Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents

Author(s): Sijongesonke Peter and Blessing A. Aderibigbe*

Volume 24, Issue 7, 2024

Published on: 14 February, 2024

Page: [644 - 665] Pages: 22

DOI: 10.2174/0115680266288319240206052223

Price: $65

Abstract

Background: The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes.

Objectives: Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents.

Methods: Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity.

Results: The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds.

Conclusion: The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.

Keywords: Chemotherapeutics, Hybridization, Fluoroquinolones, Anticancer, Drug resistance, Drug design, Drug development.

« Previous
Graphical Abstract
[1]
Chhikara, B.S.; Parang, K. Chemical biology letters global cancer statistics 2022: The trends projection analysis. Chem. Biol. Lett, 2022, 10, 451.
[2]
Tzenios, P.N. Obesity as a risk factor for different types of cancer. EPRA Int. J. Res. Dev, 2023, 8, 97-100.
[3]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[4]
Collatuzzo, G.; Santucci, C.; Malvezzi, M.; La Vecchia, C.; Boffetta, P.; Negri, E. Trends in gastric cancer mortality 1990–2019 in 36 countries worldwide, with predictions to 2025, and incidence, overall and by subtype. Cancer Med., 2023, 12(8), 9912-9925.
[http://dx.doi.org/10.1002/cam4.5685] [PMID: 36815614]
[5]
Luo, G.; Zhang, Y.; Etxeberria, J.; Arnold, M.; Cai, X.; Hao, Y.; Zou, H. Projections of lung cancer incidence by 2035 in 40 Countries Worldwide: Population-based study. JMIR Public Health Surveill., 2023, 9, e43651.
[http://dx.doi.org/10.2196/43651] [PMID: 36800235]
[6]
Berenguer, C.V.; Pereira, F.; Câmara, J.S.; Pereira, J.A.M. Underlying features of prostate cancer-statistics, risk factors, and emerging methods for its diagnosis. Curr. Oncol., 2023, 30(2), 2300-2321.
[http://dx.doi.org/10.3390/curroncol30020178] [PMID: 36826139]
[7]
AbuBaih, R.; Fawzy, M.; Nazmy, M. The prospective potential of fluoroquinolones as anticancer agents. J. Modern Res., 2023, 5(1), 4-10.
[http://dx.doi.org/10.21608/jmr.2022.166535.1094]
[8]
Kloskowski, T.; Frąckowiak, S.; Adamowicz, J.; Szeliski, K.; Rasmus, M.; Drewa, T.; Pokrywczyńska, M. Quinolones as a potential drug in genitourinary cancer treatment-A literature review. Front. Oncol., 2022, 12, 890337.
[http://dx.doi.org/10.3389/fonc.2022.890337] [PMID: 35756639]
[9]
Telfah, A.; Abu Shari’ah, N.; Ababneh, R.; Bahti, A.; Al-Akhras, M.A.; Al-Hiari, Y.; Jum’h, I.; Abu-Dahab, R.; Telfah, M.; Al Bataineh, Q.M.; Hergenröder, R. 1H-NMR analysis of fluoroquinolone (pyridopyrrole quinoxaline, PPQ) conjugated to gold nanoparticles for synergistic anticancer drug design. J. Mol. Struct., 2023, 1292, 136081.
[http://dx.doi.org/10.1016/j.molstruc.2023.136081]
[10]
Kloskowski, T.; Fekner, Z.; Szeliski, K.; Paradowska, M.; Balcerczyk, D.; Rasmus, M.; Dąbrowski, P.; Kaźmierski, Ł.; Drewa, T.; Pokrywczyńska, M. Effect of four fluoroquinolones on the viability of bladder cancer cells in 2D and 3D cultures. Front. Oncol., 2023, 13, 1222411.
[http://dx.doi.org/10.3389/fonc.2023.1222411] [PMID: 37534254]
[11]
Elanany, M.A.; Osman, E.E.A.; Gedawy, E.M.; Abou-Seri, S.M. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci. Rep., 2023, 13(1), 4144.
[http://dx.doi.org/10.1038/s41598-023-30885-5] [PMID: 36914702]
[12]
Bento, C.M.; Silva, A.T.; Mansano, B.; Aguiar, L.; Teixeira, C.; Gomes, M.S.; Gomes, P.; Silva, T.; Ferraz, R. Improving the antimycobacterial drug clofazimine through formation of organic salts by combination with fluoroquinolones. Int. J. Mol. Sci., 2023, 24(2), 1402.
[http://dx.doi.org/10.3390/ijms24021402] [PMID: 36674923]
[13]
Pretali, L.; Fasani, E.; Sturini, M. Current advances on the photocatalytic degradation of fluoroquinolones: photoreaction mechanism and environmental application. Photochem. Photobiol. Sci., 2022, 21(5), 899-912.
[http://dx.doi.org/10.1007/s43630-022-00217-z] [PMID: 35416639]
[14]
Suaifan, G.A.R.Y.; Mohammed, A.A.M.; Alkhawaja, B.A. Fluoroquinolones’ biological activities against laboratory microbes and cancer cell lines. Molecules, 2022, 27(5), 1658.
[http://dx.doi.org/10.3390/molecules27051658] [PMID: 35268759]
[15]
Schmid, K.L. Fluoroquinolones are a potent form of chemotherapy. Clin. Exp. Optom., 2021, 104(3), 412-416.
[http://dx.doi.org/10.1111/cxo.13102] [PMID: 32484262]
[16]
Abdel-Rahman, I. M.; Mustafa, M.; Mohamed, S. A.; Yahia, R.; Abdel-Aziz, M.; Abuo-Rahma, G. E. A.; Hayallah, A. M. Novel Mannich bases of ciprofloxacin with improved physicochemical properties, antibacterial, anticancer activities and caspase-3 mediated apoptosis. Bioorg. Chem., 2021, 107, 104629.
[http://dx.doi.org/10.1016/j.bioorg.2021.104629]
[17]
Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem., 2018, 150, 403-418.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.026] [PMID: 29547830]
[18]
Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother., 2019, 111, 934-946.
[http://dx.doi.org/10.1016/j.biopha.2018.12.119] [PMID: 30841473]
[19]
Abdel-Aal, M.A.A.; Abdel-Aziz, S.A.; Shaykoon, M.S.A.; Abuo-Rahma, G.E.D.A. Towards anticancer fluoroquinolones: A review article. Arch. Pharm., 2019, 352(7), 1800376.
[http://dx.doi.org/10.1002/ardp.201800376] [PMID: 31215674]
[20]
Ahadi, H.; Emami, S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur. J. Med. Chem., 2020, 187, 111970.
[http://dx.doi.org/10.1016/j.ejmech.2019.111970] [PMID: 31881454]
[21]
Yang, P.; Luo, J.B.; Wang, Z.Z.; Zhang, L.L.; Feng, J.; Xie, X.B.; Shi, Q.S.; Zhang, X.G. Synthesis, molecular docking, and evaluation of antibacterial activity of 1,2,4-triazole-norfloxacin hybrids. Bioorg. Chem., 2021, 115, 105270.
[http://dx.doi.org/10.1016/j.bioorg.2021.105270] [PMID: 34467939]
[22]
Szumilak, M.; Wiktorowska-Owczarek, A.; Stanczak, A. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules, 2021, 26(9), 2601.
[http://dx.doi.org/10.3390/molecules26092601] [PMID: 33946916]
[23]
Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; Yadav, J.P.; Verma, A.; Khalilullah, H.; Kumar, P. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals, 2022, 15(9), 1071.
[http://dx.doi.org/10.3390/ph15091071] [PMID: 36145292]
[24]
Alkhzem, A.H.; Woodman, T.J.; Blagbrough, I.S. Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Advances, 2022, 12(30), 19470-19484.
[http://dx.doi.org/10.1039/D2RA03281C] [PMID: 35865575]
[25]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50, 100682.
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[26]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[27]
Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res, 2016, 4, 90-101.
[28]
O’Rourke, A.; Beyhan, S.; Choi, Y.; Morales, P.; Chan, A.P.; Espinoza, J.L.; Dupont, C.L.; Meyer, K.J.; Spoering, A.; Lewis, K.; Nierman, W.C.; Nelson, K.E. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob. Agents Chemother., 2020, 64(3), e01207-19.
[http://dx.doi.org/10.1128/AAC.01207-19] [PMID: 31907190]
[29]
Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M.; Irwin, A.; Akula, A.; Bamford, A.; Chang, A.; da Silva, A.; Whitelaw, A.; Dramowski, A.; Vasudevan, A.K.; Sharma, A.; Justicia, A.; Chikkappa, A.; Slowinska-Jarzabek, B.; Rippberger, B.; Zhao, C.; Tersigni, C.; Cheng, C.; Harkensee, C.; Jing, C.; Zhu, C.; Li, C.; Tagliabue, C.; Epalza, C.; Jacqueline, D.; Tian, D.; Jinka, D.; Gkentzi, D.; Dharmapalan, D.; Benadof, D.; Papadimitriou, E.; Iosifidis, E.; Roilides, E.; Yarci, E.; Majda-Stanisławska, E.; Gowin, E.; Chappell, F.; Torres, F.M.; Collett-White, F.; Liu, G.; Lu, G.; Syrogiannopoulos, G.; Pitsava, G.; Alvarez-Uria, G.; Renk, H.; Mahmood, H.; Saxen, H.; Finlayson, H.; Green, H.; Rabie, H.; Kandraju, H.; Zhang, H.; Okokon, I.; Cross, J.; Herberg, J.; Li, J.; Zhang, J.; Deng, J.; Liu, J.; Qian, J.; Yang, J.; Sicińska, J.; Hübner, J.; Fukuoka, K.; Yao, K.; Cheung, K.; Ojeda, K