Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Perspective

Pyolytics: A Step Forward to Address Respiratory Hypoxia in Coronavirus Infection

Author(s): Ilnur Yagudin and Darya Suntsova*

Volume 22, Issue 4, 2024

Published on: 13 February, 2024

Article ID: e130224226944 Pages: 3

DOI: 10.2174/0122113525287737240201050550

Open Access Journals Promotions 2
Abstract

Respiratory failure and increasing hypoxia in the era of coronavirus infection is the cause of fatal outcomes in patients with SARS. The bronchoalveolar obstruction prevents the normal passage of air, resulting in decreased oxygenation. The available methods of oxygenation (ECMO) are often not cost-effective and are not readily available in pandemic settings. Hence, the search for alternatives has prompted the discovery of a new pharmacological group - pyolytics, the use of which is very promising due to its simplicity and availability.

Keywords: Coronavirus infection, bronchoalveolar obstruction, hypoxia, methods of oxygenation, pyolytics, accessibility in a pandemic.

[1]
Ludlow, M. Respiratory syncytial virus infection in the modern era. Curr. Opin. Infect. Dis., 2023, 36(3), 155-163.
[http://dx.doi.org/10.1097/QCO.0000000000000917] [PMID: 36939556]
[2]
Ramadori, G.P. SARS-CoV-2-infection (COVID-19): Clinical course, viral acute respiratory distress syndrome (ARDS) and cause(s) of death. Med. Sci., 2022, 10(4), 58.
[http://dx.doi.org/10.3390/medsci10040058] [PMID: 36278528]
[3]
Urakov, A.; Muhutdinov, N.; Yagudin, I.; Suntsova, D.; Svetova, M. Brain hypoxia caused by respiratory obstruction which should not be forgotten in COVID-19 disease. Turk. J. Med. Sci., 2022, 52(5), 1504-1505.
[http://dx.doi.org/10.55730/1300-0144.5489] [PMID: 36422499]
[4]
Urakov, A.L.; Urakova, N.A.; Shabanov, P.D.; Gurevich, K.G.; Fisher, E.L.; Stolyarenko, A.P.; Yagudin, I.I.; Suntsova, D.O. Warm alkaline hydrogen peroxide solution for intrapulmonary injection. RU Patent 2,807,851, 2023.
[5]
Urakov, A.L.; Urakova, N.A.; Yagudin, I.I.; Svetova, M.D.; Suntsova, D.O. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs. Bioimpacts, 2022, 12(4), 393-394.
[http://dx.doi.org/10.34172/bi.2022.23877] [PMID: 35975207]
[6]
Jiang, Y.; Rubin, L.; Peng, T.; Liu, L.; Xing, X.; Lazarovici, P.; Zheng, W. Cytokine storm in COVID-19: From viral infection to immune responses, diagnosis and therapy. Int. J. Biol. Sci., 2022, 18(2), 459-472.
[http://dx.doi.org/10.7150/ijbs.59272] [PMID: 35002503]
[7]
Urakov, A.; Yagudin, I.I.; Suntsova, D.O.; Svetova, M.O.; Stolyarenko, A.P. COVID-19: Thick pus, mucus and sputum with streaks of blood as a cause of airway obturation in SARS and oxygen-foaming pus solvent as a medicine for their recanalization. Acta Sci Women’s Health., 2021, 3, 75-77.
[8]
Ma, X.; Liang, M.; Ding, M.; Liu, W.; Ma, H.; Zhou, X.; Ren, H. Extracorporeal Membrane Oxygenation (ECMO) in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia and acute respiratory distress syndrome (ARDS). Med. Sci. Monit., 2020, 26, e925364.
[http://dx.doi.org/10.12659/MSM.925364] [PMID: 32759887]
[9]
Bertini, P.; Guarracino, F.; Falcone, M.; Nardelli, P.; Landoni, G.; Nocci, M.; Paternoster, G. ECMO in COVID-19 patients: A systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth., 2022, 36(8), 2700-2706.
[http://dx.doi.org/10.1053/j.jvca.2021.11.006] [PMID: 34906383]
[10]
Tramm, R.; Ilic, D.; Davies, A.R.; Pellegrino, V.A.; Romero, L.; Hodgson, C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Libr., 2015, 1(1), CD010381.
[http://dx.doi.org/10.1002/14651858.CD010381.pub2] [PMID: 25608845]
[11]
Supady, A.; Combes, A.; Barbaro, R.P.; Camporota, L.; Diaz, R.; Fan, E.; Giani, M.; Hodgson, C.; Hough, C.L.; Karagiannidis, C.; Kochanek, M.; Rabie, A.A.; Riera, J.; Slutsky, A.S.; Brodie, D. Respiratory indications for ECMO: Focus on COVID-19. Intensive Care Med., 2022, 48(10), 1326-1337.
[http://dx.doi.org/10.1007/s00134-022-06815-w] [PMID: 35945343]
[12]
Pormasoumi, H.; Rostami, D.; Jamebozorgi, K.; Mirshekarpour, H.; Heshmatnia, J. COVID-19 management in Iran and international sanctions. Eur. J. Transl. Myol., 2022, 32(4), 10777.
[http://dx.doi.org/10.4081/ejtm.2022.10777] [PMID: 36200579]
[13]
Urakov, A.; Urakova, N.; Reshetnikov, A.; Shchemeleva, A.; Shabanov, P.; Lovtsova, L.; Samorodov, A.; Fisher, E.; Stolyarenko, A.; Suntsova, D.; Yagudin, I.; Muhutdinov, N. Reprofiling hydrogen peroxide from antiseptics to pyolytics: A narrative overview of the history of inventions in Russia. J. Pharm. Res. Int., 2023, 35(6), 37-48.
[http://dx.doi.org/10.9734/jpri/2023/v35i67333]
[14]
Santopolo, G.; Clemente, A.; Rojo-Molinero, E.; Fernández, S.; Álvarez, M.C.; Oliver, A.; de la Rica, R. Improved cytometric analysis of untouched lung leukocytes by enzymatic liquefaction of sputum samples. Biol. Proced. Online, 2022, 24(1), 17.
[http://dx.doi.org/10.1186/s12575-022-00181-z] [PMID: 36396988]
[15]
Fisher, E.; Urakov, A.; Svetova, M.; Suntsova, D.; Yagudin, I. Covid-19: Intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation. Medicinski casopis, 2021, 55(4), 135-138.
[http://dx.doi.org/10.5937/mckg55-35424]
[16]
Urakov, A.; Shabanov, P.; Gurevich, K.; Fisher, E.; Stolyarenko, A.; Suntsova, D.; Yagudin, I.; Muhutdinov, N. Intrapulmonary use of hydrogen peroxide in respiratory obstruction: Initial results demonstrate the possibility of airway recanalization and blood reoxygenation through the lungs: An update. J. Pharm. Res. Int., 2023, 35(9), 33-37.
[http://dx.doi.org/10.9734/jpri/2023/v35i97348]
[17]
Urakov, A.L.; Urakova, N.A. COVID-19: Intrapulmonary injection of hydrogen peroxide solution eliminates hypoxia and normalizes respiratory biomechanics. Russ J Biomech., 2021, 25, 350-356.
[18]
Urakov, A.l.; Yagudin, I.I.; Suntsova, D.O.; Svetova, M.D.; Samorodov, A.V. Artificial sputum for modeling respiratory obstruction in Covid-19. RU Patent 2,748,999, 2021.

© 2024 Bentham Science Publishers | Privacy Policy