., 2023, 24(9), 7960.
[http://dx.doi.org/10.3390/ijms24097960] [PMID: 37175665]
[110]
Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[111]
Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci., 2021, 15, 661838.
[http://dx.doi.org/10.3389/fncel.2021.661838] [PMID: 34588955]
[112]
Takeshita, Y.; Obermeier, B.; Cotleur, A.C.; Spampinato, S.F.; Shimizu, F.; Yamamoto, E.; Sano, Y.; Kryzer, T.J.; Lennon, V.A.; Kanda, T.; Ransohoff, R.M. Effects of neuromyelitis optica–IgG at the blood-brain barrier in vitro. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(1), e311.
[http://dx.doi.org/10.1212/NXI.0000000000000311] [PMID: 28018943]
[113]
Linnerbauer, M.; Rothhammer, V. Protective functions of reactive astrocytes following central nervous system insult. Front. Immunol., 2020, 11, 573256.
[http://dx.doi.org/10.3389/fimmu.2020.573256] [PMID: 33117368]
[114]
Rostami, J.; Fotaki, G.; Sirois, J.; Mzezewa, R.; Bergström, J.; Essand, M.; Healy, L.; Erlandsson, A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J. Neuroinflammation, 2020, 17(1), 119.
[http://dx.doi.org/10.1186/s12974-020-01776-7] [PMID: 32299492]
[115]
Ranaivo, H.R.; Hodge, J.N.; Choi, N.; Wainwright, M.S. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J. Neuroinflammation, 2012, 9(1), 645.
[http://dx.doi.org/10.1186/1742-2094-9-68] [PMID: 22507553]
[116]
Corrigan, F.; Mander, K.A.; Leonard, A.V.; Vink, R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, 13(1), 264.
[http://dx.doi.org/10.1186/s12974-016-0738-9] [PMID: 27724914]
[117]
Sulimai, N.; Lominadze, D. Fibrinogen and neuroinflammation during traumatic brain injury. Mol. Neurobiol., 2020, 57(11), 4692-4703.
[http://dx.doi.org/10.1007/s12035-020-02012-2] [PMID: 32776201]
[118]
Katsouri, L.; Birch, A.M.; Renziehausen, A.W.J.; Zach, C.; Aman, Y.; Steeds, H.; Bonsu, A.; Palmer, E.O.C.; Mirzaei, N.; Ries, M.; Sastre, M. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia, 2020, 68(5), 1017-1030.
[http://dx.doi.org/10.1002/glia.23759] [PMID: 31799735]
[119]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[120]
Salman, M.M.; Kitchen, P.; Halsey, A.; Wang, M.X.; Törnroth-Horsefield, S.; Conner, A.C.; Badaut, J.; Iliff, J.J.; Bill, R.M. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain, 2022, 145(1), 64-75.
[http://dx.doi.org/10.1093/brain/awab311] [PMID: 34499128]
[121]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[122]
Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999.
[http://dx.doi.org/10.1084/jem.20142290] [PMID: 26077718]
[123]
Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[124]
Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491.
[http://dx.doi.org/10.3390/ijms22147491] [PMID: 34299111]
[125]
Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391.
[http://dx.doi.org/10.1038/s41593-018-0227-9] [PMID: 30224810]
[126]
Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13.
[http://dx.doi.org/10.1053/j.gastro.2020.11.036] [PMID: 33227282]
[127]
Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260.
[http://dx.doi.org/10.1038/s41586-021-03489-0] [PMID: 33911285]
[128]
Hamby, M.E.; Coppola, G.; Ao, Y.; Geschwind, D.H.; Khakh, B.S.; Sofroniew, M.V. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci., 2012, 32(42), 14489-14510.
[http://dx.doi.org/10.1523/JNEUROSCI.1256-12.2012] [PMID: 23077035]
[129]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[130]
Baxter, P.S.; Dando, O.; Emelianova, K.; He, X.; McKay, S.; Hardingham, G.E.; Qiu, J. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep., 2021, 34(12), 108882.
[http://dx.doi.org/10.1016/j.celrep.2021.108882] [PMID: 33761343]
[131]
Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524.
[http://dx.doi.org/10.1002/JLB.3MR0118-003R] [PMID: 29389023]
[132]
Lima, M.N.; Barbosa-Silva, M.C.; Maron-Gutierrez, T. Microglial priming in infections and its risk to neurodegenerative diseases. Front. Cell. Neurosci., 2022, 16, 878987.
[http://dx.doi.org/10.3389/fncel.2022.878987] [PMID: 35783096]
[133]
Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity, 2021, 54(10), 2194-2208.
[http://dx.doi.org/10.1016/j.immuni.2021.09.014] [PMID: 34644556]
[134]
Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[135]
Pokusaeva, K.; Johnson, C.; Luk, B.; Uribe, G.; Fu, Y.; Oezguen, N.; Matsunami, R.K.; Lugo, M.; Major, A.; Mori-Akiyama, Y.; Hollister, E.B.; Dann, S.M.; Shi, X.Z.; Engler, D.A.; Savidge, T.; Versalovic, J. GABA ‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil., 2017, 29(1), e12904.
[http://dx.doi.org/10.1111/nmo.12904] [PMID: 27458085]
[136]
Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci., 2021, 22(6), 2973.
[http://dx.doi.org/10.3390/ijms22062973] [PMID: 33804088]
[137]
Glebov, K.; Löchner, M.; Jabs, R.; Lau, T.; Merkel, O.; Schloss, P.; Steinhäuser, C.; Walter, J. Serotonin stimulates secretion of exosomes from microglia cells. Glia, 2015, 63(4), 626-634.
[http://dx.doi.org/10.1002/glia.22772] [PMID: 25451814]
[138]
Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; Blain, M.; Healy, L.; Neziraj, T.; Borio, M.; Wheeler, M.; Dragin, L.L.; Laplaud, D.A.; Antel, J.; Alvarez, J.I.; Prinz, M.; Quintana, F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707), 724-728.
[http://dx.doi.org/10.1038/s41586-018-0119-x] [PMID: 29769726]
[139]
Smith, S.E.P.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci., 2007, 27(40), 10695-10702.
[http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007] [PMID: 17913903]
[140]
Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939.
[http://dx.doi.org/10.1126/science.aad0314] [PMID: 26822608]
[141]
Qu, X.; Yu, X.; Liu, J.; Wang, J.; Liu, J. Pro-inflammatory cytokines are elevated in pregnant women with systemic lupus erythematosus in association with the activation of TLR4. Clin. Lab., 2016, 62.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150709]
[142]
Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 2018, 59, 391-412.
[http://dx.doi.org/10.1016/j.intimp.2018.03.002] [PMID: 29730580]
[143]
Mattei, D.; Ivanov, A.; Ferrai, C.; Jordan, P.; Guneykaya, D.; Buonfiglioli, A.; Schaafsma, W.; Przanowski, P.; Deuther-Conrad, W.; Brust, P.; Hesse, S.; Patt, M.; Sabri, O.; Ross, T.L.; Eggen, B.J.L.; Boddeke, E.W.G.M.; Kaminska, B.; Beule, D.; Pombo, A.; Kettenmann, H.; Wolf, S.A. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry, 2017, 7(5), e1120-e1120.
[http://dx.doi.org/10.1038/tp.2017.80] [PMID: 28485733]
[144]
Matcovitch-Natan, O.; Winter, D.R.; Giladi, A.; Vargas Aguilar, S.; Spinrad, A.; Sarrazin, S.; Ben-Yehuda, H.; David, E.; Zelada González, F.; Perrin, P.; Keren-Shaul, H.; Gury, M.; Lara-Astaiso, D.; Thaiss, C.A.; Cohen, M.; Bahar Halpern, K.; Baruch, K.; Deczkowska, A.; Lorenzo-Vivas, E.; Itzkovitz, S.; Elinav, E.; Sieweke, M.H.; Schwartz, M.; Amit, I. Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 353(6301), aad8670.
[http://dx.doi.org/10.1126/science.aad8670] [PMID: 27338705]
[145]
de Souza, D.F.; Wartchow, K.M.; Lunardi, P.S.; Brolese, G.; Tortorelli, L.S.; Batassini, C.; Biasibetti, R.; Gonçalves, C.A. Changes in astroglial markers in a maternal immune activation model of schizophrenia in wistar rats are dependent on sex. Front. Cell. Neurosci., 2015, 9, 489.
[http://dx.doi.org/10.3389/fncel.2015.00489] [PMID: 26733814]
[146]
McCarthy, M.M.; Wright, C.L. Convergence of sex differences and the neuroimmune system in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 402-410.
[http://dx.doi.org/10.1016/j.biopsych.2016.10.004] [PMID: 27871670]
[147]
Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res., 2009, 19(2), 327-335.
[http://dx.doi.org/10.1101/gr.073585.107] [PMID: 19029536]
[148]
Golzio, C.; Willer, J.; Talkowski, M.E.; Oh, E.C.; Taniguchi, Y.; Jacquemont, S.; Reymond, A.; Sun, M.; Sawa, A.; Gusella, J.F.; Kamiya, A.; Beckmann, J.S.; Katsanis, N. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 2012, 485(7398), 363-367.
[http://dx.doi.org/10.1038/nature11091] [PMID: 22596160]
[149]
Guo, S. Linking genes to brain, behavior and neurological diseases: What can we learn from zebrafish? Genes Brain Behav., 2004, 3(2), 63-74.
[http://dx.doi.org/10.1046/j.1601-183X.2003.00053.x] [PMID: 15005714]
[150]
Schmidt, R.; Strähle, U.; Scholpp, S. Neurogenesis in zebrafish – from embryo to adult. Neural Dev., 2013, 8(1), 3.
[http://dx.doi.org/10.1186/1749-8104-8-3] [PMID: 23433260]
[151]
Wullimann, M.F.; Mueller, T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475(2), 143-162.
[http://dx.doi.org/10.1002/cne.20183] [PMID: 15211457]
[152]
Mhalhel, K.; Sicari, M.; Pansera, L.; Chen, J.; Levanti, M.; Diotel, N.; Rastegar, S.; Germanà, A.; Montalbano, G. Zebrafish: A model deciphering the impact of flavonoids on neurodegenerative disorders. Cells, 2023, 12(2), 252.
[http://dx.doi.org/10.3390/cells12020252] [PMID: 36672187]
[153]
Cosacak, M.I.; Bhattarai, P.; De Jager, P.L.; Menon, V.; Tosto, G.; Kizil, C. Single cell/nucleus transcriptomics comparison in zebrafish and humans reveals common and distinct molecular responses to alzheimer’s disease. Cells, 2022, 11(11), 1807.
[http://dx.doi.org/10.3390/cells11111807] [PMID: 35681503]
[154]
Bhattarai, P.; Thomas, A.K.; Cosacak, M.I.; Papadimitriou, C.; Mashkaryan, V.; Froc, C.; Reinhardt, S.; Kurth, T.; Dahl, A.; Zhang, Y.; Kizil, C. IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon Amyloid-β42 aggregation in adult zebrafish brain. Cell Rep., 2016, 17(4), 941-948.
[http://dx.doi.org/10.1016/j.celrep.2016.09.075] [PMID: 27760324]
[155]
Botterell, Z.L.R.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut., 2019, 245, 98-110.
[http://dx.doi.org/10.1016/j.envpol.2018.10.065] [PMID: 30415037]
[156]
Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Effects of microplastics on microalgae populations: A critical review. Sci. Total Environ., 2019, 665, 400-405.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.132] [PMID: 30772570]
[157]
Vo, H.C.; Pham, M.H. Ecotoxicological effects of microplastics on aquatic organisms: A review. Environ. Sci. Pollut. Res. Int., 2021, 28(33), 44716-44725.
[http://dx.doi.org/10.1007/s11356-021-14982-4] [PMID: 34226995]
[158]
Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol., 2020, 17(1), 24.
[http://dx.doi.org/10.1186/s12989-020-00358-y] [PMID: 32513186]
[159]
Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.H.; Liang, S.T.; Chen, J.R.; Chen, K.H.C.; Hsiao, C.D. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci., 2020, 21(4), 1410.
[http://dx.doi.org/10.3390/ijms21041410] [PMID: 32093039]
[160]
Xiang, C.; Chen, H.; Liu, X.; Dang, Y.; Li, X.; Yu, Y.; Li, B.; Li, X.; Sun, Y.; Ding, P.; Hu, G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. Chemosphere, 2023, 324, 138252.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138252] [PMID: 36849020]
[161]
Yu, H.; Chen, Q.; Qiu, W.; Ma, C.; Gao, Z.; Chu, W.; Shi, H. Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Res., 2022, 219, 118582.
[http://dx.doi.org/10.1016/j.watres.2022.118582] [PMID: 35580390]
[162]
Lee, H.; Tran, C.M.; Jeong, S.; Kim, S.S.; Bae, M.A.; Kim, K-T. Seizurogenic effect of perfluorooctane sulfonate in zebrafish larvae. Neurotoxicology, 2022, 93, 257-264.
[http://dx.doi.org/10.1016/j.neuro.2022.10.007] [PMID: 36243200]
[163]
Ding, P.; Xiang, C.; Li, X.; Chen, H.; Shi, X.; Li, X.; Huang, C.; Yu, Y.; Qi, J.; Li, A.J.; Zhang, L.; Hu, G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). Sci. Total Environ., 2023, 881, 163480.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163480] [PMID: 37068667]
[164]
Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 2021, 281, 128592.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128592] [PMID: 33077188]
[165]
Teng, M.; Zhao, X.; Wu, F.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Yan, S.; Tian, S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. Environ. Int., 2022, 163, 107154.
[http://dx.doi.org/10.1016/j.envint.2022.107154] [PMID: 35334375]
[166]
Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep., 2017, 7(1), 11452.
[http://dx.doi.org/10.1038/s41598-017-10813-0] [PMID: 28904346]
[167]
Barboza, L.G.A.; Otero, X.L.; Fernández, E.V.; Vieira, L.R.; Fernandes, J.O.; Cunha, S.C.; Guilhermino, L. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon, 2023, 9(1), e13070.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13070] [PMID: 36711285]
[168]
Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut., 2018, 238, 1-9.
[http://dx.doi.org/10.1016/j.envpol.2018.03.001] [PMID: 29529477]
[169]
Xiong, F.; Liu, J.; Xu, K.; Huang, J.; Wang, D.; Li, F.; Wang, S.; Zhang, J.; Pu, Y.; Sun, R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. Environ. Pollut., 2023, 318, 120939.
[http://dx.doi.org/10.1016/j.envpol.2022.120939] [PMID: 36581239]
[170]
Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/321213] [PMID: 23936791]
[171]
Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[172]
Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ., 2019, 662, 246-253.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.245] [PMID: 30690359]
[173]
Zhao, Y.; Qin, Z.; Huang, Z.; Bao, Z.; Luo, T.; Jin, Y. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environ. Pollut., 2021, 282, 117039.
[http://dx.doi.org/10.1016/j.envpol.2021.117039] [PMID: 33838439]
[174]
Teng, M.; Zhao, X.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Duan, M.; Wu, F. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain–intestine–microbiota axis. ACS Nano, 2022, 16(5), 8190-8204.
[http://dx.doi.org/10.1021/acsnano.2c01872] [PMID: 35507640]
[175]
Luan, J.; Zhang, S.; Xu, Y.; Wen, L.; Feng, X. Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid. Ecotoxicol. Environ. Saf., 2023, 258, 114994.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114994] [PMID: 37167737]
[176]
Chagas, T.Q.; Freitas, Í.N.; Montalvão, M.F.; Nobrega, R.H.; Machado, M.R.F.; Charlie-Silva, I.; Araújo, A.P.C.; Guimarães, A.T.B.; Alvarez, T.G.S.; Malafaia, G. Multiple endpoints of polylactic acid biomicroplastic toxicity in adult zebrafish (Danio rerio). Chemosphere, 2021, 277, 130279.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130279] [PMID: 34384178]
[177]
de Oliveira, J.P.J.; Estrela, F.N.; Rodrigues, A.S.L.; Guimarães, A.T.B.; Rocha, T.L.; Malafaia, G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. J. Hazard. Mater., 2021, 404(Pt A), 124152.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124152] [PMID: 33068943]
[178]
Duan, Z.; Cheng, H.; Duan, X.; Zhang, H.; Wang, Y.; Gong, Z.; Zhang, H.; Sun, H.; Wang, L. Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. J. Hazard. Mater., 2022, 429, 128332.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128332] [PMID: 35114456]
[179]
Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater., 2021, 413, 125321.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125321] [PMID: 33582471]
[180]
Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ., 2017, 584-585, 1022-1031.
[http://dx.doi.org/10.1016/j.scitotenv.2017.01.156] [PMID: 28185727]
[181]
Wan, Z.; Wang, C.; Zhou, J.; Shen, M.; Wang, X.; Fu, Z.; Jin, Y. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.070] [PMID: 30448747]
[182]
Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf., 2019, 182, 109442.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109442] [PMID: 31352214]
[183]
Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere, 2020, 261, 127748.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127748] [PMID: 32738713]
[184]
Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. Chemosphere, 2021, 277, 130262.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130262] [PMID: 33773317]
[185]
Xue, Y.H.; Feng, L.S.; Xu, Z.Y.; Zhao, F.Y.; Wen, X.L.; Jin, T.; Sun, Z.X. The time-dependent variations of zebrafish intestine and gill after polyethylene microplastics exposure. Ecotoxicology, 2021, 30(10), 1997-2010.
[http://dx.doi.org/10.1007/s10646-021-02469-4] [PMID: 34529203]
[186]
Limonta, G.; Mancia, A.; Abelli, L.; Fossi, M.C.; Caliani, I.; Panti, C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 245, 109037.
[http://dx.doi.org/10.1016/j.cbpc.2021.109037] [PMID: 33753304]
[187]
Guimarães, A.T.B.; Charlie-Silva, I.; Malafaia, G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. J. Hazard. Mater., 2021, 407, 124833.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124833] [PMID: 33352420]
[188]
Sheng, C.; Zhang, S.; Zhang, Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J. Hazard. Mater., 2021, 402, 123733.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123733] [PMID: 33254764]
[189]
Bhagat, J.; Zang, L.; Nakayama, H.; Nishimura, N.; Shimada, Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci. Total Environ., 2021, 800, 149463.
[http://dx.doi.org/10.1016/j.scitotenv.2021.149463] [PMID: 34399343]
[190]
Zhu, J.; Zhang, Y.; Xu, Y.; Wang, L.; Wu, Q.; Zhang, Z.; Li, L. Effects of microplastics on the accumulation and neurotoxicity of methylmercury in zebrafish larvae. Mar. Environ. Res., 2022, 176, 105615.
[http://dx.doi.org/10.1016/j.marenvres.2022.105615] [PMID: 35364423]
[191]
Liu, Y.; Wang, Y.; Li, N.; Jiang, S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci. Total Environ., 2022, 806(Pt 2), 150681.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150681] [PMID: 34599957]
[192]
Santos, D.; Luzio, A.; Bellas, J.; Monteiro, S.M. Microplastics- and copper-induced changes in neurogenesis and DNA methyltransferases in the early life stages of zebrafish. Chem. Biol. Interact., 2022, 363, 110021.
[http://dx.doi.org/10.1016/j.cbi.2022.110021] [PMID: 35728670]
[193]
Santos, D.; Luzio, A.; Félix, L.; Bellas, J.; Monteiro, S.M. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 258, 109363.
[http://dx.doi.org/10.1016/j.cbpc.2022.109363] [PMID: 35525464]
[194]
Jeong, S.; Jang, S.; Kim, S.S.; Bae, M.A.; Shin, J.; Lee, K.B.; Kim, K.T. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. J. Hazard. Mater., 2022, 439, 129616.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129616] [PMID: 36104895]
[195]
Hanslik, L.; Huppertsberg, S.; Kämmer, N.; Knepper, T.P.; Braunbeck, T. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: Adsorption of toxicants to microplastics during exposure in a highly polluted stream - Analytical quantification and assessment of toxic effects in zebrafish (Danio rerio). Sci. Total Environ., 2022, 816, 151640.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151640] [PMID: 34774627]
[196]
Aliakbarzadeh, F.; Rafiee, M.; Khodagholi, F.; Khorramizadeh, M.R.; Manouchehri, H.; Eslami, A.; Sayehmiri, F.; Mohseni-Bandpei, A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. Environ. Pollut., 2023, 317, 120587.
[http://dx.doi.org/10.1016/j.envpol.2022.120587] [PMID: 36336178]
[197]
Zhang, C.; Li, Y.; Yu, H.; Ye, L.; Li, T.; Zhang, X.; Wang, C.; Li, P.; Ji, H.; Gao, Q.; Dong, S. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci. Total Environ., 2023, 863, 161005.
[http://dx.doi.org/10.1016/j.scitotenv.2022.161005] [PMID: 36539083]
[198]
Martin-Folgar, R.; Torres-Ruiz, M.; de Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere, 2023, 312(Pt 1), 137077.
[http://dx.doi.org/10.1016/j.chemosphere.2022.137077] [PMID: 36334746]
[199]
Zhou, R.; Zhou, D.; Yang, S.; Shi, Z.; Pan, H.; Jin, Q.; Ding, Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. Sci. Total Environ., 2023, 872, 162096.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162096] [PMID: 36791853]
[200]
Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ., 2023, 874, 162406.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162406] [PMID: 36841402]
[201]
Wang, Q.; Chen, G.; Tian, L.; Kong, C.; Gao, D.; Chen, Y.; Junaid, M.; Wang, J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. Sci. Total Environ., 2023, 857(Pt 2), 159567.
[http://dx.doi.org/10.1016/j.scitotenv.2022.159567] [PMID: 36272476]
[202]
Murali, K.; Kenesei, K.; Li, Y.; Demeter, K.; Környei, Z.; Madarász, E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: In vitro studies on neural tissue cells. Nanoscale, 2015, 7(9), 4199-4210.
[http://dx.doi.org/10.1039/C4NR06849A] [PMID: 25673096]
[203]
Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res., 2017, 159, 579-587.
[http://dx.doi.org/10.1016/j.envres.2017.08.043] [PMID: 28898803]
[204]
Hoelting, L.; Scheinhardt, B.; Bondarenko, O.; Schildknecht, S.; Kapitza, M.; Tanavde, V.; Tan, B.; Lee, Q.Y.; Mecking, S.; Leist, M.; Kadereit, S. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch. Toxicol., 2013, 87(4), 721-733.
[http://dx.doi.org/10.1007/s00204-012-0984-2] [PMID: 23203475]
[205]
Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 2022, 298, 134261.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134261] [PMID: 35302003]
[206]
Sun, J.; Wang, Y.; Du, Y.; Zhang, W.; Liu, Z.; Bai, J.; Cui, G.; Du, Z. Involvement of the JNK/HO 1/FTH1 signaling pathway in nanoplastic induced inflammation and ferroptosis of BV2 microglia cells. Int. J. Mol. Med., 2023, 52(1), 61.
[http://dx.doi.org/10.3892/ijmm.2023.5264] [PMID: 37264973]
[207]
Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; Park, J.K.; Lee, S.J.; Choi, S.K. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ., 2022, 807(Pt 2), 150817.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150817] [PMID: 34627918]
[208]
Ban, M.; Shimoda, R.; Chen, J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicol. In Vitro, 2021, 76, 105225.
[http://dx.doi.org/10.1016/j.tiv.2021.105225] [PMID: 34293433]
[209]
Nie, J.; Shen, Y.; Roshdy, M.; Cheng, X.; Wang, G.; Yang, X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology, 2021, 15(7), 1-20.
[http://dx.doi.org/10.1080/17435390.2021.1930228] [PMID: 34087085]
[210]
Tang, Q.; Li, T.; Chen, K.; Deng, X.; Zhang, Q.; Tang, H.; Shi, Z.; Zhu, T.; Zhu, J. PS-NPs induced neurotoxic effects in shsy-5y cells via autophagy activation and mitochondrial dysfunction. Brain Sci., 2022, 12(7), 952.
[http://dx.doi.org/10.3390/brainsci12070952] [PMID: 35884757]
[211]
Hua, T.; Kiran, S.; Li, Y.; Sang, Q.X.A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. J. Hazard. Mater., 2022, 435, 128884.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128884] [PMID: 35483261]
[212]
Jeong, J.H.; Kang, S.H.; Kim, J.H.; Yu, K.S.; Lee, I.H.; Lee, Y.J.; Lee, J.H.; Lee, N.S.; Jeong, Y.G.; Kim, D.K.; Kim, G.H.; Lee, S.H.; Hong, S.K.; Han, S.Y.; Kang, B.S. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity. J. Nanosci. Nanotechnol., 2014, 14(11), 8365-8371.
[http://dx.doi.org/10.1166/jnn.2014.9927] [PMID: 25958529]
[213]
Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect., 2022, 130(10), 107002.
[http://dx.doi.org/10.1289/EHP10255] [PMID: 36251724]
[214]
Lee, C.W.; Hsu, L.F.; Wu, I.L.; Wang, Y.L.; Chen, W.C.; Liu, Y.J.; Yang, L.T.; Tan, C.L.; Luo, Y.H.; Wang, C.C.; Chiu, H.W.; Yang, T.C.K.; Lin, Y.Y.; Chang, H.A.; Chiang, Y.C.; Chen, C.H.; Lee, M.H.; Peng, K.T.; Huang, C.C.Y. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J. Hazard. Mater., 2022, 430, 128431.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128431] [PMID: 35150991]
[215]
Zaheer, J.; Kim, H.; Ko, I.O.; Jo, E.K.; Choi, E.J.; Lee, H.J.; Shim, I.; Woo, H.; Choi, J.; Kim, G.H.; Kim, J.S. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ. Int., 2022, 161, 107121.
[http://dx.doi.org/10.1016/j.envint.2022.107121] [PMID: 35134716]
[216]
Sincihu, Y.; Lusno, M.F.D.; Mulyasari, T.M.; Elias, S.M.; Sudiana, I.K.; Kusumastuti, K.; Sulistyorini, L.; Keman, S. Wistar rats hippocampal neurons response to blood low-density polyethylene microplastics: A pathway analysis of SOD, CAT, MDA, 8-OHdG expression in hippocampal neurons and blood serum Aβ42 levels. Neuropsychiatr. Dis. Treat., 2023, 19, 73-83.
[http://dx.doi.org/10.2147/NDT.S396556] [PMID: 36636141]
[217]
Supraja, P.; Tripathy, S.; Singh, R.; Singh, V.; Chaudhury, G.; Singh, S.G. Towards point-of-care diagnosis of alzheimer’s disease: Multi-analyte based portable chemiresistive platform for simultaneous detection of β-amyloid (1-40) and (1-42) in plasma. Biosens. Bioelectron., 2021, 186, 113294.
[http://dx.doi.org/10.1016/j.bios.2021.113294] [PMID: 33971525]
[218]
Yang, D.; Zhu, J.; Zhou, X.; Pan, D.; Nan, S.; Yin, R.; Lei, Q.; Ma, N.; Zhu, H.; Chen, J.; Han, L.; Ding, M.; Ding, Y. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int., 2022, 166, 107362.
[http://dx.doi.org/10.1016/j.envint.2022.107362] [PMID: 35749991]
[219]
McConnell, E.R.; McClain, M.A.; Ross, J.; LeFew, W.R.; Shafer, T.J. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology, 2012, 33(5), 1048-1057.
[http://dx.doi.org/10.1016/j.neuro.2012.05.001] [PMID: 22652317]
[220]
Hu, M.; Palić, D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol., 2020, 37, 101620.
[http://dx.doi.org/10.1016/j.redox.2020.101620] [PMID: 32863185]
[221]
Prokić, M.D.; Radovanović, T.B.; Gavrić, J.P.; Faggio, C. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. Trends Analyt. Chem., 2019, 111, 37-46.
[http://dx.doi.org/10.1016/j.trac.2018.12.001]
[222]
Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang., 2019, 9(5), 374-378.
[http://dx.doi.org/10.1038/s41558-019-0459-z]
[223]
Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; Bottein, M.Y.D.; Demeneix, B.; Depledge, M.; Deheyn, D.D.; Dorman, C.J.; Fénichel, P.; Fisher, S.; Gaill, F.; Galgani, F.; Gaze, W.H.; Giuliano, L.; Grandjean, P.; Hahn, M.E.; Hamdoun, A.; Hess, P.; Judson, B.; Laborde, A.; McGlade, J.; Mu, J.; Mustapha, A.; Neira, M.; Noble, R.T.; Pedrotti, M.L.; Reddy, C.; Rocklöv, J.; Scharler, U.M.; Shanmugam, H.; Taghian, G.; Van de Water, J.A.J.M.; Vezzulli, L.; Weihe, P.; Zeka, A.; Raps, H.; Rampal, P. Human health and ocean pollution. Ann. Glob. Health, 2020, 86(1), 151.
[http://dx.doi.org/10.5334/aogh.2831] [PMID: 33354517]
[224]
Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 2015, 36(6), E1-E150.
[http://dx.doi.org/10.1210/er.2015-1010] [PMID: 26544531]
[225]
Woskie, S.R.; Bello, A.; Rennix, C.; Jiang, L.; Trivedi, A.N.; Savitz, D.A. Burn pit exposure assessment to support a cohort study of US veterans of the wars in Iraq and Afghanistan. J. Occup. Environ. Med., 2023, 65(6), 449-457.
[http://dx.doi.org/10.1097/JOM.0000000000002788] [PMID: 36728333]
[226]
Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377.
[http://dx.doi.org/10.1007/s00415-021-10928-5] [PMID: 34973105]
[227]
Du Preez, M.; Van der Merwe, D.; Wyma, L.; Ellis, S.M. Assessing knowledge and use practices of plastic food packaging among young adults in South Africa: Concerns about chemicals and health. Int. J. Environ. Res. Public Health, 2021, 18(20), 10576.
[http://dx.doi.org/10.3390/ijerph182010576] [PMID: 34682322]
[228]
Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; Fenichel, P.; Fleming, L.E.; Ferrier-Pages, C.; Fordham, R.; Gozt, A.; Griffin, C.; Hahn, M.E.; Haryanto, B.; Hixson, R.; Ianelli, H.; James, B.D.; Kumar, P.; Laborde, A.; Law, K.L.; Martin, K.; Mu, J.; Mulders, Y.; Mustapha, A.; Niu, J.; Pahl, S.; Park, Y.; Pedrotti, M.L.; Pitt, J.A.; Ruchirawat, M.; Seewoo, B.J.; Spring, M.; Stegeman, J.J.; Suk, W.; Symeonides, C.; Takada, H.; Thompson, R.C.; Vicini, A.; Wang, Z.; Whitman, E.; Wirth, D.; Wolff, M.; Yousuf, A.K.; Dunlop, S. The minderoo-monaco commission on plastics and human health. Ann. Glob. Health, 2023, 89(1), 23.
[http://dx.doi.org/10.5334/aogh.4056] [PMID: 36969097]
[229]
Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev., 2012, 92(3), 1235-1316.
[http://dx.doi.org/10.1152/physrev.00037.2010] [PMID: 22811428]
[230]
Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo–hypophysio–gonadal axis. In: International Review of Cytology; Elsevier, 2002; Vol. 218, pp. 69-143e.
[231]
Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene microplastics cause tissue damages, sexspecific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ. Pollut., 2019, 254(Pt B), 113024.
[http://dx.doi.org/10.1016/j.envpol.2019.113024] [PMID: 31454586]
[232]
Zhu, M.; Chernick, M.; Rittschof, D.; Hinton, D.E. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat. Toxicol., 2020, 220, 105396.
[http://dx.doi.org/10.1016/j.aquatox.2019.105396] [PMID: 31927063]
[233]
Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; Corporeau, C.; Guyomarch, J.; Robbens, J.; Paul-Pont, I.; Soudant, P.; Huvet, A. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA, 2016, 113(9), 2430-2435.
[http://dx.doi.org/10.1073/pnas.1519019113] [PMID: 26831072]
[234]
Qiang, L.; Cheng, J. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio). Chemosphere, 2021, 263, 128161.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128161] [PMID: 33297137]
[235]
Chatterjee, A.; Maity, S.; Banerjee, S.; Dutta, S.; Adhikari, M.; Guchhait, R.; Biswas, C.; De, S.; Pramanick, K. Toxicological impacts of nanopolystyrene on zebrafish oocyte with insight into the mechanism of action: An expression-based analysis. Sci. Total Environ., 2022, 830, 154796.
[http://dx.doi.org/10.1016/j.scitotenv.2022.154796] [PMID: 35341844]
[236]
Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; Di Giulio, R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Sci. Total Environ., 2018, 643, 324-334.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.186] [PMID: 29940444]
[237]
Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J. Hazard. Mater., 2020, 395, 122621.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122621] [PMID: 32289630]
[238]
Feng, M.; Luo, J.; Wan, Y.; Zhang, J.; Lu, C.; Wang, M.; Dai, L.; Cao, X.; Yang, X.; Wang, Y. Polystyrene nanoplastic exposure induces developmental toxicity by activating the oxidative stress response and base excision repair pathway in zebrafish (Danio rerio). ACS Omega, 2022, 7(36), 32153-32163.
[http://dx.doi.org/10.1021/acsomega.2c03378] [PMID: 36119974]
[239]
Lin, W.; Luo, H.; Wu, J.; Liu, X.; Cao, B.; Liu, Y.; Yang, P.; Yang, J. Polystyrene microplastics enhance the microcystin-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish. Sci. Total Environ., 2023, 876, 162664.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162664] [PMID: 36894083]
[240]
Tarasco, M.; Gavaia, P.J.; Bensimon-Brito, A.; Cordelières, F.P.; Santos, T.; Martins, G.; de Castro, D.T.; Silva, N.; Cabrita, E.; Bebianno, M.J.; Stainier, D.Y.R.; Cancela, M.L.; Laizé, V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. Chemosphere, 2022, 303(Pt 3), 135198.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135198] [PMID: 35660050]
[241]
Gao, Y.; Li, A.; Zhang, W.; Pang, S.; Liang, Y.; Song, M. Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat. Toxicol., 2022, 246, 106154.
[http://dx.doi.org/10.1016/j.aquatox.2022.106154] [PMID: 35390582]
[242]
Zhao, F.; Jiang, G.; Wei, P.; Wang, H.; Ru, S. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2018, 147, 794-802.
[http://dx.doi.org/10.1016/j.ecoenv.2017.09.048] [PMID: 28946120]
[243]
Yuan, M.; Chen, S.; Zeng, C.; Fan, Y.; Ge, W.; Chen, W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. Environ. Int., 2023, 176, 107976.
[http://dx.doi.org/10.1016/j.envint.2023.107976] [PMID: 37236126]
[244]
Wang, L.; Zhu, Y.; Gu, J.; Yin, X.; Guo, L.; Qian, L.; Shi, L.; Guo, M.; Ji, G. The toxic effect of bisphenol AF and nanoplastic coexposure in parental and offspring generation zebrafish. Ecotoxicol. Environ. Saf., 2023, 251, 114565.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114565] [PMID: 36682183]
[245]
Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int., 2022, 163, 107199.
[http://dx.doi.org/10.1016/j.envint.2022.107199] [PMID: 35367073]
[246]
Wen, S.; Chen, Y.; Tang, Y.; Zhao, Y.; Liu, S.; You, T.; Xu, H. Male reproductive toxicity of polystyrene microplastics: Study on the endoplasmic reticulum stress signaling pathway. Food Chem. Toxicol., 2023, 172, 113577.
[http://dx.doi.org/10.1016/j.fct.2022.113577] [PMID: 36563925]
[247]
Zhao, T.; Shen, L.; Ye, X.; Bai, G.; Liao, C.; Chen, Z.; Peng, T.; Li, X.; Kang, X.; An, G. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. J. Hazard. Mater., 2023, 445, 130544.
[http://dx.doi.org/10.1016/j.jhazmat.2022.130544] [PMID: 36493639]
[248]
An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology, 2021, 449, 152665.
[http://dx.doi.org/10.1016/j.tox.2020.152665] [PMID: 33359712]
[249]
Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J. Hazard. Mater., 2021, 406, 124644.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124644] [PMID: 33321324]
[250]
Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology, 2022, 465, 153059.
[http://dx.doi.org/10.1016/j.tox.2021.153059] [PMID: 34864092]
[251]
Marcelino, R.C.; Cardoso, R.M.; Domingues, E.L.B.C.; Gonçalves, R.V.; Lima, G.D.A.; Novaes, R.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sci., 2022, 295, 120404.
[http://dx.doi.org/10.1016/j.lfs.2022.120404] [PMID: 35176278]
[252]
Yuan, Y.; Qin, Y.; Wang, M.; Xu, W.; Chen, Y.; Zheng, L.; Chen, W.; Luo, T. Microplastics from agricultural plastic mulch films: A mini-review of their impacts on the animal reproductive system. Ecotoxicol. Environ. Saf., 2022, 244, 114030.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114030] [PMID: 36058163]
[253]
Maradonna, F.; Vandenberg, L.N.; Meccariello, R. Editorial: Endocrine-disrupting compounds in plastics and their effects on reproduction, fertility, and development. Front. Toxicol., 2022, 4, 886628.
[http://dx.doi.org/10.3389/ftox.2022.886628] [PMID: 35399294]
[254]
Wu, H.; Liu, Q.; Yang, N.; Xu, S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci. Total Environ., 2023, 871, 161962.
[http://dx.doi.org/10.1016/j.scitotenv.2023.161962] [PMID: 36775173]
[255]
Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater., 2022, 424(Pt C), 127629.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127629] [PMID: 34740508]
[256]
Zeng, L.; Zhou, C.; Xu, W.; Huang, Y.; Wang, W.; Ma, Z.; Huang, J.; Li, J.; Hu, L.; Xue, Y.; Luo, T.; Zheng, L. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. Ecotoxicol. Environ. Saf., 2023, 257, 114941.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114941] [PMID: 37087970]
[257]
Park, E.J.; Han, J.S.; Park, E.J.; Seong, E.; Lee, G.H.; Kim, D.W.; Son, H.Y.; Han, H.Y.; Lee, B.S. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol. Lett., 2020, 324, 75-85.
[http://dx.doi.org/10.1016/j.toxlet.2020.01.008] [PMID: 31954868]
[258]
Wei, Y.; Zhou, Y.; Long, C.; Wu, H.; Hong, Y.; Fu, Y.; Wang, J.; Wu, Y.; Shen, L.; Wei, G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ. Pollut., 2021, 289, 117904.
[http://dx.doi.org/10.1016/j.envpol.2021.117904] [PMID: 34371264]
[259]
Jin, H.; Yan, M.; Pan, C.; Liu, Z.; Sha, X.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part. Fibre Toxicol., 2022, 19(1), 13.
[http://dx.doi.org/10.1186/s12989-022-00453-2] [PMID: 35177090]
[260]
Hou, L.; Wang, D.; Yin, K.; Zhang, Y.; Lu, H.; Guo, T.; Li, J.; Zhao, H.; Xing, M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 262, 109444.
[http://dx.doi.org/10.1016/j.cbpc.2022.109444] [PMID: 36007826]
[261]
Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J. Hazard. Mater., 2021, 405, 124028.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124028] [PMID: 33087287]
[262]
Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf., 2020, 190, 110133.
[http://dx.doi.org/10.1016/j.ecoenv.2019.110133] [PMID: 31896473]
[263]
Zhou, Y.; Xu, W.; Yuan, Y.; Luo, T. What is the Impact of Bisphenol A on sperm function and related signaling pathways: A Mini-review? Curr. Pharm. Des., 2020, 26(37), 4822-4828.
[http://dx.doi.org/10.2174/1381612826666200821113126] [PMID: 32954995]
[264]
Sui, A.; Yao, C.; Chen, Y.; Li, Y.; Yu, S.; Qu, J.; Wei, H.; Tang, J.; Chen, G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem. Toxicol., 2023, 173, 113634.
[http://dx.doi.org/10.1016/j.fct.2023.113634] [PMID: 36709824]
[265]
Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater., 2021, 401, 123430.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123430] [PMID: 32659591]
[266]
Sun, Z.; Wen, Y.; Zhang, F.; Fu, Z.; Yuan, Y.; Kuang, H.; Kuang, X.; Huang, J.; Zheng, L.; Zhang, D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in leydig cells. Ecotoxicol. Environ. Saf., 2023, 255, 114796.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114796] [PMID: 36948006]
[267]
Mruk, D.D.; Cheng, C.Y. The mammalian blood-testis barrier: Its biology and regulation. Endocr. Rev., 2015, 36(5), 564-591.
[http://dx.doi.org/10.1210/er.2014-1101] [PMID: 26357922]
[268]
Xu, W.; Yuan, Y.; Tian, Y.; Cheng, C.; Chen, Y.; Zeng, L.; Yuan, Y.; Li, D.; Zheng, L.; Luo, T. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice. J. Hazard. Mater., 2023, 454, 131470.
[http://dx.doi.org/10.1016/j.jhazmat.2023.131470] [PMID: 37116333]
[269]
Hu, R.; Yao, C.; Li, Y.; Qu, J.; Yu, S.; Han, Y.; Chen, G.; Tang, J.; Wei, H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. Ecotoxicol. Environ. Saf., 2022, 248, 114332.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114332] [PMID: 36446169]
[270]
Hassine, M.B.H.; Venditti, M.; Rhouma, M.B.; Minucci, S.; Messaoudi, I. Combined effect of polystyrene microplastics and cadmium on rat blood-testis barrier integrity and sperm quality. Environ. Sci. Pollut. Res. Int., 2023, 30(19), 56700-56712.
[http://dx.doi.org/10.1007/s11356-023-26429-z] [PMID: 36928700]
[271]
Venditti, M.; Ben Hadj Hassine, M.; Messaoudi, I.; Minucci, S. The simultaneous administration of microplastics and cadmium alters rat testicular activity and changes the expression of PTMA, DAAM1 and PREP. Front. Cell Dev. Biol., 2023, 11, 1145702.
[http://dx.doi.org/10.3389/fcell.2023.1145702] [PMID: 36968197]
[272]
Liu, J.; Ma, M.; Zhu, D.; Xia, T.; Qi, Y.; Yao, Y.; Guo, X.; Ji, R.; Chen, W. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol., 2018, 52(5), 2677-2685.
[http://dx.doi.org/10.1021/acs.est.7b05211] [PMID: 29420017]
[273]
Li, D.; Sun, W.; Jiang, X.; Yu, Z.; Xia, Y.; Cheng, S.; Mao, L.; Luo, S.; Tang, S.; Xu, S.; Zou, Z.; Chen, C.; Qiu, J.; Zhou, L. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. Ecotoxicol. Environ. Saf., 2022, 245, 114104.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114104] [PMID: 36174316]
[274]
Cui, H.; Yang, W.; Cui, Y.; Qi, L.; Jiang, X.; Li, M. Adverse effects of pristine and aged polystyrene microplastics in mice and their Nrf2-mediated defense mechanisms with tissue specificity. Environ. Sci. Pollut. Res. Int., 2023, 30(14), 39894-39906.
[http://dx.doi.org/10.1007/s11356-022-24918-1] [PMID: 36602732]
[275]
Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of biological and molecular attributes related to polystyrene microplastic-induced reproductive toxicity and its reversibility in male mice. Int. J. Environ. Res. Public Health, 2022, 19(21), 14093.
[http://dx.doi.org/10.3390/ijerph192114093] [PMID: 36360968]
[276]
Rizwan, A.; Ijaz, M.U.; Hamza, A.; Anwar, H. Attenuative effect of astilbin on polystyrene microplastics induced testicular damage: Biochemical, spermatological and histopathological-based evidences. Toxicol. Appl. Pharmacol., 2023, 471, 116559.
[http://dx.doi.org/10.1016/j.taap.2023.116559] [PMID: 37217007]
[277]
Ijaz, M.U.; Najam, S.; Hamza, A.; Azmat, R.; Ashraf, A.; Unuofin, J.O.; Lebelo, S.L.; Simal-Gandara, J. Pinostrobin alleviates testicular and spermatological damage induced by polystyrene microplastics in adult albino rats. Biomed. Pharmacother., 2023, 162, 114686.
[http://dx.doi.org/10.1016/j.biopha.2023.114686] [PMID: 37044025]
[278]
Hamza, A.; Ijaz, M.U.; Anwar, H. Rhamnetin alleviates polystyrene microplastics-induced testicular damage by restoring biochemical, steroidogenic, hormonal, apoptotic, inflammatory, spermatogenic and histological profile in male albino rats. Hum. Exp. Toxicol., 2023, 42.
[http://dx.doi.org/10.1177/09603271231173378] [PMID: 37122069]
[279]
D’Angelo, S.; Scafuro, M.; Meccariello, R. BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 594-604.
[http://dx.doi.org/10.2174/1871530319666190101120119] [PMID: 30621569]
[280]
Kim, S.; Kim, H.; Yim, Y.S.; Ha, S.; Atarashi, K.; Tan, T.G.; Longman, R.S.; Honda, K.; Littman, D.R.; Choi, G.B.; Huh, J.R. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 2017, 549(7673), 528-532.
[http://dx.doi.org/10.1038/nature23910] [PMID: 28902840]
[281]
Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol., 2021, 17(9), 564-579.
[http://dx.doi.org/10.1038/s41582-021-00530-8] [PMID: 34341569]
[282]
Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool. Ann. Intern. Med., 2019, 171(7), 453-457.
[http://dx.doi.org/10.7326/M19-0618] [PMID: 31476765]
[283]
Xu, J.L.; Lin, X.; Wang, J.J.; Gowen, A.A. A review of potential human health impacts of micro- and nanoplastics exposure. Sci. Total Environ., 2022, 851(Pt 1), 158111.
[http://dx.doi.org/10.1016/j.scitotenv.2022.158111] [PMID: 35987230]
[284]
Wu, P.; Lin, S.; Cao, G.; Wu, J.; Jin, H.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater., 2022, 437, 129361.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129361] [PMID: 35749897]
[285]
La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; Rieswijk, L.; Sone, H.; Korach, K.S.; Gore, A.C.; Zeise, L.; Zoeller, R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol., 2020, 16(1), 45-57.
[http://dx.doi.org/10.1038/s41574-019-0273-8] [PMID: 31719706]

© 2024 Bentham Science Publishers | Privacy Policy