.; Kaffe, K.; Kreitmeyer, K.; Doerholt, K.; Grimwood, K.; Ledoare, K.; Vazouras, K.; Shen, K.; Tang, L.; Zhang, L.; Lin, L.; Ashkenazi-Hoffnung, L.; Wu, L.; Wang, L.; Teston, L.; Galli, L.; Speirs, L.; Tsolia, M.; Hufnagel, M.; Knuf, M.; Duse, M.; Ding, M.; Rozic, M.; Premru, M.; O’Connell, N.; Rieber, N.; Spyridis, N.; Tunga, O.; Conejo, P.R.; McMaster, P.; Lumbiganon, P.; Pansa, P.; D’Argenio, P.; Moriarty, P.; Nikolic, P.; Wang, P.; Paopongsawan, P.; Cao, Q.; Deng, Q.; Laxminarayan, R.; Kanithi, R.; Jimenez, R.; Cao, S.; Singh, S.; Rees, S.; Praveen, S.; Kekomaki, S.; Hackett, S.; Ashkenazi, S.; Chang, S.M.; Drysdale, S.; Koning, S.; Subramanian, S.; Murki, S.; Vergnano, S.; Gandra, S.; Esposito, S.; Anugulruengkitt, S.; Puthanakit, T.; Behrends, U.; Papaevangelous, V.; Jian, V.; Li, W.; Zhao, W.; Wang, W.; Zhang, W.; Mu, X.; Dong, X.; Jiang, X.; Chen, X.; Wang, Y.; Zheng, Y.; Horikoshi, Y.; Aboderin, A.; Olayinka, A.; Dedeic-Ljubovic, A.; McCorry, A.; Enimil, A.; Neubert, A.; solano; Pignatari, A.; Poojary, A.; Kambaralieva, B.; McCullagh, B.; Carevi, B.; Van Herendael, B.; Gormley, C.; Carvajal, C.; Ramírez, C.; Fitzgerald, D.; Sabuda, D.; Konopnicki, D.; Lacej, D.; Pierard, D.; Rios, E.; Marshall, E.; Firre, E.; van Elzakker, E.; Shaqiri, E.; Darwish Elhajji, F.; Gawrys, G.; Markovic, G.; Kunsihima, H.; Chen, H.H.; Sviestina, I.; Pristas, I.; Hoxha, I.; Korinteli, I.; Mareković, I.; Soltani, J.; Labarca, J.; AlSalman, J.; Horvatic, J.; Frimpong, J.A.; Pagava, K.; Kei, K.; Okinaka, K.; Iregbu, K.; Ghazaryan, L.; Raka, L.; Gessner-Wharton, M.; Aldeyab, M.; Cooper, M.; del Castillo, M.; Hojman, M.; Hudson, M.; Alshehri, M.; Ling, M.L.; Greer, N.; Oduyebo, O.; Buijtels, P.; Terol Barrero, P.; Zarb, P.; Schelstraete, P.E.; Nwajiobi-Princewill, P.I.P.; Khanna, P.; Quiros, R.; Simovic, S.; Thompson, S.; Chan, S.M.; Burokiene, S.; Drysdale, S.; Rachina, S.; Usonis, V.; Cornistein, W.; Holemans, X.; Gu, Y.; Brothers, A.; Hersh, A.; Fernandez, A.; Tribble, A.; Hurst, A.; Green, A.; Hammer, B.; Lee, B.P.; Kuzmic, B.; Shapiro, C.; Boge, C.; Haslam, D.; Berman, D.; Naeem, F.; Johnson, G.; Schwenk, H.; Orr, H.; Maples, H.; Olsen, J.; Gerber, J.; Girotto, J.; Zweiner, J.; Goldman, J.; Gillon, J.; Tansmore, J.; Manaloor, J.; Courter, J.; Mongkolrattanothai, K.; Patel, K.; Merkel, K.; Namtu, K.; Flett, K.; Lee, K.; Nichols, K.; Klein, K.; Handy, L.; Castagnini, L.; Mazade, M.; Heger, M.; Fernandez, M.; Chang, M.; Crawford, M.; Nelson, M.; Bennett, N.; Jaggi, P.; Hamdy, R.; Banerjee, R.; Olivero, R.; Patel, S.; Arnold, S.; Ogrin, S.; Jones, S.; Parker, S.; Kubes, S.; Hymes, S.; Weissman, S.; Chan, S.; Henderson, S.; Metjian, T. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): An analysis of paediatric survey data from 56 countries. Lancet Glob. Health, 2019, 7(7), e861-e871.
[http://dx.doi.org/10.1016/S2214-109X(19)30071-3]
[30]
Alshareef, H.; Alanazi, A.; Alatawi, N.; Eleshmawy, N.; Ali, M. Assessment of antibiotic prescribing patterns at dental and primary health care clinics according to WHO Access, Watch, Reserve (AWaRe) classification. Am. J. Infect. Control, 2023, 51(3), 289-294.
[http://dx.doi.org/10.1016/j.ajic.2022.07.009] [PMID: 35870657]
[31]
Chae, J.; Kim, B.; Kim, D.S. Changes in antibiotic consumption patterns after the implementation of the National Action Plan according to the Access, Watch, Reserve (AWaRe) classification system. Int. J. Infect. Dis., 2022, 122, 345-351.
[http://dx.doi.org/10.1016/j.ijid.2022.06.013] [PMID: 35705118]
[32]
Sharma, P.C.; Goyal, R.; Sharma, A.; Sharma, D.; Saini, N.; Rajak, H.; Sharma, S.; Thakur, V.K. Insights on fluoroquinolones in cancer therapy: Chemistry and recent developments. Mater. Today Chem., 2020, 17, 100296.
[http://dx.doi.org/10.1016/j.mtchem.2020.100296]
[33]
Khwaza, V.; Oyedeji, O.O.; Oselusi, S.O.; Morifi, E.; Nwamadi, M.; Tantoh Ndinteh, D.; Ramushu, P.; Matsebatlela, T.; Aderibigbe, B.A. Synthesis of ester-linked ursolic acid-based hybrid compounds: Potential antibacterial and anticancer agents. Chem. Biodivers., 2023, 20(4), e202300034.
[http://dx.doi.org/10.1002/cbdv.202300034] [PMID: 36920086]
[34]
Yang, P.; Luo, J-B.; Zhang, L-L.; Wang, Y-S.; Xie, X-B.; Shi, Q-S.; Zhang, X-G. Design, synthesis and antibacterial studies of 1,3,4-oxadiazole-fluoroquinolone hybrids and their molecular docking studies. ChemistrySelect, 2021, 6(46), 13209-13214.
[http://dx.doi.org/10.1002/slct.202103078]
[35]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[36]
Shi, Z.; Li, Y.; Kang, Y.; Hu, G.; Huang-Fu, C.; Deng, J.; Liu, B. Piperonal ciprofloxacin hydrazone induces growth arrest and apoptosis of human hepatocarcinoma SMMC-7721 cells. Acta Pharmacol. Sin., 2012, 33(2), 271-278.
[http://dx.doi.org/10.1038/aps.2011.158] [PMID: 22301863]
[37]
Chellan, P.; Sadler, P.J. Enhancing the activity of drugs by conjugation to organometallic fragments. Chemistry, 2020, 26(40), 8676-8688.
[http://dx.doi.org/10.1002/chem.201904699] [PMID: 32452579]
[38]
Hryhoriv, H.; Kovalenko, S.M.; Georgiyants, M.; Sidorenko, L.; Georgiyants, V. A comprehensive review on chemical synthesis and chemotherapeutic potential of 3-heteroaryl fluoroquinolone Hybrids. Antibiotics, 2023, 12(3), 625.
[http://dx.doi.org/10.3390/antibiotics12030625] [PMID: 36978492]
[39]
Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg. Chem., 2023, 136, 106548.
[http://dx.doi.org/10.1016/j.bioorg.2023.106548] [PMID: 37094479]
[40]
Ezelarab, H.A.A.; Hassan, H.A.; Abuo-Rahma, G.E.D.A.; Abbas, S.H. Design, synthesis, and biological investigation of quinoline/ciprofloxacin hybrids as antimicrobial and anti-proliferative agents. J. Indian Chem. Soc., 2023, 20(3), 683-700.
[http://dx.doi.org/10.1007/s13738-022-02704-7]
[41]
Abdel-Aal, M.A.A.; Shaykoon, M.S.A.; Abuo-Rahma, G.E.D.A.A.; Mohamed, M.F.A.; Badr, M.; Abdel-Aziz, S.A. Synthesis, antitumor, antibacterial and urease inhibitory evaluation of new piperazinyl N-4 carbamoyl functionalized ciprofloxacin derivatives. Pharmacol. Rep., 2021, 73(3), 891-906.
[http://dx.doi.org/10.1007/s43440-020-00193-0] [PMID: 33389728]
[42]
Eisa, M.; Fathy, M.; Abuo-Rahma, G.; Abdel-Aziz, M.; Nazmy, M.; Nazmy, M.H. Anti-proliferative and pro-apoptotic activities of synthesized 3,4,5 tri-methoxy ciprofloxacin chalcone hybrid, through p53 Up-regulation in HepG2 and MCF7 cell lines. Asian Pac. J. Cancer Prev., 2021, 22(10), 3393-3404.
[http://dx.doi.org/10.31557/APJCP.2021.22.10.3393] [PMID: 34711017]
[43]
Mohammed, H.H.H.; Abbas, S.H.; Hayallah, A.M.; Abuo-Rahma, G.E.D.A.; Mostafa, Y.A. Novel urea linked ciprofloxacin-chalcone hybrids having antiproliferative topoisomerases I/II inhibitory activities and caspases-mediated apoptosis. Bioorg. Chem., 2021, 106, 104422.
[http://dx.doi.org/10.1016/j.bioorg.2020.104422] [PMID: 33248713]
[44]
Fathy, M.; Sun, S.; Zhao, Q.L.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Awale, S.; Nikaido, T. A new ciprofloxacin-derivative inhibits proliferation and suppresses the migration ability of hela cells. Anticancer Res., 2020, 40(9), 5025-5033.
[http://dx.doi.org/10.21873/anticanres.14505] [PMID: 32878790]
[45]
Mohammed, H.H.H.; Abd El-Hafeez, A.A.; Ebeid, K.; Mekkawy, A.I.; Abourehab, M.A.S.; Wafa, E.I.; Alhaj-Suliman, S.O.; Salem, A.K.; Ghosh, P.; Abuo-Rahma, G.E.D.A.; Hayallah, A.M.; Abbas, S.H. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1346-1363.
[http://dx.doi.org/10.1080/14756366.2022.2072308] [PMID: 35548854]
[46]
Sabet, S. Chalcones: Promising therapeutic agents targeting key players and signalling pathways regulating the hallmarks of cancer. Chem. Biol. Interact., 2023, 369, 110297.
[http://dx.doi.org/10.1016/j.cbi.2022.110297] [PMID: 36496109]
[47]
Leite, F.F.; de Sousa, N.F.; de Oliveira, B.H.M.; Duarte, G.D.; Ferreira, M.D.L.; Scotti, M.T.; Filho, J.M.B.; Rodrigues, L.C.; de Moura, R.O.; Mendonça-Junior, F.J.B.; Scotti, L. Anticancer activity of chalcones and its derivatives: Review and in silico studies. Molecules, 2023, 28(10), 4009.
[http://dx.doi.org/10.3390/molecules28104009] [PMID: 37241750]
[48]
Akhtar, R.; Noreen, R.; Raza, Z.; Rasul, A.; Zahoor, A.F. Synthesis, anticancer evaluation, and in silico modeling study of some N-acylated ciprofloxacin derivatives. Russ. J. Org. Chem., 2022, 58(4), 541-548.
[http://dx.doi.org/10.1134/S107042802204011X]
[49]
Chrzanowska, A.; Struga, M.; Roszkowski, P.; Koliński, M.; Kmiecik, S.; Jałbrzykowska, K.; Zabost, A.; Stefańska, J.; Augustynowicz-Kopeć, E.; Wrzosek, M. The effect of conjugation of ciprofloxacin and moxifloxacin with fatty acids on their antibacterial and anticancer activity. Int. J. Mol. Sci., 2022, 23, 6261.
[http://dx.doi.org/10.3390/ijms23116261] [PMID: 35682940]
[50]
Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Stępień, K.; Struga, M. Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur. J. Med. Chem., 2020, 185, 111810.
[http://dx.doi.org/10.1016/j.ejmech.2019.111810] [PMID: 31678743]
[51]
Chrzanowska, A.; Olejarz, W.; Kubiak-Tomaszewska, G.; Ciechanowicz, A.K.; Struga, M. The effect of fatty acids on ciprofloxacin cytotoxic activity in prostate cancer cell lines-does lipid component enhance anticancer ciprofloxacin potential? Cancers, 2022, 14(2), 409.
[http://dx.doi.org/10.3390/cancers14020409] [PMID: 35053570]
[52]
Shahbazi, A.; Mostafavi, H.; Zarrini, G.; Mahdavi, M. Novel N-4-piperazinyl ciprofloxacin-ester hybrids: Synthesis, biological evaluation, and molecular docking studies. Russ. J. Gen. Chem., 2020, 90(8), 1558-1565.
[http://dx.doi.org/10.1134/S1070363220080265]
[53]
Szostek, T.; Szulczyk, D.; Szymańska-Majchrzak, J.; Koliński, M.; Kmiecik, S.; Otto-Ślusarczyk, D.; Zawodnik, A.; Rajkowska, E.; Chaniewicz, K.; Struga, M.; Roszkowski, P. Design and synthesis of menthol and thymol derived ciprofloxacin: Influence of structural modifications on the antibacterial activity and anticancer properties. Int. J. Mol. Sci., 2022, 23(12), 6600.
[http://dx.doi.org/10.3390/ijms23126600] [PMID: 35743043]
[54]
Samir, M.; Ramadan, M.; Abdelrahman, M.H.; Abdelbaset, M.S.; Abourehab, M.A.S.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A. 3,7-bis-benzylidene hydrazide ciprofloxacin derivatives as promising antiproliferative dual TOP I & TOP II isomerases inhibitors. Bioorg. Chem., 2021, 110, 104698.
[http://dx.doi.org/10.1016/j.bioorg.2021.104698] [PMID: 33676043]
[55]
Al-Kelaby, K.K.A.; Naser, N.H. Antineoplastic effect of sulfanilamide hybridized with ciprofloxacin ‘in vitro study. Syst. Rev. Pharm., 2020, 11, 157-164.
[56]
Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 118-137.
[http://dx.doi.org/10.1080/14756366.2022.2136172] [PMID: 36305290]
[57]
Fallica, A.N.; Barbaraci, C.; Amata, E.; Pasquinucci, L.; Turnaturi, R.; Dichiara, M.; Intagliata, S.; Gariboldi, M.B.; Marras, E.; Orlandi, V.T.; Ferroni, C.; Martini, C.; Rescifina, A.; Gentile, D.; Varchi, G.; Marrazzo, A. Nitric oxide photo-donor hybrids of ciprofloxacin and norfloxacin: A shift in activity from antimicrobial to anticancer agents. J. Med. Chem., 2021, 64(15), 11597-11613.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00917] [PMID: 34319100]
[58]
Struga, M.; Roszkowski, P.; Bielenica, A.; Otto-Ślusarczyk, D.; Stępień, K.; Stefańska, J.; Zabost, A.; Augustynowicz-Kopeć, E.; Koliński, M.; Kmiecik, S.; Myslovska, A.; Wrzosek, M. N-acylated ciprofloxacin derivatives: Synthesis and in vitro biological evaluation as antibacterial and anticancer agents. ACS Omega, 2023, 8(21), 18663-18684.
[http://dx.doi.org/10.1021/acsomega.3c00554] [PMID: 37273589]
[59]
Fawzy, M.A.; Abu-baih, R.H.; Abuo-Rahma, G.E.D.A.; Abdel-Rahman, I.M.; El-Sheikh, A.A.K.; Nazmy, M.H. in vitro anticancer activity of novel ciprofloxacin mannich base in lung adenocarcinoma and high-grade serous ovarian cancer cell lines via attenuating mapk signaling pathway. Molecules, 2023, 28(3), 1137.
[http://dx.doi.org/10.3390/molecules28031137] [PMID: 36770806]
[60]
Alaaeldin, R.; Nazmy, M.H.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Fathy, M. Cell cycle arrest and apoptotic effect of 7-(4-(n-substituted carbamoylmethyl) piperazin-1-yl) ciprofloxacin-derivative on HCT 116 and A549 cancer cells. Anticancer Res., 2020, 40(5), 2739-2749.
[http://dx.doi.org/10.21873/anticanres.14245] [PMID: 32366419]
[61]
Pashapour, N.M.; Dehghan-Nayeri, M.J.; Babaei, E.; Khalaj-Kondori, M.; Mahdavi, M. The assessment of cytotoxicity, apoptosis-inducing activity and molecular docking of a new ciprofloxacin derivative in human leukemic cells. J. Fluoresc., 2023.
[62]
Ptaszyńska, N.; Gucwa, K.; Olkiewicz, K.; Heldt, M.; Serocki, M.; Stupak, A.; Martynow, D.; Dębowski, D.; Gitlin-Domagalska, A.; Lica, J.; Łęgowska, A.; Milewski, S.; Rolka, K. Conjugates of ciprofloxacin and levofloxacin with cell-penetrating peptide exhibit antifungal activity and mammalian cytotoxicity. Int. J. Mol. Sci., 2020, 21(13), 4696.
[http://dx.doi.org/10.3390/ijms21134696] [PMID: 32630159]
[63]
Shokrzadeh, M.; Mirzaei, H.; Pendarnejad, H.M.; Emami, S. Chromanone oxime analogs of quinolone drugs as cytotoxic agents: in vitro cytotoxicity evaluation and in silico study. Biointerface Res. Appl. Chem., 2023, 13, 1-11.
[64]
Arshad, M.; Khan, M.S.; Nami, S.A.A. Norfloxacin analogues: Drug likeness, synthesis, biological, and molecular docking assessment. Russ. J. Bioorganic Chem., 2021, 47(2), 483-495.
[http://dx.doi.org/10.1134/S1068162021020047]
[65]
Wang, J.; Tsao, A.; Liu, X. Class of quinolone heterocyclic aromatic molecules for cancer treatment. U.S. Patent 10,202,357, 2019.
[66]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[67]
Kang, J.J.; Ko, A.; Kil, S.H.; Mallen-St Clair, J.; Shin, D.S.; Wang, M.B.; Srivatsan, E.S. EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(1), 188827.
[http://dx.doi.org/10.1016/j.bbcan.2022.188827] [PMID: 36309124]
[68]
Bertotti, A.; Papp, E.; Jones, S.; Adleff, V.; Anagnostou, V.; Lupo, B.; Sausen, M.; Phallen, J.; Hruban, C.A.; Tokheim, C.; Niknafs, N.; Nesselbush, M.; Lytle, K.; Sassi, F.; Cottino, F.; Migliardi, G.; Zanella, E.R.; Ribero, D.; Russolillo, N.; Mellano, A.; Muratore, A.; Paraluppi, G.; Salizzoni, M.; Marsoni, S.; Kragh, M.; Lantto, J.; Cassingena, A.; Li, Q.K.; Karchin, R.; Scharpf, R.; Sartore-Bianchi, A.; Siena, S.; Diaz, L.A., Jr; Trusolino, L.; Velculescu, V.E. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature, 2015, 526(7572), 263-267.
[http://dx.doi.org/10.1038/nature14969] [PMID: 26416732]
[69]
Yang, C.H.; Chou, H.C.; Fu, Y.N.; Yeh, C.L.; Cheng, H.W.; Chang, I.C.; Liu, K.J.; Chang, G.C.; Tsai, T.F.; Tsai, S.F.; Liu, H.P.; Wu, Y.C.; Chen, Y.T.; Huang, S.F.; Chen, Y.R. EGFR over- expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(7), 1540-1549.
[http://dx.doi.org/10.1016/j.bbadis.2015.04.020] [PMID: 25912735]
[70]
Kuo, S.C.; Teng, C.M.; Lee, K.H.; Huang, L.J.; Chou, L.C.; Chang, C.S.; Sun, C.M.; Wu, T.S.; Pan, S.L.; Way, T.D.; Lee, J.C. 2-Phenyl-4-quinolones as anticancer agents. U.S. Patent 9,029,394, 2015.
[71]
Kuo, S.C.; Teng, C.M.; Lee, K.H.; Huang, L.J.; Chou, L.C.; Chang, C.S.; Sun, C.M.; Wu, T.S.; Pan, S.L.; Way, T.D.; Lee, J.C. 2-selenophene-4-quinolones as anticancer agents. U.S. Patent 9,023,866, 2015.
[72]
Kuo, S.C.; Teng, C.M.; Lee, K.H.; Huang, L.J.; Chou, L.C.; Chang, C.S.; Sun, C.M.; Wu, T.S.; Pan, S.L.; Way, T.D.; Lee, J.C. Hydrophilic derivatives of 2-Aryl-4-quinolones as anticancer agents. U.S. Patent 8,440,692, 2013.
[73]
Beberok, A.; Rzepka, Z.; Respondek, M.; Rok, J.; Sierotowicz, D.; Wrześniok, D. GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by fluoroquinolones. Eur. J. Pharmacol., 2018, 835, 94-107.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.002] [PMID: 30086267]
[74]
Beberok, A.; Wrześniok, D.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int. J. Oncol., 2018, 52(5), 1727-1737.
[http://dx.doi.org/10.3892/ijo.2018.4310] [PMID: 29532860]
[75]
Pessina, A.; Bonomi, A.; Casati, S.; Collotta, A.; Croera, C.; Marafante, E.; Palitti, F.; Gribaldo, L. Mitochondrial function, apoptosis and cell cycle delay in the WEHI-3B leukaemia cell line and its variant Ciprofloxacin-resistant WEHI-3B/CPX. Cell Prolif., 2007, 40(4), 568-579.
[http://dx.doi.org/10.1111/j.1365-2184.2007.00456.x] [PMID: 17635523]
[76]
Kowalski, M.; Gurtowska, N.; Nowak, M.; Joachimiak, R.; Bajek, A.; Olkowska, J.; Drewa, T. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro. Acta Phys. Pol. B, 2011, 42(3), 859-865.
[http://dx.doi.org/10.5506/APhysPolB.42.859] [PMID: 22125950]
[77]
Beberok, A.; Wrześniok, D.; Minecka, A.; Rok, J.; Delijewski, M.; Rzepka, Z.; Respondek, M.; Buszman, E. Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol. Rep., 2018, 70(1), 6-13.
[http://dx.doi.org/10.1016/j.pharep.2017.07.007] [PMID: 29306115]
[78]
Kloskowski, T.; Gurtowska, N.; Olkowska, J.; Nowak, J.M.; Adamowicz, J.; Tworkiewicz, J.; Dębski, R.; Grzanka, A.; Drewa, T. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC. Int. J. Oncol., 2012, 41(6), 1943-1949.
[http://dx.doi.org/10.3892/ijo.2012.1653] [PMID: 23042104]
[79]
Yadav, V.; Varshney, P.; Sultana, S.; Yadav, J.; Saini, N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 2015, 15(1), 581.
[http://dx.doi.org/10.1186/s12885-015-1560-y] [PMID: 26260159]
[80]
Gürbay, A.; Osman, M.; Favier, A.; Hincal, F. Ciprofloxacin-induced cytotoxicity and apoptosis in hela cells. Toxicol. Mech. Methods, 2005, 15(5), 339-342.
[http://dx.doi.org/10.1080/153765291009877] [PMID: 20021053]
[81]
Perucca, P.; Savio, M.; Cazzalini, O.; Mocchi, R.; Maccario, C.; Sommatis, S.; Ferraro, D.; Pizzala, R.; Pretali, L.; Fasani, E.; Albini, A.; Stivala, L.A. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells. J. Photochem. Photobiol. B, 2014, 140, 57-68.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.07.006] [PMID: 25105482]
[82]
Davary Avareshk, A.; Jalal, R.; Gholami, J. The effect of ciprofloxacin on doxorubicin cytotoxic activity in the acquired resistance to doxorubicin in DU145 prostate carcinoma cells. Med. Oncol., 2022, 39(12), 194.
[http://dx.doi.org/10.1007/s12032-022-01787-9] [PMID: 36071289]
[83]
Kloskowski, T.; Gurtowska, N.; Bajek, A.; Drewa, T. Ciprofloxacin as a prophylactic agent against prostate cancer: A “two hit” hypothesis. Med. Hypotheses, 2012, 78(2), 235-238.
[http://dx.doi.org/10.1016/j.mehy.2011.10.034] [PMID: 22098728]
[84]
Herold, C.; Ocker, M.; Ganslmayer, M.; Gerauer, H.; Hahn, E.G. ; Schuppan, D. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br. J. Cancer, 2002, 86(3), 443-448.
[http://dx.doi.org/10.1038/sj.bjc.6600079] [PMID: 11875713]
[85]
Jemel-Oualha, I.; Elloumi-Mseddi, J.; Beji, A.; Hakim, B.; Aifa, S. Controversial effect on Erk activation of some cytotoxic drugs in human LOVO colon cancer cells. J. Recept. Signal Transduct. Res., 2016, 36(1), 21-25.
[http://dx.doi.org/10.3109/10799893.2014.975246] [PMID: 25343691]
[86]
Bourikas, L.A.; Kolios, G.; Valatas, V.; Notas, G.; Drygiannakis, I.; Pelagiadis, I.; Manousou, P.; Klironomos, S.; Mouzas, I.A.; Kouroumalis, E. Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-β1 secretion and enhances the anti-proliferative effect of 5-fluorouracil. Br. J. Pharmacol., 2009, 157(3), 362-370.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00161.x] [PMID: 19371339]
[87]
Herold, C.; Ganslmayer, M.; Ocker, M.; Blauberger, S.; Zopf, S.; Hahn, E.; Schuppan, D. Overadditive anti-proliferative and pro-apoptotic effects of a combination therapy on colorectal carcinoma cells. Int. J. Oncol., 2003, 23(3), 751-756.
[http://dx.doi.org/10.3892/ijo.23.3.751] [PMID: 12888913]
[88]
Aranha, O.; Zhu, L.; Alhasan, S.; Wood, D.P., Jr; Kuo, T.H.; Sarkar, F.H. Role of mitochondria in ciprofloxacin induced apoptosis in bladder cancer cells. J. Urol., 2002, 167(3), 1288-1294.
[http://dx.doi.org/10.1016/S0022-5347(05)65283-4] [PMID: 11832715]
[89]
Aranha, O.; Wood, D.P., Jr; Sarkar, F.H. Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin. Cancer Res., 2000, 6(3), 891-900.
[PMID: 10741713]
[90]
Kamat, A.M.; DeHaven, J.I.; Lamm, D.L. Quinolone antibiotics: A potential adjunct to intravesical chemotherapy for bladder cancer. Urology, 1999, 54(1), 56-61.
[http://dx.doi.org/10.1016/S0090-4295(99)00064-3] [PMID: 10414727]
[91]
Kloskowski, T.; Olkowska, J.; Nazlica, A.; Drewa, T. The influence of ciprofloxacin on hamster ovarian cancer cell line CHO AA8. Acta Pol. Pharm., 2010, 67(4), 345-349.
[PMID: 20635529]
[92]
Engeler, D.S.; Scandella, E.; Ludewig, B.; Schmid, H.P. Ciprofloxacin and epirubicin synergistically induce apoptosis in human urothelial cancer cell lines. Urol. Int., 2012, 88(3), 343-349.
[http://dx.doi.org/10.1159/000336130] [PMID: 22378292]
[93]
Mondal, E.R.; Das, S.K.; Mukherjee, P. Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture. Asian Pac. J. Cancer Prev., 2004, 5(2), 196-204.
[PMID: 15244525]
[94]
Kim, K.; Khang, D. Past, present, and future of anticancer nanomedicine. Int. J. Nanomedicine, 2020, 15, 5719-5743.
[http://dx.doi.org/10.2147/IJN.S254774] [PMID: 32821098]
[95]
Kim, J.; Cho, H.; Lim, D.K.; Joo, M.K.; Kim, K. Perspectives for improving the tumor targeting of nanomedicine via the EPR effect in clinical tumors. Int. J. Mol. Sci., 2023, 24(12), 10082.
[http://dx.doi.org/10.3390/ijms241210082] [PMID: 37373227]
[96]
Kasi, P.B.; Mallela, V.R.; Ambrozkiewicz, F.; Trailin, A.; Liška, V.; Hemminki, K. Theranostics nanomedicine applications for colorectal cancer and metastasis: Recent advances. Int. J. Mol. Sci., 2023, 24(9), 7922.
[http://dx.doi.org/10.3390/ijms24097922] [PMID: 37175627]
[97]
Das, C.G.A.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Kumar, C.M.V. Nanomaterials in anticancer applications and their mechanism of action - A review. Nanomed. Nanotechnol. Biol. Med., 2023, 2023(47), 102613.
[98]
Aalhate, M.; Mahajan, S.; Singh, H.; Guru, S.K.; Singh, P.K. Nanomedicine in therapeutic warfront against estrogen receptor- positive breast cancer. Drug Deliv. Transl. Res., 2023, 13(6), 1621-1653.
[http://dx.doi.org/10.1007/s13346-023-01299-7] [PMID: 36795198]
[99]
Algethami, F.K.; Elamin, M.R.; Abdulkhair, B.Y.; Al-Zharani, M.; Qarah, N.A.S.; Alghamdi, M.A. Fast fabrication of bismuth oxyiodide/carbon-nanofibers composites for efficient anti-proliferation of liver and breast cancer cells. Z. Anorg. Allg. Chem., 2021, 647(19), 1921-1929.
[http://dx.doi.org/10.1002/zaac.202100205]
[100]
Ababneh, R.; Smadi, M.; Bensiradj, N.E.H.; Al-Akhras, M.A.; Al-Hiari, Y.; Jum’h, I.; Abu-Dahab, R.; Al Bataineh, Q.M.; Telfah, A. UV-Vis, FTIR and DFT studies of the fluoroquinolone [Pyrido Pyrolo Quinoxaline (PPQ)] tethered to gold nanoparticles as a novel anticancer. J. Inorg. Organomet. Polym. Mater., 2023, 33(6), 1646-1656.
[http://dx.doi.org/10.1007/s10904-023-02596-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy