Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Role of Rosmarinus officinalis Aqueous Extract in Relieving the Complications Associated with Ethylene Glycol-induced Urolithiasis in Male Rats

Author(s): Doaa S. Foda*, Heba-tollah M. Sweelam and Noha E. Ibrahim

Volume 20, Issue 10, 2024

Published on: 15 February, 2024

Article ID: e150224227008 Pages: 29

DOI: 10.2174/0115734072282832240122020523

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Rosmarinus officinalis is considered one of the famous plants from ancient times for its therapeutic ability in many diseases, such as headache, spasms, brain disorders, and some pathological conditions associated with toxicity cases in the liver and kidneys.

Aim: The current research has aimed, for the first time, to evaluate anti-urolithiatic effect of Rosmarinus officinalis aqueous extract (RMAE) on calcium oxalate stones formation in male rats and its possible therapeutic mechanisms of action. Evaluation of total phenolic and flavonoid contents in the extract was also performed.

Methods: A calcium oxalate nephrolithiasis case was established in rats by adding ethylene glycol (1%) to the rats' daily drinking water for a duration of one month. Treatment was achieved by oral co-administration of RMAE to rats administrated ethylene glycol.

Results: Phytochemical results showed that LC/MS-MS analysis led to the identification of 37 compounds in the phytoconstituent profile of RMAE. The biochemical results revealed significant improvement in serum kidney functions (urea, creatinine, and uric acid) in addition to restoring the calcium x phosphorous product and parathyroid hormone (PTH) levels in the plant-treated group compared to the non-treated one. The data have been supported by the significant decrease in lactate dehydrogenase enzyme (LDH) expression in the liver tissues, reflecting the decrease in oxalate synthesis in the liver compared to the non-treated group. Kidneys' histological examinations showed the absence of oxalate crystals in the treated group and the immunohistochemical findings of osteopontin (OPN) protein revealed the impact of RMAE on OPN expression in kidney tissues. Improvements in the femur bone fractures and the parathyroid gland in the treated group were also noticed during microscopic examinations.

Conclusion: The anti-lithiatic effect of the extract was attributed to its influence on serum phosphate, serum PTH, and OPN levels in kidney tissues and decreasing synthesis of LDH in liver tissues in addition to the prevention of secondary disease incidences, such as secondary hyperparathyroidism and cardiovascular diseases. On the other hand, the plant's considerable content of phenolics and flavonoids has been found to play a role in controlling kidney stone progression episodes.

Keywords: Nephrourolithiasis, Rosmarinus officinalis extract, therapeutic mechanisms of action, parathyroid gland, femur bone, kidney tissues.

Graphical Abstract
[1]
Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA, 2018, 4(4), FSO283.
[http://dx.doi.org/10.4155/fsoa-2017-0124] [PMID: 29682318]
[2]
de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review. Plants, 2020, 9(5), 651.
[http://dx.doi.org/10.3390/plants9050651]
[3]
Senanayake, S.P.J.N. Rosemary extract as a natural source of bioactive compounds. J. Food Bioact., 2018, 2, 51-57.
[http://dx.doi.org/10.31665/JFB.2018.2140]
[4]
ElSherif, N.; Issa, N. Protective effect of rosemary (rosmarinus officinalis) extract on naphthalene induced nephrotoxicity in adult male albino rat. J. Interdiscip. Histopathol., 2015, 3(1), 24-32.
[http://dx.doi.org/10.5455/jihp.20150213020636]
[5]
Bahri, S.; Ben Ali, R.; Gasmi, K.; Mlika, M.; Fazaa, S.; Ksouri, R.; Serairi, R.; Jameleddine, S.; Shlyonsky, V. Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis. Pharm. Biol., 2017, 55(1), 462-471.
[http://dx.doi.org/10.1080/13880209.2016.1247881] [PMID: 28093019]
[6]
de Almeida Gonçalves, G.; de Sá-Nakanishi, A.B.; Comar, J.F.; Bracht, L.; Dias, M.I.; Barros, L.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Water soluble compounds of Rosmarinus officinalis L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Food Funct., 2018, 9(4), 2328-2340.
[http://dx.doi.org/10.1039/C7FO01928A] [PMID: 29578222]
[7]
Ragab, M.R. Protective effect of rosemary on liver cirrhosis induced experimentally in rats. World J. Pharm. Pharm. Sci., 2019, 9(1), 413-423.
[http://dx.doi.org/10.20959/wjpps20201-15370]
[8]
Foda, D.S.; Ibrahim, N.E. Deleterious effects of hyperoxaluria on some rats’ organs and the promising in vitro oxalate fragmentation influence of aqueous extract of Rosmarinus officinalis Linn. Egypt. J. Vet. Sci., 2024, 55(2), 421-443.
[http://dx.doi.org/10.21608/ejvs.2023.226926.1553]
[9]
Sofia, N.H.; Manickavasakam, K.; Walter, T.M. Prevalence and risk factors of kidney stone. Glob. J. Res. Anal., 2016, 5(3), 183-187.
[http://dx.doi.org/10.36106/gjra]
[10]
Ekeke, O.N.; Okpani, C.P. Management of urinary stone disease in a resource limited tertiary hospital. IOSR J. Dent. Med. Sci., 2018, 17(2), 38-45.
[http://dx.doi.org/10.9790/0853-1702153845]
[11]
Khalili, P.; Jamali, Z.; Sadeghi, T.; Esmaeili-nadimi, A.; Mohamadi, M.; Moghadam-Ahmadi, A.; Ayoobi, F.; Nazari, A. Risk factors of kidney stone disease: A cross-sectional study in the southeast of Iran. BMC Urol., 2021, 21(1), 141.
[http://dx.doi.org/10.1186/s12894-021-00905-5] [PMID: 34625088]
[12]
Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Adv. Urol., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3068365] [PMID: 29515627]
[13]
Safdar, O.Y.; Alzahrani, W. A.; kurdi, M. A.; Ghanim, A.A.; Nagadi, S.A.; Alghamdi, S.J.; Zaher, Z. F.; Albokhari, S.M. The prevalence of renal stones among local residents in Saudi Arabia. J. Family Med. Prim. Care, 2021, 10(2), 974-977.
[http://dx.doi.org/10.4103/jfmpc]
[14]
Atmoko, W.; Raharja, P.A.R.; Birowo, P.; Hamid, A.R.A.H.; Taher, A.; Rasyid, N. Genetic polymorphisms as prognostic factors for recurrent kidney stones: A systematic review and meta-analysis. PLoS One, 2021, 16(5), e0251235.
[http://dx.doi.org/10.1371/journal.pone.0251235] [PMID: 33956883]
[15]
Chien, T.M.; Lu, Y.M.; Li, C.C.; Wu, W.J.; Chang, H.W.; Chou, Y.H. A retrospective study on sex difference in patients with urolithiasis: Who is more vulnerable to chronic kidney disease? Biol. Sex Differ., 2021, 12(1), 40.
[http://dx.doi.org/10.1186/s13293-021-00382-3] [PMID: 34099045]
[16]
Islam, A.K.; Holt, S.; Reisch, J.; Nwariaku, F.; Antonelli, J.; Maalouf, N.M. What predicts recurrent kidney stone after parathyroidectomy in patients with primary hyperparathyroidism? J. Am. Coll. Surg., 2020, 231(1), 74-82.
[http://dx.doi.org/10.1016/j.jamcollsurg.2020.04.015] [PMID: 32330575]
[17]
Sigurjonsdottir, V.K.; Runolfsdottir, H.L.; Indridason, O.S.; Palsson, R.; Edvardsson, V.O. Impact of nephrolithiasis on kidney function. BMC Nephrol., 2015, 16, 1-17.
[http://dx.doi.org/10.1186/s12882-015-0126-1]
[18]
Taylor, E.N.; Feskanich, D.; Paik, J.M.; Curhan, G.C. Nephrolithiasis and risk of incident bone fracture. J. Urol., 2016, 195(5), 1482-1486.
[19]
Khan, S.R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol., 2014, 3(3), 256-276.
[http://dx.doi.org/10.3978/j.issn.2223-4683.2014.06.04] [PMID: 25383321]
[20]
Sohgaura, A.; Bigoniya, P. A review on epidemiology and etiology of renal stone. Am. J. Drug Discov. Dev., 2017, 7(2), 54-62.
[http://dx.doi.org/10.3923/ajdd.2017.54.62]
[21]
Manzoor, M.A.P.; Agrawal, A.K.; Singh, B.; Mujeeburahiman, M.; Rekha, P.D. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones. PLoS ONE, 2019, 14(3), e0214003.
[22]
Bird, V.Y.; Khan, S.R. How do stones form? Is unification of theories on stone formation possible? Arch. Esp. Urol., 2017, 70(1), 12-27.
[PMID: 28221139]
[23]
Kok, D.J.; Boellaard, W.; Ridwan, Y.; Levchenko, V.A. Timelines of the “free-particle” and “fixed-particle” models of stone-formation: Theoretical and experimental investigations. Urolithiasis, 2017, 45(1), 33-41.
[http://dx.doi.org/10.1007/s00240-016-0946-x] [PMID: 27915394]
[24]
Aggarwal, K.P.; Narula, S.; Kakkar, M.; Tandon, C. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed Res. Int., 2013, 2013, 1-21.
[http://dx.doi.org/10.1155/2013/292953] [PMID: 24151593]
[25]
Cunningham, P.; Noble, H.; Al-Modhefer, A.K.; Walsh, I. Kidney stones: Pathophysiology, diagnosis and management. Br. J. Nurs., 2016, 25(20), 1112-1116.
[http://dx.doi.org/10.12968/bjon.2016.25.20.1112] [PMID: 27834524]
[26]
Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent advances on the mechanisms of kidney stone formation (Review). Int. J. Mol. Med., 2021, 48(2), 149.
[http://dx.doi.org/10.3892/ijmm.2021.4982] [PMID: 34132361]
[27]
Rodríguez, D.; Sacco, D.E. Minimally invasive surgical treatment for kidney stone disease. Adv. Chronic Kidney Dis., 2015, 22(4), 266-272.
[http://dx.doi.org/10.1053/j.ackd.2015.03.005] [PMID: 26088070]
[28]
Ito, K.; Takahashi, T.; Somiya, S.; Kanno, T.; Higashi, Y.; Yamada, H. Predictors of repeat surgery and stone-related events after flexible ureteroscopy for renal stones. Urology, 2021, 154, 96-102.
[http://dx.doi.org/10.1016/j.urology.2021.02.025] [PMID: 33667526]
[29]
Nirumand, M.; Hajialyani, M.; Rahimi, R.; Farzaei, M.; Zingue, S.; Nabavi, S.; Bishayee, A. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms. Int. J. Mol. Sci., 2018, 19(3), 765-789.
[http://dx.doi.org/10.3390/ijms19030765] [PMID: 29518971]
[30]
Akram, M.; Idrees, M. Progress and prospects in the management of kidney stones and developments in phyto-therapeutic modalities. Int. J. Immunopathol. Pharmacol., 2019, 33.
[http://dx.doi.org/10.1177/2058738419848220] [PMID: 31046493]
[31]
Mohammed, J.; Hateem, S.M.; Abdul Sattar, O.D. Effect of aqueous, alcoholic and acidic extract of rosemary leaves Rosmarinus officinalis in inhibiting the effect of free radicals manufactured and inhibitory effect in some microorganisms and detection of some active compounds. J. Phys. Conf. Ser., 2020, 1664(1), 012079.
[http://dx.doi.org/10.1088/1742-6596/1664/1/012079]
[32]
Attard, E. (2013). A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Cent. Eur. J. Biol., 8(1), 48-53.
[http://dx.doi.org/10.2478/s11535-012-0107-3]
[33]
Kiranmai, M.; Kumar, C.B.M.; Ibrahim, M. Comparison of total flavanoid content of Azadirachtaindica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(3), 254-261.
[34]
Kasparavičienė, G.; Ramanauskienė, K.; Savickas, A.; Velžienė, S.; Kalvėnienė, Z.; Kazlauskienė, D.; Ragažinskienė, O.; Ivanauskas, K. Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts. Biologija, 2013, 59(1), 39-44.
[http://dx.doi.org/10.6001/biologija.v59i1.2650]
[35]
Megateli, S.; Krea, M. Enhancement of total phenolic and flavonoids extraction from Rosmarinus officinalis L using electromagnetic induction heating (EMIH) process. Physiol. Mol. Biol. Plants, 2018, 24(5), 889-897.
[http://dx.doi.org/10.1007/s12298-018-0585-5] [PMID: 30150863]
[36]
Jackson, M.L. Soil chemical analysis. Prentice- Hall Inc; U.D.A.: N.J., 1973.
[37]
Shaker, K.H.; Zohair, M.M.; Hassan, A.Z.; Sweelam, H.M.; Ashour, W.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch. Microbiol., 2022, 204(11), 661.
[http://dx.doi.org/10.1007/s00203-022-03262-5] [PMID: 36192448]
[38]
Li, X.; Liang, Q.; Sun, Y.; Diao, L.; Qin, Z.; Wang, W.; Lu, J.; Fu, S.; Ma, B.; Yue, Z. Potential mechanisms responsible for the antinephrolithic effects of an aqueous extract of Fructus aurantii. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/491409] [PMID: 26170875]
[39]
Foda, D.S.; Nour, S.A.; Ismail, S.A.; Hashem, A.M. Safety evaluation of β-mannanase enzyme extracted from the mutant pathogenic fungal strain Penicilliumcitrinumin female Wistar rats. Int. J. Vet. Sci., 2022, 11(1), 74-81.
[http://dx.doi.org/10.47278/journal.ijvs/2021.074]
[40]
Vassault, A.; Grafmeyer, D.; Naudin, C. Protocole de validation de techniques (document B). Ann. Biol. Clin. (Paris), 1986, 44, 686-745.
[41]
Foda, D.; Farrag, E.; Metwally, N.; Maghraby, A.; Farrag, A.; Rawi, S. Protective and therapeutic impact of taurine on some biochemical, immunological and histological parameters in diabetic rats. J. Appl. Pharm. Sci., 2016, 6(10), 045-054.
[http://dx.doi.org/10.7324/JAPS.2016.601006]
[42]
Banchroft, J.D.; Stevens, A.A.; Turner, D.R. Theory and practice of histological techniques., Forth edition; Churchil Livingstone: New York, London, San Francisco, Tokyo, 1996.
[43]
Mukai, K.; Yoshimura, S.; Anzai, M. Effects of decalcification on immunoperoxidase staining. Am. J. Surg. Pathol., 1986, 10(6), 413-419.
[http://dx.doi.org/10.1097/00000478-198606000-00006] [PMID: 2424325]
[44]
Okada, A.; Nomura, S.; Saeki, Y.; Higashibata, Y.; Hamamoto, S.; Hirose, M.; Itoh, Y.; Yasui, T.; Tozawa, K.; Kohri, K. Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J. Bone Miner. Res., 2008, 23(10), 1629-1637.
[http://dx.doi.org/10.1359/jbmr.080514] [PMID: 18505365]
[45]
Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules, 2020, 25(20), 4599.
[http://dx.doi.org/10.3390/molecules25204599] [PMID: 33050282]
[46]
Velamuri, R.; Sharma, Y.; Fagan, J.; Schaefer, J. Application of UHPLC-ESI-QTOF-MS in phytochemical profiling of sage (Salvia officinalis) and rosemary (Rosmarinus officinalis). Planta Medica International Open, 2020, 7(4), e133-e144.
[http://dx.doi.org/10.1055/a-1272-2903]
[47]
Bervinova, A.V.; Palikov, V.A.; Mikhailov, E.S.; Palikova, Y.A.; Borozdina, N.A.; Kazakov, V.A.; Rudenko, P.A.; Tukhovskaya, E.A.; Dyachenko, I.A.; Slashcheva, G.A.; Goryacheva, N.A.; Sadovnikova, E.S.; Kravchenko, I.N.; Kalabina, E.A.; Shinelev, M.V.; Wu, P.; Murashev, A.N. Efficacy of Ficus tikoua Bur. extract in ethylene glycol-induced urolithiasis model in SD rats. Front. Pharmacol., 2022, 13, 974947.
[http://dx.doi.org/10.3389/fphar.2022.974947] [PMID: 36105205]
[48]
Ghelani, H.; Chapala, M.; Jadav, P. Diuretic and antiurolithiatic activities of an ethanolic extract of Acorus calamus L. rhizome in experimental animal models. J. Tradit. Complement. Med., 2016, 6(4), 431-436.
[http://dx.doi.org/10.1016/j.jtcme.2015.12.004] [PMID: 27774431]
[49]
Prathibhakumari, P.V.; Prasad, G. Inhibition of CaOx crystals by Neolamarckia cadamba: An in vivo approach. Bio Rxiv, 2018, 1-23.
[http://dx.doi.org/10.1101/253179]
[50]
Zhao, B.; Su, B.; Zhang, H.; Liu, W.; Du, Q.; Li, Y. Antiurolithiatic effect of ferulic acid on ethylene glycolinduced renal calculus in experimental rats. Trop. J. Pharm. Res., 2019, 18(1), 109.
[http://dx.doi.org/10.4314/tjpr.v18i1.16]
[51]
Saleem, U.; Ahmad, N.; Shah, M.A.; Anwar, F.; Ahmad, B. Anti-urolithiatic activity of Salvia hispanica L. seeds in ethylene glycol induced urolithiasis rat’s model. An Acad Bras Cienc, 2020, 92(4), 1-13.
[http://dx.doi.org/10.1590/0001-3765202020200067]
[52]
Arcidiacono, M.V.; Yang, J.; Fernandez, E.; Dusso, A. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. Nephrol. Dial. Transplant., 2015, 30(3), 434-440.
[http://dx.doi.org/10.1093/ndt/gfu318] [PMID: 25324357]
[53]
Kan, S.; Zhang, W.; Mao, J.; Wang, M.; Ni, L.; Zhang, M.; Zhang, Q.; Chen, J. NF-κB activation contributes to parathyroid cell proliferation in chronic kidney disease. J. Nephrol., 2018, 31(6), 941-951.
[http://dx.doi.org/10.1007/s40620-018-0530-2] [PMID: 30171599]
[54]
Ding, Y.; Zou, Q.; Jin, Y.; Zhou, J.; Wang, H. Relationship between parathyroid oxyphil cell proportion and clinical characteristics of patients with chronic kidney disease. Int. Urol. Nephrol., 2020, 52(1), 155-159.
[http://dx.doi.org/10.1007/s11255-019-02330-y] [PMID: 31686279]
[55]
Rodríguez-Ortiz, M.E.; Pendón-Ruiz de Mier, M.V.; Rodríguez, M. Parathyroidectomy in dialysis patients: Indications, methods, and consequences. Semin. Dial., 2019, 32(5), 444-451.
[http://dx.doi.org/10.1111/sdi.12772] [PMID: 30656752]
[56]
Gentry, J.; Webb, J.; Davenport, D.; Malluche, H.H. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy. Clin. Nephrol., 2016, 86(7), 9-17.
[http://dx.doi.org/10.5414/CN108823] [PMID: 27191663]
[57]
Centeno, P.P.; Herberger, A.; Mun, H.C.; Tu, C.; Nemeth, E.F.; Chang, W.; Conigrave, A.D.; Ward, D.T. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat. Commun., 2019, 10(1), 4693.
[http://dx.doi.org/10.1038/s41467-019-12399-9] [PMID: 31619668]
[58]
Newman, C.L.; Chen, N.X.; Smith, E.; Smith, M.; Brown, D.; Moe, S.M.; Allen, M.R. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions. Bone, 2015, 77, 50-56.
[http://dx.doi.org/10.1016/j.bone.2015.04.021] [PMID: 25892482]
[59]
Bajwa, N.M.; Sanchez, C.P.; Lindsey, R.C.; Watt, H.; Mohan, S. Cortical and trabecular bone are equally affected in rats with renal failure and secondary hyperparathyroidism. BMC Nephrol., 2018, 19(1), 24.
[http://dx.doi.org/10.1186/s12882-018-0822-8] [PMID: 29394885]
[60]
Elbahnasawy, A.S.; Valeeva, E.R.; El-Sayed, E.M.; Rakhimov, I.I. The impact of thyme and rosemary on prevention of osteoporosis in rats. J. Nutr. Metab., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/1431384] [PMID: 31049223]
[61]
Han, S.G. Kidney stones and risk of osteoporotic fracture in chronic kidney disease. In: Scientific Reports; , 2019; 9, pp. 1-17.
[http://dx.doi.org/10.1038/s41598-018-38191-1]
[62]
Duque, E.J.; Elias, R.M.; Moysés, R.M.A. Parathyroid hormone: A uremic toxin. Toxins, 2020, 12(3), 189.
[http://dx.doi.org/10.3390/toxins12030189] [PMID: 32192220]
[63]
Kaleta, B. The role of osteopontin in kidney diseases. Inflamm. Res., 2019, 68(2), 93-102.
[http://dx.doi.org/10.1007/s00011-018-1200-5] [PMID: 30456594]
[64]
Jia, Q.; Huang, Z.; Wang, G.; Sun, X.; Wu, Y.; Yang, B.; Yang, T.; Liu, J.; Li, P.; Li, J. Osteopontin: An important protein in the formation of kidney stones. Front. Pharmacol., 2022, 13, 1036423.
[http://dx.doi.org/10.3389/fphar.2022.1036423] [PMID: 36452224]
[65]
Tavafi, M.; Ahmadvand, H.; Khalatbari, A. Rosmarinic acid ameliorates diabetic nephropathy in uninephrectomized diabetic rats. Iran. J. Basic Med. Sci., 2011, 14, 275-283.
[http://dx.doi.org/10.22038/IJBMS.2011.5006]
[66]
Ayaz, N.O. Antidiabetic and renoprotective effects of water extract of Rosmarinus officinalis in streptozotocin-induced diabetic rat. Afr. J. Pharm. Pharmacol., 2012, 6, 2664-2669.
[http://dx.doi.org/10.5897/AJPP12.319]
[67]
Changizi Ashtiyani, S.; Zohrabi, M.; Hassanpoor, A.; Hosseini, N.; Hajihashemi, S. Oral administration of the aqueous extract of Rosmarinus officinalis in rats before renal reperfusion injury. Iran. J. Kidney Dis., 2013, 7(5), 367-375.
[PMID: 24072149]
[68]
Header, E.; Elsawy, N.; El-Boshy, M.; Mubarak, M.; Ben Hadda, T. (2015). POM analyses of constituents of Rosmarinus officinalis and their synergistic effect in experimental diabetic rats. Journal of Bioanalysis and Biomedicine., 7, 18-23.
[http://dx.doi.org/10.4172/1948-593X.1000118]
[69]
Cheungpasitporn, W.; Thongprayoon, C.; Hansrivijit, P.; Medaura, J.; Chewcharat, A.; Bathini, T.; Mao, M.; Erickson, S. Impact of admission calcium-phosphate product on 1-year mortality among hospitalized patients. Adv. Biomed. Res., 2020, 9(1), 14.
[http://dx.doi.org/10.4103/abr.abr_249_19] [PMID: 32775307]
[70]
Abe, S.; Yoshihisa, A.; Takeishi, R.; Ohara, H.; Ichijo, Y.; Watanabe, K.; Yu Hotsuki, Y.; Yu Sato, Y.; Yusuke Kimishima, Y. Calcium-phosphorus product is associated with adverse prognosis in hospitalized patients with heart failure and chronic kidney disease. Circulation, 2021, 144(1), A9958.
[71]
Kaul, S.; Ayodele, O.; Chen, K.; Cook, E.E.; Swallow, E.; Rejnmark, L.; Gosmanova, E.O. Association of serum calcium and phosphate with incident cardiovascular disease in patients with hypoparathyroidism. Am. J. Cardiol., 2023, 194, 60-70.
[http://dx.doi.org/10.1016/j.amjcard.2023.01.029] [PMID: 36989548]
[72]
Daudon, M.; Bazin, D.; Letavernier, E. Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis, 2015, 43(S1)(Suppl. 1), 5-11.
[http://dx.doi.org/10.1007/s00240-014-0703-y] [PMID: 25098906]
[73]
Taguchi, K.; Hamamoto, S.; Okada, A.; Sugino, T.; Unno, R.; Ando, R.; Gao, B.; Tozawa, K.; Kohri, K.; Yasui, T. Helper T‐cell signaling and inflammatory pathway lead to formation of calcium phosphate but not calcium oxalate stones on Randall’s plaques. Int. J. Urol., 2019, 26(6), 670-677.
[http://dx.doi.org/10.1111/iju.13950] [PMID: 30919502]
[74]
Khan, S.R.; Canales, B.K.; Dominguez-Gutierrez, P.R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat. Rev. Nephrol., 2021, 17(6), 417-433.
[http://dx.doi.org/10.1038/s41581-020-00392-1] [PMID: 33514941]
[75]
Jaiswal, S.K.; Siddiqi, N.J.; Sharma, B. Studies on the ameliorative effect of curcumin on carbofuran induced perturbations in the activity of lactate dehydrogenase in wistar rats. Saudi J. Biol. Sci., 2018, 25(8), 1585-1592.
[http://dx.doi.org/10.1016/j.sjbs.2016.03.002] [PMID: 30591774]
[76]
Prabha, M.; Karanth, A.; Neethu, P.; Ramesh, V.; Suneetha, P. Caffeine induces significant higher protein activity for cell activation and lower carboxyl esterase activity in male Wistar rat’s brain and liver. J BiochemEng Bioprocess Technol., 2018, 1(2), 1-10.
[77]
Kou, M.J.; Xue, Z.; Liu, Y.Y.; Liu, Y.Y.; Liu, Y.; Chen, J.X. Differentially expressed proteins in rat hippocampus after chronic immobilization stress and intervention using xiao yao san decoction. Digital Chinese Medicine, 2018, 1(3), 219-227.
[http://dx.doi.org/10.1016/S2589-3777(19)30029-1]
[78]
Kelly, D.; Rothwell, P.M. Disentangling the multiple links between renal dysfunction and cerebrovascular disease. J. Neurol. Neurosurg. Psychiatry, 2020, 91(1), 88-97.
[http://dx.doi.org/10.1136/jnnp-2019-320526] [PMID: 31511306]
[79]
Lahouel, Z.; Kharoubi, O.; Boussadia, A.; Bekkouche, Z.; Aoues, A. Effect of aluminium and aqueous extract of rosmarinus officinalis on rat brain: Impact on neurobehavioral and histological study. J. Drug Deliv. Ther., 2020, 10(4), 179-187.
[http://dx.doi.org/10.22270/jddt.v10i4.4252]
[80]
Brichacek, A.L.; Brown, C.M. Alkaline phosphatase: A potential biomarker for stroke and implications for treatment. Metab. Brain Dis., 2019, 34(1), 3-19.
[http://dx.doi.org/10.1007/s11011-018-0322-3] [PMID: 30284677]
[81]
Wang, C.C.; Kong, J.Y.; Xue, C.H.; Zhang, T.T.; Wang, Y.M. Antarctic Krill oil exhibited synergistic effects with nobiletin and theanine on regulating ligand‐specific receptor‐mediated transcytosis in blood–brain barrier by inhibiting alkaline phosphatase in SAMP8 Mice. Mol. Nutr. Food Res., 2023, 67(8), 2200825.
[http://dx.doi.org/10.1002/mnfr.202200825] [PMID: 36815232]
[82]
Tao, X.; Yang, C.; He, J.; Liu, Q.; Wu, S.; Tang, W.; Wang, J. Serum alkaline phosphatase was independently associated with depression in patients with cerebrovascular disease. Front. Psychiatry, 2023, 14, 1184673.
[http://dx.doi.org/10.3389/fpsyt.2023.1184673] [PMID: 37469359]
[83]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. In: Frontiers in Nutrition; , 2018; 5, .
[http://dx.doi.org/10.3389/fnut.2018.00087]
[84]
Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr; Ikryannikova, L.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics, 2020, 9(4), 170.
[http://dx.doi.org/10.3390/antibiotics9040170] [PMID: 32290036]
[85]
Panossian, A. Challenges in phytotherapy research. Front. Pharmacol., 2023, 14, 1199516.
[http://dx.doi.org/10.3389/fphar.2023.1199516] [PMID: 37324491]
[86]
Ahmed, S.; Hasan, M.M.; Khan, H.; Mahmood, Z.A.; Patel, S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed. Pharmacother., 2018, 106, 1292-1299.
[http://dx.doi.org/10.1016/j.biopha.2018.07.080] [PMID: 30119199]
[87]
Zeng, H.H.; Tu, P.F.; Zhou, K.; Wang, H.; Wang, B.H.; Lu, J.F. Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacol. Sin., 2001, 22(12), 1094-1098. [Pub-Med]. [Google Scholar].
[PMID: 11749806]
[88]
Olah, N.K.; Benedec, D.; Socaci, S.; Toma, C.C.; Filip, L.; Morgovan, C.; Hanganu, D. Terpenic profile of different Rosmarinus officinalis extracts. Pak. J. Pharm. Sci., 2017, 30(4)(Suppl.), 1439-1443.
[PMID: 29043994]
[89]
Alvi, S.S.; Ahmad, P.; Ishrat, M.; Iqbal, D.; Khan, M.S. Secondary metabolites from rosemary (Rosmarinus officinalis L.): Structure, biochemistry and therapeutic implications against neurodegenerative diseases. In: Natural Bio-active Compounds; Chemistry, Pharmacology and Health Care Practices, 2019; Vol. 2, .
[http://dx.doi.org/10.1007/978-981-13-7205-6_1]
[90]
Bellumori, M.; Innocenti, M.; Congiu, F.; Cencetti, G.; Raio, A.; Menicucci, F.; Mulinacci, N.; Michelozzi, M. Within-plant variation in rosmarinus officinalis l. Terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens alternaria alternata and pseudomonas viridiflava. Molecules, 2021, 26(11), 3425.
[http://dx.doi.org/10.3390/molecules26113425] [PMID: 34198771]
[91]
Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships. Curr. Med. Chem., 2013, 20(36), 4436-4450.
[http://dx.doi.org/10.2174/09298673113209990141] [PMID: 23834166]
[92]
Grases, F.; Prieto, R.M.; Fernandez-Cabot, R.A.; Costa-Bauzá, A.; Tur, F.; Torres, J.J. Effects of polyphenols from grape seeds on renal lithiasis. Oxid. Med. Cell. Longev., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/813737] [PMID: 25883748]
[93]
Cikman, O.; Soylemez, O.; Ozkan, O.F.; Kiraz, H.A.; Sayar, I.; Ademoglu, S.; Taysi, S.; Karaayvaz, M. Antioxidant activity of syringic acid prevents oxidative stress in l-arginine–induced acute pancreatitis: An experimental study on rats. Int. Surg., 2015, 100(5), 891-896.
[http://dx.doi.org/10.9738/INTSURG-D-14-00170.1] [PMID: 26011211]
[94]
Golshan, A.; Hayatdavoudi, P.; Hadjzadeh, M.A.; Khajavi Rad, A.; Mohamadian Roshan, N.; Abbasnezhad, A.; Mousavi, S.M.; Pakdel, R.; Zarei, B.; Aghaee, A. Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats. Avicenna J. Phytomed., 2017, 7(2), 180-190.
[PMID: 28348973]
[95]
Hefer, M.; Huskic, I.M.; Petrovic, A.; Raguz-Lucic, N.; Kizivat, T.; Gjoni, D.; Horvatic, E.; Udiljak, Z.; Smolic, R.; Vcev, A.; Smolic, M. A mechanistic insight into beneficial effects of polyphenols in the prevention and treatment of nephrolithiasis: evidence from recent in vitro studies. Crystals, 2023, 13(7), 1070.
[http://dx.doi.org/10.3390/cryst13071070]
[96]
Aneklaphakij, C.; Saigo, T.; Watanabe, M.; Naake, T.; Fernie, A.R.; Bunsupa, S.; Satitpatipan, V.; Tohge, T. Diversity of chemical structures and biosynthesis of polyphenols in nut-bearing species. In: Frontiers in Plant Science; , 2021; 12, .
[http://dx.doi.org/10.3389/fpls.2021.642581]
[97]
Khan, S.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol., 2013, 189(3), 803-811.
[http://dx.doi.org/10.1016/j.juro.2012.05.078] [PMID: 23022011]
[98]
Alsawaf, S.; Alnuaimi, F.; Afzal, S.; Thomas, R.M.; Chelakkot, A.L.; Ramadan, W.S.; Hodeify, R.; Matar, R.; Merheb, M.; Siddiqui, S.S.; Vazhappilly, C.G. Plant flavonoids on oxidative stress-mediated kidney inflammation. Biology, 2022, 11(12), 1717.
[http://dx.doi.org/10.3390/biology11121717] [PMID: 36552226]
[99]
Badrinathan, S.; Shiju, M.T.; Arya, R.; Rajesh, G.N.; Viswanathan, P. Citrus bioflavonoids ameliorate hyperoxaluria induced renal injury and calcium oxalate crystal deposition in wistar rats. Adv. Pharm. Bull., 2015, 5(3), 419-427.
[http://dx.doi.org/10.15171/apb.2015.057] [PMID: 26504765]
[100]
Zeng, X.; Xi, Y.; Jiang, W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Crit. Rev. Food Sci. Nutr., 2019, 59(13), 2125-2135.
[http://dx.doi.org/10.1080/10408398.2018.1439880] [PMID: 29432040]
[101]
Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(ii) ions: A ros-scavenging activity, fenton reaction and dna damage study. Int. J. Mol. Sci., 2021, 22(4), 1619.
[http://dx.doi.org/10.3390/ijms22041619] [PMID: 33562744]
[102]
Majewska, M.; Skrzycki, M.; Podsiad, M.; Czeczot, H. Evaluation of antioxidant potential of flavonoids: An in vitro study. Acta Pol. Pharm., 2011, 68(4), 611-615.
[PMID: 21796946]
[103]
Popov, A.M.; Osipov, A.N.; Korepanova, E.A.; Krivoshapko, O.N.; Artyukov, A.A.; Klimovich, A.A. A study of the antioxidant and membranotropic activities of luteolin using different model systems. Biophysics, 2016, 61(6), 843-850.
[http://dx.doi.org/10.1134/S0006350916060221]
[104]
Lende, A.B.; Kshirsagar, A.D.; Deshpande, A.D.; Muley, M.M.; Patil, R.R.; Bafna, P.A.; Naik, S.R. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology, 2011, 19(5), 255-263.
[http://dx.doi.org/10.1007/s10787-011-0086-4] [PMID: 21748471]
[105]
Sheng, Y.; Sun, Y.; Tang, Y.; Yu, Y.; Wang, J.; Zheng, F.; Li, Y.; Sun, Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. In: Frontiers in Pharmacology; , 2023; 14, .
[http://dx.doi.org/10.3389/fphar.2023.1144878]
[106]
Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal., 2016, 24(4), 695-702.
[http://dx.doi.org/10.1016/j.jfda.2016.05.003] [PMID: 28911606]
[107]
Rašković, A.; Gigov, S.; Čapo, I.; Paut Kusturica, M.; Milijašević, B.; Kojić-Damjanov, S.; Martić, N. Antioxidative and protective actions of apigenin in a paracetamol-induced hepatotoxicity rat model. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(5), 849-856.
[http://dx.doi.org/10.1007/s13318-017-0407-0] [PMID: 28255865]
[108]
Hawula, Z.J.; Secondes, E.S.; Wallace, D.F.; Rishi, G.; Subramaniam, V.N. The effect of the flavonol rutin on serum and liver iron content in a genetic mouse model of iron overload. Biosci. Rep., 2021, 41(7), BSR20210720.
[http://dx.doi.org/10.1042/BSR20210720] [PMID: 34156073]
[109]
Muvhulawa, N.; Dludla, P.v.; Ziqubu, K.; Mthembu, S.X.H.; Mthiyane, F.; Nkambule, B.B.; Mazibuko-Mbeje, S.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. In: Pharmacological Research; , 2022; 178, .
[http://dx.doi.org/10.1016/j.phrs.2022.106163]
[110]
Jeon, I.; Kim, H.; Kang, H.; Lee, H.S.; Jeong, S.; Kim, S.; Jang, S. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules, 2014, 19(6), 6941-6951.
[http://dx.doi.org/10.3390/molecules19066941] [PMID: 24871572]
[111]
Zhu, H.; Liang, Q.; Xiong, X.; Wang, Y.; Zhang, Z.; Sun, M.; Lu, X.; Wu, D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5198594] [PMID: 29681976]
[112]
Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 2013, 36(1), 169-176.
[http://dx.doi.org/10.1007/s10753-012-9532-8] [PMID: 22923003]
[113]
Hwang, S.J.; Kim, Y.W.; Park, Y.; Lee, H.J.; Kim, K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4] [PMID: 24127072]
[114]
Ham, J.R.; Lee, H.I.; Choi, R.Y.; Sim, M.O.; Seo, K.I.; Lee, M.K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food Funct., 2016, 7(2), 689-697.
[http://dx.doi.org/10.1039/C5FO01329A] [PMID: 26838182]
[115]
Abd El-Aziz, T.A.; Mohamed, R.H.; Pasha, H.F.; Abdel-Aziz, H.R. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin. Exp. Med., 2012, 12(4), 233-240.
[http://dx.doi.org/10.1007/s10238-011-0165-2] [PMID: 22080234]
[116]
Heimfarth, L.; Nascimento, L.S.; Amazonas da Silva, M.J.; Lucca Junior, W.; Lima, E.S.; Quintans-Junior, L.J.; Veiga-Junior, V.F. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food Chem. Toxicol., 2021, 157, 112538.
[http://dx.doi.org/10.1016/j.fct.2021.112538] [PMID: 34500010]
[117]
Alyaev, Y.G.; Rudenko, V.I.; Perekalina, A.N.; Kraev, I.G.; Inoyatov, Z.S. Plant-derived terpenes in treating patients with urolithiasis. In: Urologiia; Moscow: Russia, 2016; p. 2.
[118]
Lešnik, S.; Furlan, V.; Bren, U. Rosemary (Rosmarinus officinalis L.): Extraction techniques, analytical methods and health-promoting biological effects. Phytochem. Rev., 2021, 20(6), 1273-1328.
[http://dx.doi.org/10.1007/s11101-021-09745-5]
[119]
Okamura, N.; Fujimoto, Y.; Kuwabara, S.; Yagi, A. High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis. J. Chromatogr. A, 1994, 679(2), 381-386.
[http://dx.doi.org/10.1016/0021-9673(94)80582-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy