Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Designing and Formulation of Nanocarriers for “Alzheimer’s and Parkinson’s” Early Detection and Therapy

Author(s): Jakleen Abujamai, Rukhsana Satar and Shakeel Ahmed Ansari*

Volume 23, Issue 10, 2024

Published on: 13 February, 2024

Page: [1251 - 1262] Pages: 12

DOI: 10.2174/0118715273297024240201055550

Price: $65

conference banner
Abstract

The potential of nanotechnology in advancing the diagnosis and treatment of neurodegenerative diseases is explored in this comprehensive literature review. The findings of these studies suggest that nanotechnology has the capacity to improve existing therapeutic approaches, create novel and safe compounds, and develop more precise imaging techniques and diagnostic methods for neurodegenerative diseases. With the emergence of the nanomedicine era, a new and innovative approach of diagnosing and treating these conditions has been introduced. Notably, the researchers' development of a nanocarrier drug delivery tool demonstrates immense potential compared to conventional therapy, as it maximizes therapeutic efficacy and minimizes undesirable as side effects.

Keywords: Nanocarriers, neurodegenerative diseases, drug delivery, nanomedicine, diagnostics, blood-brain barrier.

Graphical Abstract
[1]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[2]
Sim S, Wong N. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep 2021; 14(5): 42-51.
[http://dx.doi.org/10.3892/br.2021.1418] [PMID: 33728048]
[3]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol 2018; 16(1): 71-7.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[4]
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023; 15(7): 1596-603.
[http://dx.doi.org/10.3390/polym15071596] [PMID: 37050210]
[5]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomed 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[6]
Ahamed J, Jaswanth Gowda BH, Almalki WH, Gupta N, Sahebkar A, Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur Polym J 2023; 193: 112111.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112111]
[7]
Banazadeh M, Behnam B, Ganjooei NA, Gowda BHJ, Kesharwani P, Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J Drug Deliv Sci Technol 2023; 89: 105040.
[http://dx.doi.org/10.1016/j.jddst.2023.105040]
[8]
Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[9]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[10]
Khan MS, Jaswanth Gowda BH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819.
[http://dx.doi.org/10.1016/j.drudis.2023.103819] [PMID: 37940034]
[11]
Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv Funct Mater 2023; 16: 2307074.
[http://dx.doi.org/10.1002/adfm.202307074]
[12]
Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894.
[http://dx.doi.org/10.1016/j.envres.2023.116894] [PMID: 37586450]
[13]
Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[14]
Hani U, Osmani RAM, Yasmin S, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022; 14(8): 1576.
[http://dx.doi.org/10.3390/pharmaceutics14081576] [PMID: 36015202]
[15]
Dubey SK, Parab S, Achalla VPK, et al. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. J Biomater Sci Polym Ed 2022; 33(12): 1531-54.
[http://dx.doi.org/10.1080/09205063.2022.2065408] [PMID: 35404217]
[16]
Narayana S, Ahmed MG, Gowda BHJ, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Fut J Pharmaceut Sci 2021; 7(1): 186.
[http://dx.doi.org/10.1186/s43094-021-00331-2]
[17]
Hani U, Jaswanth Gowda BH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037.
[http://dx.doi.org/10.1016/j.molliq.2023.123037]
[18]
Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127143] [PMID: 37793512]
[19]
Sanjana A, Ahmed MG, Gowda BHJ, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. J Dispers Sci Technol 2022; 14: 654.
[20]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 112-20.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[21]
Jiao T, Yan X, Balan L, Stepanov AL, Chen X, Hu MZ. Chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. J Nanomater 2014; 2014: 1-2.
[http://dx.doi.org/10.1155/2014/291013]
[22]
Agrawal YK, Patel VR. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[23]
Harish V, Ansari MM, Tewari D, et al. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 2022; 12(18): 3226-2231.
[http://dx.doi.org/10.3390/nano12183226] [PMID: 36145012]
[24]
Kuriganova A, Faddeev N, Gorshenkov M, Kuznetsov D, Leontyev I, Smirnova N. A comparison of “Bottom-Up” and “Top-Down” approaches to the synthesis of Pt/C electrocatalysts. Processes 2020; 8(8): 947-53.
[http://dx.doi.org/10.3390/pr8080947]
[25]
Tejashwini DM, Harini HV, Nagaswarupa HP, Naik R, Deshmukh VV, Basavaraju N. An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation. Chemical Physics Impact 2023; 7: 100355.
[http://dx.doi.org/10.1016/j.chphi.2023.100355]
[26]
Ahire SA, Bachhav AA, Pawar TB, Jagdale BS, Patil AV, Koli PB. The Augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology. Results Chem 2022; 4: 100633.
[http://dx.doi.org/10.1016/j.rechem.2022.100633]
[27]
El-Khawaga AM, Zidan A, El-Mageed AIAA. Preparation methods of different nanomaterials for various potential applications: A review. J Mol Struct 2023; 1281: 135148.
[http://dx.doi.org/10.1016/j.molstruc.2023.135148]
[28]
Bhat S, Kumar A. Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 2013; 3(3): e24717.
[http://dx.doi.org/10.4161/biom.24717] [PMID: 23628868]
[29]
Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Progress in material design for biomedical applications. Proc Natl Acad Sci 2015; 112(47): 14444-51.
[http://dx.doi.org/10.1073/pnas.1516247112] [PMID: 26598696]
[30]
DeMaagd G, Philip A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation and diagnosis. P&T 2015; 40(8): 504-32.
[PMID: 26236139]
[31]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32-40.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[32]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[33]
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for targeted brain drug delivery: What do we know? Int J Mol Sci 2021; 22(21): 11654.
[http://dx.doi.org/10.3390/ijms222111654] [PMID: 34769082]
[34]
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf B Biointerfaces 2023; 221: 112999.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112999] [PMID: 36368148]
[35]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[36]
Duan L, Li X, Ji R, et al. Nanoparticle-based drug delivery dystems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers 2023; 15(9): 2196.
[http://dx.doi.org/10.3390/polym15092196] [PMID: 37177342]
[37]
Kevadiya BD, Ottemann BM, Thomas MB, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148: 252-89.
[http://dx.doi.org/10.1016/j.addr.2018.10.011] [PMID: 30421721]
[38]
Park S, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater 2017; 2(5): 17014.
[http://dx.doi.org/10.1038/natrevmats.2017.14] [PMID: 29876137]
[39]
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: A review. Environ Chem Lett 2022; 20(1): 901-27.
[http://dx.doi.org/10.1007/s10311-021-01342-4] [PMID: 34803553]
[40]
Tracy GC, Huang KY, Hong YT, et al. Intracerebral nanoparticle transport facilitated by alzheimer pathology and age. Nano Lett 2023; 23(23): 10971-82.
[http://dx.doi.org/10.1021/acs.nanolett.3c03222] [PMID: 37991895]
[41]
Khang M, Lee JH, Lee T, et al. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma. Sci Transl Med 2023; 15(720): eadi1617.
[http://dx.doi.org/10.1126/scitranslmed.adi1617] [PMID: 37910601]
[42]
Kim T, Kim HJ, Choi W, et al. Deep brain stimulation by blood–brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat Biomed Eng 2022; 7(2): 149-63.
[http://dx.doi.org/10.1038/s41551-022-00965-4] [PMID: 36456857]
[43]
Zhong G, Long H, Zhou T, et al. Blood-brain barrier Permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials 2022; 288: 121690.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121690] [PMID: 35965114]
[44]
Ling TS, Chandrasegaran S, Xuan LZ, et al. The potential benefits of nanotechnology in treating Alzheimer’s disease. BioMed Res Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/5550938] [PMID: 34285915]
[45]
Mir Najib Ullah SN, Afzal O, Altamimi ASA, et al. Nanomedicine in the management of Alzheimer’s Disease: State-of-the-art. Biomedicines 2023; 11(6): 1752.
[http://dx.doi.org/10.3390/biomedicines11061752] [PMID: 37371847]
[46]
Cao Y, Zhang R. The application of nanotechnology in treatment of Alzheimer’s disease. Front Bioeng Biotechnol 2022; 10: 1042986.
[http://dx.doi.org/10.3389/fbioe.2022.1042986] [PMID: 36466349]
[47]
Panghal A, Flora SJS. Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochimica et Biophysica Acta 2024; 130559.
[http://dx.doi.org/10.1016/j.bbagen.2024.130559]
[48]
Gong B, Zhuang J, Ji W, et al. The long and the short of current nanomedicines for treating Alzheimer’s disease. J Transl Int Med 2023; 10(4): 294-6.
[http://dx.doi.org/10.2478/jtim-2021-0054] [PMID: 36860633]
[49]
Mendez MF. Early-onset Alzheimer disease. Neurol Clin 2017; 35(2): 263-81.
[http://dx.doi.org/10.1016/j.ncl.2017.01.005] [PMID: 28410659]
[50]
Mallucci GR, Klenerman D, Rubinsztein DC. Developing therapies for neurodegenerative disorders: Insights from protein aggregation and cellular stress responses. Annu Rev Cell Dev Biol 2020; 36(1): 165-89.
[http://dx.doi.org/10.1146/annurev-cellbio-040320-120625] [PMID: 33021824]
[51]
Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry 2021; 26(10): 5481-503.
[http://dx.doi.org/10.1038/s41380-021-01249-0] [PMID: 34456336]
[52]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12(1): 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[53]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[54]
Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 2003; 23(1): 29-33.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00029.2003] [PMID: 12514198]
[55]
Gobbi M, Re F, Canovi M, et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials 2010; 31(25): 6519-29.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.044] [PMID: 20553982]
[56]
Chopra H, Bibi S, Singh I, et al. Nanomedicines in the management of Alzheimer’s disease: Current view and future prospects. Front Aging Neurosci 2022; 14: 879114.
[http://dx.doi.org/10.3389/fnagi.2022.879114] [PMID: 35875806]
[57]
Bereczki E, Re F, Masserini ME, Winblad B, Pei JJ. Liposomes functionalized with acidic lipids rescue Aβ-induced toxicity in murine neuroblastoma cells. Nanomedicine 2011; 7(5): 560-71.
[http://dx.doi.org/10.1016/j.nano.2011.05.009] [PMID: 21703989]
[58]
Canovi M, Markoutsa E, Lazar AN, et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 2011; 32(23): 5489-97.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.020] [PMID: 21529932]
[59]
Podolski IY, Podlubnaya ZA, Kosenko EA, et al. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 2007; 7(4): 1479-85.
[http://dx.doi.org/10.1166/jnn.2007.330] [PMID: 17450915]
[60]
Liu G, Men P, Perry G, Smith MA. Development of iron chelator–nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Prog Brain Res 2009; 180: 97-108.
[http://dx.doi.org/10.1016/S0079-6123(08)80005-2] [PMID: 20302830]
[61]
Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle–chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci Lett 2009; 455(3): 187-90.
[http://dx.doi.org/10.1016/j.neulet.2009.03.064] [PMID: 19429118]
[62]
Nunes A, Marques SM, Quintanova C, et al. Multifunctional iron-chelators with protective roles against neurodegenerative diseases. Dalton Trans 2013; 42(17): 6058-73.
[http://dx.doi.org/10.1039/c3dt50406a] [PMID: 23487286]
[63]
Zheng H, Gal S, Weiner LM, et al. Novel multifunctional neuroprotective iron chelator‐monoamine oxidase inhibitor drugs for neurodegenerative diseases: In vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 2005; 95(1): 68-78.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03340.x] [PMID: 16181413]
[64]
Liu G, Men P, Harris PLR, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 2006; 406(3): 189-93.
[http://dx.doi.org/10.1016/j.neulet.2006.07.020] [PMID: 16919875]
[65]
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-based iron chelators with broad-ranging biological activities. J Med Chem 2020; 63(23): 14470-501.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01480] [PMID: 33023291]
[66]
Pichla M, Bartosz G, Sadowska-Bartosz I. The antiaggregative and antiamyloidogenic properties of nanoparticles: A promising tool for the treatment and diagnostics of neurodegenerative diseases. Oxid Med Cell Longev 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/3534570] [PMID: 33123310]
[67]
Cunha S, Forbes B, Sousa Lobo JM, Silva AC. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels. Int J Nanomedicine 2021; 16: 4373-90.
[http://dx.doi.org/10.2147/IJN.S305851] [PMID: 34234432]
[68]
Nuñez M, Chana-Cuevas P. New Perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 2018; 11(4): 109.
[http://dx.doi.org/10.3390/ph11040109] [PMID: 30347635]
[69]
Wilson B, Samanta M, Santhi K, Kumar K, Paramakrishnan N, Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 2008; 70(1): 75-84.
[http://dx.doi.org/10.1016/j.ejpb.2008.03.009] [PMID: 18472255]
[70]
McLachlan D, Dalton AJ, Kruck TP, et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 1991; 337(8753): 1304-8.
[http://dx.doi.org/10.1016/0140-6736(91)92978-B] [PMID: 1674295]
[71]
Khan TA, Hassan I, Ahmad A, et al. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol Disord Drug Targets 2016; 15(3): 310-20.
[http://dx.doi.org/10.2174/1871527315666160202124518] [PMID: 26831262]
[72]
Georganopoulou DG, Chang L, Nam JM, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci 2005; 102(7): 2273-6.
[http://dx.doi.org/10.1073/pnas.0409336102] [PMID: 15695586]
[73]
Luo D, Shi B, Wang J, Qian L, Qin Y. Particle diameter distribution and number concentration measurement of Au nanospheres solution and its photothermal temperature properties. Optik 2019; 194: 163039.
[http://dx.doi.org/10.1016/j.ijleo.2019.163039]
[74]
Zhang ZH, Lei KN, Li CN, Luo YH, Jiang ZL. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification. Spectrochim Acta A Mol Biomol Spectrosc 2020; 232: 118174.
[http://dx.doi.org/10.1016/j.saa.2020.118174] [PMID: 32106034]
[75]
Jalilian R, Ezzatzadeh E, Taheri A. A novel self-assembled gold nanoparticles-molecularly imprinted modified carbon ionic liquid electrode with high sensitivity and selectivity for the rapid determination of bisphenol A leached from plastic containers. J Environ Chem Eng 2021; 9(4): 105513.
[http://dx.doi.org/10.1016/j.jece.2021.105513]
[76]
Yang L, Liu S, Zhang Q, Li F. Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core-shell nanocomposites modified electrode. Talanta 2012; 89: 136-41.
[http://dx.doi.org/10.1016/j.talanta.2011.12.002] [PMID: 22284471]
[77]
Liu Y, He M, Chen B, Hu B. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma - mass spectrometry. Spectrochim Acta B At Spectrosc 2016; 122: 94-102.
[http://dx.doi.org/10.1016/j.sab.2016.04.009]
[78]
Kannan P, John SA. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal Biochem 2009; 386(1): 65-72.
[http://dx.doi.org/10.1016/j.ab.2008.11.043] [PMID: 19111516]
[79]
Gong L, Du B, Pan L, et al. Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Mikrochim Acta 2017; 184(4): 1185-90.
[http://dx.doi.org/10.1007/s00604-017-2122-6]
[80]
Feng L, Li S, Xiao B, Chen S, Liu R, Zhang Y. Fluorescence imaging of APP in Alzheimer’s disease with quantum dot or Cy3: A comparative study. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35(9): 903-9.
[PMID: 20871152]
[81]
Yang J, Wadghiri YZ, Hoang DM, et al. Detection of amyloid in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage 2011; 55: 1600-10.
[http://dx.doi.org/10.1016/j.neuroimage.2011.01.023] [PMID: 21255656]
[82]
Roney CA, Arora V, Kulkarni PV, Antich PP, Bonte FJ. Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010; 2009: 481031.
[PMID: 20721294]
[83]
Ansari SA, Satar R, Perveen A, Ashraf GM. Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr Opin Psychiatry 2017; 30(2): 128-35.
[http://dx.doi.org/10.1097/YCO.0000000000000310] [PMID: 28009724]
[84]
Azhar A, Ashraf GM, Zia Q, et al. Frontier view on nanotechnological strategies for neuro-therapy. Curr Drug Metab 2018; 19(7): 596-604.
[http://dx.doi.org/10.2174/1389200219666180305144143] [PMID: 29512448]
[85]
Wang Y, Klunk WE, Debnath ML, et al. Development of a PET/SPECT agent for amyloid imaging in Alzheimer’s disease. J Mol Neurosci 2004; 24(1): 055-62.
[http://dx.doi.org/10.1385/JMN:24:1:055] [PMID: 15314250]
[86]
Kung MP, Hou C, Zhuang ZP, Skovronsky D, Kung HF. Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res 2004; 1025(1-2): 98-105.
[http://dx.doi.org/10.1016/j.brainres.2004.08.004] [PMID: 15464749]
[87]
Watanabe H, Tatsumi H, Kaide S, Shimizu Y, Iikuni S, Ono M. Structure-activity relationships of radioiodinated 6,5,6-tricyclic compounds for the development of tau imaging probes. ACS Med Chem Lett 2020; 11(2): 120-6.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00456] [PMID: 32071677]
[88]
Chauhan K, Tiwari AK, Chadha N, Kaul A, Singh AK, Datta A. Chalcone based homodimeric PET agent, 11C-(Chal)2DEA-Me, for beta amyloid imaging: Synthesis and bioevaluation. Mol Pharm 2018; 15(4): 1515-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01070]
[89]
Li Y, Zhou K, Guo W, Cui M. 18F-labeled 2-phenylbenzoheterocycles with chiral dihydroxyl side chains as β-amyloid imaging probes. Bioorg Med Chem 2021; 29: 115884.
[http://dx.doi.org/10.1016/j.bmc.2020.115884] [PMID: 33338795]
[90]
Tepper M, Eravuchira PJ, Gabay B, Sharabani-Yosef O, Gannot I. Nanoparticles targeting amyloid deposits: A potential contrast agent for diagnosis and treatment. J Nanophotonics 2021; 15(2): 26010-8.
[http://dx.doi.org/10.1117/1.JNP.15.026010]
[91]
Bhat S, Kamal M, Yarla N, Ashraf G. Synopsis on management strategies for neurodegenerative disorders: Challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem 2017; 17(12): 1371-8.
[http://dx.doi.org/10.2174/1568026616666161222121229] [PMID: 28017151]
[92]
Outeiro TF, Koss DJ, Erskine D, et al. Dementia with Lewy bodies: An update and outlook. Mol Neurodegener 2019; 14(1): 5.
[http://dx.doi.org/10.1186/s13024-019-0306-8] [PMID: 30665447]
[93]
Loveland PM, Yu JJ, Churilov L, Yassi N, Watson R. Investigation of inflammation in Lewy body dementia: A systematic scoping review. Int J Mol Sci 2023; 24(15): 12116.
[http://dx.doi.org/10.3390/ijms241512116] [PMID: 37569491]
[94]
Amin J, Gee C, Stowell K, Coulthard D, Boche D. Lymphocytes and their potential role in dementia with Lewy bodies. Cells 2023; 12(18): 2283.
[http://dx.doi.org/10.3390/cells12182283] [PMID: 37759503]
[95]
Vatter S, Leroi I. Resilience in people with Lewy body disorders and their care partners: Association with mental health, relationship satisfaction, and care burden. Brain Sci 2022; 12(2): 148.
[http://dx.doi.org/10.3390/brainsci12020148] [PMID: 35203912]
[96]
Gibson LL, Abdelnour C, Chong J, Ballard C, Aarsland D. Clinical trials in dementia with Lewy bodies: the evolving concept of co-pathologies, patient selection and biomarkers. Curr Opin Neurol 2023; 36(4): 264-75.
[http://dx.doi.org/10.1097/WCO.0000000000001173] [PMID: 37387459]
[97]
Leonardo A. Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron 2023; 111: 4006.
[98]
Shankar J, Geetha KM, Wilson B. Potential applications of nanomedicine for treating Parkinson’s disease. J Drug Deliv Sci Technol 2021; 66: 102793.
[http://dx.doi.org/10.1016/j.jddst.2021.102793]
[99]
Burns J, Buck AC, D’ Souza S, Dube A, Bardien S. Nanophytomedicines as therapeutic agents for Parkinson’s disease. ACS Omega 2023; 8(45): 42045-61.
[http://dx.doi.org/10.1021/acsomega.3c04862] [PMID: 38024675]
[100]
Adam H, Gopinath SCB, Md Arshad MK, et al. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13: 142.
[101]
Li A, Tyson J, Patel S, et al. Emerging nanotechnology for treatment of Alzheimer’s and Parkinson’s disease. Front Bioeng Biotechnol 2021; 9: 672594.
[http://dx.doi.org/10.3389/fbioe.2021.672594] [PMID: 34113606]
[102]
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson’s disease. J Control Release 2023; 360: 212-24.
[http://dx.doi.org/10.1016/j.jconrel.2023.06.026] [PMID: 37343725]
[103]
Kalčec N, Peranić N, Mamić I, et al. Selenium nanoparticles as potential drug-delivery systems for the treatment of Parkinson’s disease. ACS Appl Nano Mater 2023; 6(19): 17581-92.
[http://dx.doi.org/10.1021/acsanm.3c02749]
[104]
Ashraf H, Cossu D, Ruberto S, et al. Latent potential of multifunctional selenium nanoparticles in neurological diseases and altered gut microbiota. Materials 2023; 16(2): 699.
[http://dx.doi.org/10.3390/ma16020699] [PMID: 36676436]
[105]
Guo S, Yi C-X. Cell type-targeting nanoparticles in treating central nervous system diseases: Challenges and hopes. Nanotechnol Rev 2023; 12(1): 20230158.
[http://dx.doi.org/10.1515/ntrev-2023-0158]
[106]
Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson’s disease management: Challenges, nanobased support, and prospects. World J Stem Cells 2023; 15(7): 687-700.
[http://dx.doi.org/10.4252/wjsc.v15.i7.687] [PMID: 37545757]
[107]
Linazasoro G. Pathophysiology of motor complications in Parkinson disease: postsynaptic mechanisms are crucial. Arch Neurol 2007; 64(1): 137-40.
[http://dx.doi.org/10.1001/archneur.64.1.137] [PMID: 17210824]
[108]
Bhalsing KS, Abbas MM, Tan LCS. Role of physical activity in Parkinson’s disease. Ann Indian Acad Neurol 2018; 21(4): 242-9.
[http://dx.doi.org/10.4103/aian.AIAN_169_18] [PMID: 30532351]
[109]
Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: A review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[110]
Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011; 419(1-2): 296-307.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.036] [PMID: 21821107]
[111]
LeWitt PA. Levodopa for the treatment of Parkinson’s disease. N Engl J Med 2008; 359(23): 2468-76.
[http://dx.doi.org/10.1056/NEJMct0800326] [PMID: 19052127]
[112]
Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 2018; 109: 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[113]
Huang R, Ke W, Liu Y, et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 2010; 290(1-2): 123-30.
[http://dx.doi.org/10.1016/j.jns.2009.09.032] [PMID: 19909981]
[114]
Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: A prospective study using single‐dose challenges. Mov Disord 2005; 20(2): 151-7.
[http://dx.doi.org/10.1002/mds.20276] [PMID: 15390035]
[115]
Nyholm D, Nilsson Remahl AIM, Dizdar N, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 2005; 64(2): 216-23.
[http://dx.doi.org/10.1212/01.WNL.0000149637.70961.4C] [PMID: 15668416]
[116]
Xia CF, Boado RJ, Zhang Y, Chu C, Pardridge WM. Intravenous glial‐derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. J Gene Med 2008; 10(3): 306-15.
[http://dx.doi.org/10.1002/jgm.1152] [PMID: 18085726]
[117]
Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 2011; 151(2): 131-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.022] [PMID: 21362449]
[118]
Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[119]
Wightman RM. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science 2006; 311(5767): 1570-4.
[http://dx.doi.org/10.1126/science.1120027] [PMID: 16543451]
[120]
Linazasoro G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat Disord 2008; 14(5): 383-92.
[http://dx.doi.org/10.1016/j.parkreldis.2007.11.012] [PMID: 18329315]
[121]
Yang X, Zheng R, Cai Y, Liao M, Yuan W, Liu Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomedicine 2012; 7: 2077-86.
[PMID: 22619544]
[122]
Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J Drug Target 2015; 23(9): 775-88.
[http://dx.doi.org/10.3109/1061186X.2015.1020809] [PMID: 25758751]
[123]
During MJ, Freese A, Deutch AY, et al. Biochemical and behavioral recovery in a rodent model of Parkinson’s disease following stereotactic implantation of dopamine-containing liposomes. Exp Neurol 1992; 115(2): 193-9.
[http://dx.doi.org/10.1016/0014-4886(92)90053-S] [PMID: 1735466]
[124]
Pillay S, Pillay V, Choonara YE, et al. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int J Pharm 2009; 382(1-2): 277-90.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.021] [PMID: 19703530]
[125]
Rashed ER, Abd El-Rehim HA, El-Ghazaly MA. Potential efficacy of dopamine loaded‐PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. J Biomed Mater Res A 2015; 103(5): 1713-20.
[http://dx.doi.org/10.1002/jbm.a.35312] [PMID: 25131611]
[126]
Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014; 40(7): 869-78.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[127]
Balasubramanian K, Burghard M. Biosensors based on carbon nanotubes. Anal Bioanal Chem 2006; 385(3): 452-68.
[http://dx.doi.org/10.1007/s00216-006-0314-8] [PMID: 16568294]
[128]
An Y, Tang L, Jiang X, et al. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry 2010; 16(48): 14439-46.
[http://dx.doi.org/10.1002/chem.201001654] [PMID: 21038326]
[129]
Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009; 3(9): 2834-40.
[http://dx.doi.org/10.1021/nn900813b] [PMID: 19691350]
[130]
Yu J, Lyubchenko YL. Early stages for Parkinson’s development: Alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol 2009; 4(1): 10-6.
[http://dx.doi.org/10.1007/s11481-008-9115-5] [PMID: 18633713]
[131]
Kosicek M, Kirsch S, Bene R, et al. Nano-HPLC-MS analysis of phospholipids in cerebrospinal fluid of Alzheimer’s disease patients-a pilot study. Anal Bioanal Chem 2010; 398(7-8): 2929-37.
[http://dx.doi.org/10.1007/s00216-010-4273-8] [PMID: 20953867]
[132]
Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: Assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 2005; 77(6): 1566-71.
[http://dx.doi.org/10.1021/ac048691v] [PMID: 15762558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy