[16]
Kiyokawa, H.; Hoshino, Y.; Sakaguchi, K.; Muro, S.; Yodoi, J. Redox regulation in aging lungs and therapeutic implications of antioxidants in COPD. Antioxidants, 2021, 10
[19]
Ameziane El Hassani, R.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. End.-Related Cancer, 2019, 26, R131-R143.
[20]
Srinivas, U.S.; Vellayappan, B.A. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol., 2019, 25, 101084.
[25]
Barrera, G.; Cucci, M.A.; Grattarola, M.; Dianzani, C.; Muzio, G.; Pizzimenti, S. Control of oxidative stress in cancer chemoresistance: Spotlight on Nrf2 role. Antioxidants, 2021, 10.
[30]
Wang, J.; Li, Y.; Zhang, J.; Luo, C. Isoliquiritin modulates ferroptosis via NF-κB signalling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol. Immunotoxicol., 2023, 45(4), 443-454.
[35]
Ogboo, B.C.; Grabovyy, U.V.; Maini, A.; Scouten, S.; van der Vliet, A.; Mattevi, A.; Heppner, D.E. Architecture of the NADPH oxidase family of enzymes. Redox Biol., 2022, 52, 102298.
[36]
Taylor, J.P.; Tse, H.M. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol., 2021, 48, 102159.
[41]
Nocella, C.; D'Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; Benazzi, B.; Zara, F.; Frati, G.; Sciarretta, S.; Pignatelli, P.; Violi, F.; Carnevale, R.; Group, S. Group, structure, activation, and regulation of NOX2: At the crossroad between the innate immunity and oxidative stress-mediated pathologies. Antioxidants, 2023, 12
[47]
Coats, B.R.; Schoenfelt, K.Q.; Barbosa-Lorenzi, V.C.; Peris, E.; Cui, C.; Hoffman, A.; Zhou, G.; Fernandez, S.; Zhai, L.; Hall, B.A.; Haka, A.S.; Shah, A.M.; Reardon, C.A.; Brady, M.J.; Rhodes, C.J.; Maxfield, F.R.; Becker, L. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Reports, 2017, 20, 3149-3161.
[49]
Martner, A.; Aydin, E.; Hellstrand, K.; Dolg, M. NOX2 in autoimmunity, tumor growth and metastasis. J. pathol., 2019, 247, 151-154.
[55]
Damascena, H.L.; Silveira, W.A.A.; Castro, M.S.; Fontes, W. Neutrophil activated by the famous and potent PMA (Phorbol Myristate Acetate). Cells, 2022, 11
[57]
Ebner, J.K.; König, G.M.; Kostenis, E.; Siegert, P.; Aktories, K.; Orth, J.H.C. Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone, 2019, 127, 592-601.
[58]
Freitas, M.; Porto, G.; Fernandes, E. Zinc activates neutrophils’ oxidative burst. Biometals, 2010, 23, 31-41.
[67]
Choi, J.Y.; Lee, N.K.; Wang, Y.Y.; Hong, J.P.; Son, S.R.; Gu, D.H.; Jang, D.S.; Choi, J.H. 1'-acetoxyeugenol acetate isolated from thai ginger induces apoptosis in human ovarian cancer cells by ROS production via NADPH oxidase. Antioxidants, 2022, 11
[68]
Chocry, M.; Leloup, L. The NADPH oxidase family and its inhibitors. Antioxid Redox Signal, 2020, 33, 332-353.
[70]
Heumüller, S.; Wind, S.; Barbosa-Sicard, E.; Schmidt, H.H.; Busse, R.; Schröder, K.; Brandes, R.P. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 2008, 51, 211-217.
[71]
Szilagyi, J.T.; Mishin, V.; Heck, D.E.; Jan, Y.H.; Aleksunes, L.M.; Richardson, J.R.; Heindel, N.D.; Laskin, D.L.; Laskin, J.D. Selective targeting of heme protein in cytochrome P450 and nitric oxide synthase by diphenyleneiodonium. Toxicol. Sci., 2016, 151, 150-159.
[74]
Grauers Wiktorin, H.; Nilsson, M.S.; Kiffin, R.; Sander, F.E.; Lenox, B.; Rydstrom, A.; Hellstrand, K.; Martner, A. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother., 2019, 68, 163-174.
[75]
Kiffin, R.; Grauers Wiktorin, H.; Kiffin, R. Anti-leukemic properties of histamine in monocytic leukemia: The role of NOX2. Front. Oncol., 2018, 8, 218.
[86]
Lee, Y.C.; Chiou, J.T.; Wang, L.J.; Shi, Y.J.; Chen, Y.J.; Chang, L.S. Carboxyl group-modified myoglobin induces TNF-α-mediated apoptosis in leukemia cells. Pharmaceuticals, 2022, 15
[102]
Ishaq, M.; Evans, M.D.; Ostrikov, K.K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochimic. et Biophys. Acta., 2014, 1843, 2827-2837.
[103]
Saber, M.M.; Al-Mahallawi, A.M. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18, 822.
[106]
Ko, Y.H.; Jeong, M.; Jang, D.S.; Choi, J.H. Gomisin L1, a lignan isolated from schisandra berries, induces apoptosis by regulating NADPH oxidase in human ovarian cancer cells. Life, 2021, 11
[114]
Irwin, M.E.; Johnson, B.P.; Manshouri, R.; Amin, H.M.; Chandra, J. A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget, 2015, 6, 23631-23646.
[115]
Xiang, H.; Ramil, C.P.; Manshouri, R.; Amin, H.M.; Chandra, J. Brandish, cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol. Res., 2020, 8, 436-450.
[124]
Cao, Y.; Luo, F.; Peng, J.; Fang, Z.; Liu, Q.; Zhou, S. KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J. Mol. Cell. Cardiol., 2021, 173, 75-91.
[125]
Dömer, D.; Walther, T.; Möller, S. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils. Front. Immunol., 2021, 12, 636954.
[126]
Parker, H.A.; Jones, H.M.; Kaldor, C.D.; Hampton, M.B.; Winterbourn, C.C. Neutrophil NET formation with microbial stimuli requires late stage NADPH oxidase activity. Antioxidants, 2021, 10