Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

转录因子MAZ增强上调neil3介导的有氧糖酵解,从而促进肝细胞癌的血管生成

卷 24, 期 12, 2024

发表于: 12 February, 2024

页: [1235 - 1249] 页: 15

弟呕挨: 10.2174/0115680096265896231226062212

价格: $65

摘要

背景:肝细胞癌(HCC)的特点是高血管性和明显的血管异常,血管生成是肿瘤发生和转移的关键过程。Nei Like DNA糖基酶3 (NEIL3)的主要功能包括DNA醇化修复、免疫反应调节、神经系统发育和功能、DNA损伤信号转导等。然而,高表达NEIL3在HCC发生和发展中的潜在机制以及NEIL3缺失或沉默是否抑制癌症的发展尚不清楚。因此,需要更深入地了解NEIL3表达增加促进癌症发展的机制。 方法:通过生物信息学方法分析NEIL3及其上游转录因子MAZ在HCC肿瘤组织中的表达,并通过qRT-PCR和western blot对HCC细胞系进行验证。采用Transwell和成管实验分析HUVEC细胞的迁移能力和成管能力。通过细胞外酸化速率、葡萄糖摄取和乳酸生成水平分析糖酵解能力。利用染色质免疫沉淀(ChIP)和双荧光素酶报告基因检测来研究MAZ和NEIL3之间的特异性相互作用。 结果:NEIL3和MAZ在HCC组织和细胞中显著上调。NEIL3参与调节糖酵解途径,抑制该途径可逆转NEIL3过表达对HUVEC细胞迁移和血管生成的促进作用。MAZ与NEIL3的启动子结合,促进NEIL3的转录。沉默MAZ可降低NEIL3的表达,抑制糖酵解途径、HUVEC细胞迁移和血管生成。 结论:MAZ增强了上调的neil3介导的糖酵解途径和HCC血管生成。该研究为MAZ/NEIL3/糖酵解途径作为HCC抗血管生成治疗的可能选择提供了理论依据。

关键词: NEIL3,血管生成,糖酵解信号通路,MAZ,肝细胞癌。

图形摘要
[1]
O’Leary, C.; Mahler, M.; Soulen, M.C. Liver-directed therapy for hepatocellular carcinoma. Chin. Clin. Oncol., 2021, 10(1), 8.
[http://dx.doi.org/10.21037/cco-20-51] [PMID: 32527111]
[2]
Ganesan, P.; Kulik, L.M. Hepatocellular carcinoma. Clin. Liver Dis., 2023, 27(1), 85-102.
[http://dx.doi.org/10.1016/j.cld.2022.08.004] [PMID: 36400469]
[3]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[4]
Connell, L.C.; Harding, J.J.; Abou-Alfa, G.K. Advanced hepatocellular cancer: The current state of future research. Curr. Treat. Options Oncol., 2016, 17(8), 43.
[http://dx.doi.org/10.1007/s11864-016-0415-3] [PMID: 27344158]
[5]
Mohammad, N.S.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci., 2022, 38(1), 219-226.
[PMID: 35035429]
[6]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[7]
Zhu, A.X.; Duda, D.G.; Sahani, D.V.; Jain, R.K. HCC and angiogenesis: Possible targets and future directions. Nat. Rev. Clin. Oncol., 2011, 8(5), 292-301.
[http://dx.doi.org/10.1038/nrclinonc.2011.30] [PMID: 21386818]
[8]
Frenette, C.; Gish, R. Targeted systemic therapies for hepatocellular carcinoma: Clinical perspectives, challenges and implications. World J. Gastroenterol., 2012, 18(6), 498-506.
[http://dx.doi.org/10.3748/wjg.v18.i6.498] [PMID: 22363115]
[9]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[10]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[11]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[12]
Eelen, G.; Cruys, B.; Welti, J.; De Bock, K.; Carmeliet, P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol. Metab., 2013, 24(12), 589-596.
[http://dx.doi.org/10.1016/j.tem.2013.08.006] [PMID: 24075830]
[13]
Wang, X.; Abraham, S.; McKenzie, J.A.G.; Jeffs, N.; Swire, M.; Tripathi, V.B.; Luhmann, U.F.O.; Lange, C.A.K.; Zhai, Z.; Arthur, H.M.; Bainbridge, J.W.B.; Moss, S.E.; Greenwood, J. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature, 2013, 499(7458), 306-311.
[http://dx.doi.org/10.1038/nature12345] [PMID: 23868260]
[14]
Muppala, S.; Xiao, R.; Krukovets, I.; Verbovetsky, D.; Yendamuri, R.; Habib, N.; Raman, P.; Plow, E.; Stenina-Adognravi, O. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene, 2017, 36(36), 5189-5198.
[http://dx.doi.org/10.1038/onc.2017.140] [PMID: 28481870]
[15]
Luo, Z.; Shang, X.; Zhang, H.; Wang, G.; Massey, P.A.; Barton, S.R.; Kevil, C.G.; Dong, Y. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am. J. Pathol., 2019, 189(8), 1495-1500.
[http://dx.doi.org/10.1016/j.ajpath.2019.05.005] [PMID: 31345466]
[16]
Ramasamy, S.K.; Kusumbe, A.P.; Wang, L.; Adams, R.H. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507(7492), 376-380.
[http://dx.doi.org/10.1038/nature13146] [PMID: 24647000]
[17]
Jiang, L.; Yin, M.; Wei, X.; Liu, J.; Wang, X.; Niu, C.; Kang, X.; Xu, J.; Zhou, Z.; Sun, S.; Wang, X.; Zheng, X.; Duan, S.; Yao, K.; Qian, R.; Sun, N.; Chen, A.; Wang, R.; Zhang, J.; Chen, S.; Meng, D. Bach1 represses Wnt/β-Catenin signaling and angiogenesis. Circ. Res., 2015, 117(4), 364-375.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306829] [PMID: 26123998]
[18]
Shen, J.; Sun, Y.; Liu, X.; Zhu, Y.; Bao, B.; Gao, T.; Chai, Y.; Xu, J.; Zheng, X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res. Ther., 2021, 12(1), 415.
[http://dx.doi.org/10.1186/s13287-021-02487-3] [PMID: 34294121]
[19]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[20]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF Machinery: In Vitro and Ex Vivo Insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[21]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[22]
Lin, Z.; Zhang, Q.; Luo, W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur. J. Pharmacol., 2016, 793, 76-81.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.039] [PMID: 27840192]
[23]
Iwamoto, H.; Abe, M.; Yang, Y.; Cui, D.; Seki, T.; Nakamura, M.; Hosaka, K.; Lim, S.; Wu, J.; He, X.; Sun, X.; Lu, Y.; Zhou, Q.; Shi, W.; Torimura, T.; Nie, G.; Li, Q.; Cao, Y. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab., 2018, 28(1), 104-117.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.05.005] [PMID: 29861385]
[24]
Jiménez-Valerio, G.; Casanovas, O. Angiogenesis and metabolism: Entwined for therapy resistance. Trends Cancer, 2017, 3(1), 10-18.
[http://dx.doi.org/10.1016/j.trecan.2016.11.007] [PMID: 28718423]
[25]
Zhang, Y.; Yang, J.M. Altered energy metabolism in cancer. Cancer Biol. Ther., 2013, 14(2), 81-89.
[http://dx.doi.org/10.4161/cbt.22958] [PMID: 23192270]
[26]
Ganapathy-Kanniappan, S.; Geschwind, J.F.H. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol. Cancer, 2013, 12(1), 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[27]
Paul, S.; Ghosh, S.; Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol., 2022, 86(Pt 3), 1216-1230.
[http://dx.doi.org/10.1016/j.semcancer.2022.09.007] [PMID: 36330953]
[28]
Wu, W.; Wang, X.; Liao, L.; Chen, J.; Wang, Y.; Yao, M.; Zhu, L.; Li, J.; Wang, X.; Chen, A.F.; Zhang, G.; Zhang, Z.; Bai, Y. The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis., 2023, 14(3), 183.
[http://dx.doi.org/10.1038/s41419-023-05701-7] [PMID: 36878949]
[29]
Deng, F.; Zhou, R.; Lin, C.; Yang, S.; Wang, H.; Li, W.; Zheng, K.; Lin, W.; Li, X.; Yao, X.; Pan, M.; Zhao, L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics, 2019, 9(4), 1001-1014.
[http://dx.doi.org/10.7150/thno.30056] [PMID: 30867812]
[30]
Végran, F.; Boidot, R.; Michiels, C.; Sonveaux, P.; Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res., 2011, 71(7), 2550-2560.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2828] [PMID: 21300765]
[31]
Sonveaux, P.; Copetti, T.; De Saedeleer, C.J.; Végran, F.; Verrax, J.; Kennedy, K.M.; Moon, E.J.; Dhup, S.; Danhier, P.; Frérart, F.; Gallez, B.; Ribeiro, A.; Michiels, C.; Dewhirst, M.W.; Feron, O. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One, 2012, 7(3), e33418.
[http://dx.doi.org/10.1371/journal.pone.0033418] [PMID: 22428047]
[32]
Schoors, S.; De Bock, K.; Cantelmo, A.R.; Georgiadou, M.; Ghesquière, B.; Cauwenberghs, S.; Kuchnio, A.; Wong, B.W.; Quaegebeur, A.; Goveia, J.; Bifari, F.; Wang, X.; Blanco, R.; Tembuyser, B.; Cornelissen, I.; Bouché, A.; Vinckier, S.; Diaz-Moralli, S.; Gerhardt, H.; Telang, S.; Cascante, M.; Chesney, J.; Dewerchin, M.; Carmeliet, P. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab., 2014, 19(1), 37-48.
[http://dx.doi.org/10.1016/j.cmet.2013.11.008] [PMID: 24332967]
[33]
Singh, S.; Pandey, S.; Chawla, A.S.; Bhatt, A.N.; Roy, B.G.; Saluja, D.; Dwarakanath, B.S. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur. J. Cancer, 2019, 123, 11-24.
[http://dx.doi.org/10.1016/j.ejca.2019.09.005] [PMID: 31670076]
[34]
Hu, B.; Qu, C.; Qi, W.J.; Liu, C.H.; Xiu, D.R. Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma. Front. Genet., 2022, 13, 955673.
[http://dx.doi.org/10.3389/fgene.2022.955673] [PMID: 36267406]
[35]
Morland, I.; Rolseth, V.; Luna, L.; Rognes, T.; Bjørås, M.; Seeberg, E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res., 2002, 30(22), 4926-4936.
[http://dx.doi.org/10.1093/nar/gkf618] [PMID: 12433996]
[36]
Matta, J.; Morales, L.; Dutil, J.; Bayona, M.; Alvarez, C.; Suarez, E. Differential expression of DNA repair genes in Hispanic women with breast cancer. Mol. Cancer Biol., 2013, 1(1), 54.
[PMID: 25309843]
[37]
Nwani, N.; Condello, S.; Wang, Y.; Swetzig, W.; Barber, E.; Hurley, T.; Matei, D. A novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer. Cancers, 2019, 11(4), 502.
[http://dx.doi.org/10.3390/cancers11040502] [PMID: 30965686]
[38]
Barry, K.H.; Koutros, S.; Berndt, S.I.; Andreotti, G.; Hoppin, J.A.; Sandler, D.P.; Burdette, L.A.; Yeager, M.; Freeman, L.E.B.; Lubin, J.H.; Ma, X.; Zheng, T.; Alavanja, M.C.R. Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ. Health Perspect., 2011, 119(12), 1726-1732.
[http://dx.doi.org/10.1289/ehp.1103454] [PMID: 21810555]
[39]
Zhao, Z.; Gad, H.; Benitez-Buelga, C.; Sanjiv, K.; Xiangwei, H.; Kang, H.; Feng, M.; Zhao, Z.; Berglund, U.W.; Xia, Q.; Helleday, T. NEIL3 prevents senescence in hepatocellular carcinoma by repairing oxidative lesions at telomeres during mitosis. Cancer Res., 2021, 81(15), 4079-4093.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1028] [PMID: 34045188]
[40]
Wang, W.; Yin, Q.; Guo, S.; Wang, J. NEIL3 contributes toward the carcinogenesis of liver cancer and regulates PI3K/Akt/mTOR signaling. Exp. Ther. Med., 2021, 22(4), 1053.
[http://dx.doi.org/10.3892/etm.2021.10487] [PMID: 34434267]
[41]
Fleming, A.M.; Zhou, J.; Wallace, S.S.; Burrows, C.J. A Role for the Fifth G-Track in G-Quadruplex forming oncogene promoter sequences during oxidative stress: Do these “spare tires” have an evolved function? ACS Cent. Sci., 2015, 1(5), 226-233.
[http://dx.doi.org/10.1021/acscentsci.5b00202] [PMID: 26405692]
[42]
He, Q.; Yang, J.; Jin, Y. Immune infiltration and clinical significance analyses of the coagulation-related genes in hepatocellular carcinoma. Brief. Bioinform., 2022, 23(4), bbac291.
[http://dx.doi.org/10.1093/bib/bbac291] [PMID: 35849048]
[43]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR : A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[44]
Zhang, Q.; Liu, W.; Zhang, H.M.; Xie, G.Y.; Miao, Y.R.; Xia, M.; Guo, A.Y. hTFtarget: A comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics, 2020, 18(2), 120-128.
[http://dx.doi.org/10.1016/j.gpb.2019.09.006] [PMID: 32858223]
[45]
Zhao, X.; Jiang, P.; Deng, X.; Li, Z.; Tian, F.; Guo, F.; Li, X.; Wang, S. Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am. J. Cancer Res., 2016, 6(10), 2289-2298.
[PMID: 27822418]
[46]
Pulkkinen, H.H.; Kiema, M.; Lappalainen, J.P.; Toropainen, A.; Beter, M.; Tirronen, A.; Holappa, L.; Niskanen, H.; Kaikkonen, M.U.; Ylä-Herttuala, S.; Laakkonen, J.P. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis, 2021, 24(1), 129-144.
[http://dx.doi.org/10.1007/s10456-020-09748-4] [PMID: 33021694]
[47]
Lai, H.H.; Hung, L.Y.; Yen, C.J.; Hung, H.C.; Chen, R.Y.; Ku, Y.C.; Lo, H.T.; Tsai, H.W.; Lee, Y.P.; Yang, T.H.; Chen, Y.Y.; Huang, Y.S.; Huang, W. NEIL3 promotes hepatoma epithelial–mesenchymal transition by activating the BRAF / MEK / ERK / TWIST signaling pathway. J. Pathol., 2022, 258(4), 339-352.
[http://dx.doi.org/10.1002/path.6001] [PMID: 36181299]
[48]
Veeturi, S.S.; Rajabzadeh-Oghaz, H.; Pintér, N.K.; Waqas, M.; Hasan, D.M.; Snyder, K.V.; Siddiqui, A.H.; Tutino, V.M. Aneurysm risk metrics and hemodynamics are associated with greater vessel wall enhancement in intracranial aneurysms. R. Soc. Open Sci., 2021, 8(11), 211119.
[http://dx.doi.org/10.1098/rsos.211119] [PMID: 34804573]
[49]
Ren, R.; Guo, J.; Shi, J.; Tian, Y.; Li, M.; Kang, H. PKM2 regulates angiogenesis of VR-EPCs through modulating glycolysis, mitochondrial fission, and fusion. J. Cell. Physiol., 2020, 235(9), 6204-6217.
[http://dx.doi.org/10.1002/jcp.29549] [PMID: 32017072]
[50]
Hamza, A.A.; Heeba, G.H.; Hassanin, S.O.; Elwy, H.M.; Bekhit, A.A.; Amin, A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed. Pharmacother., 2023, 165, 115148.
[http://dx.doi.org/10.1016/j.biopha.2023.115148] [PMID: 37450997]
[51]
Abdu, S.; Juaid, N.; Amin, A.; Moulay, M.; Miled, N. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In Vivo & In Vitro Insights; Antioxidants: Basel, 2022, p. 11.
[52]
Awad, B.; Hamza, A.A.; Al-Maktoum, A.; Al-Salam, S.; Amin, A. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma. Cancers (Basel), 2023, 15(16), 4063.
[http://dx.doi.org/10.3390/cancers15164063] [PMID: 37627094]
[53]
Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics. Antioxidants, 2022, 11(6), 1125.
[http://dx.doi.org/10.3390/antiox11061125] [PMID: 35740022]
[54]
Shen, P.; Yang, T.; Chen, Q.; Yuan, H.; Wu, P.; Cai, B.; Meng, L.; Huang, X.; Liu, J.; Zhang, Y.; Hu, W.; Miao, Y.; Lu, Z.; Jiang, K. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol. Cancer, 2021, 20(1), 51.
[http://dx.doi.org/10.1186/s12943-021-01333-7] [PMID: 33750389]
[55]
Wang, T.; Zhu, X.; Wang, K.; Li, J.; Hu, X.; Lin, P.; Zhang, J. Transcriptional factor MAZ promotes cisplatin-induced DNA damage repair in lung adenocarcinoma by regulating NEIL3. Pulm. Pharmacol. Ther., 2023, 80, 102217.
[http://dx.doi.org/10.1016/j.pupt.2023.102217] [PMID: 37121465]
[56]
Pan, Z.; Zhao, R.; Li, B.; Qi, Y.; Qiu, W.; Guo, Q.; Zhang, S.; Zhao, S.; Xu, H.; Li, M.; Gao, Z.; Fan, Y.; Xu, J.; Wang, H.; Wang, S.; Qiu, J.; Wang, Q.; Guo, X.; Deng, L.; Zhang, P.; Xue, H.; Li, G. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol. Cancer, 2022, 21(1), 16.
[http://dx.doi.org/10.1186/s12943-021-01485-6] [PMID: 35031058]
[57]
Sun, X.; Liu, P. Prognostic biomarker NEIL3 and its association with immune infiltration in renal clear cell carcinoma. Front. Oncol., 2023, 13, 1073941.
[http://dx.doi.org/10.3389/fonc.2023.1073941] [PMID: 36816967]
[58]
Peng, L.; Liang, J.; Wang, Q.; Chen, G. A DNA damage repair gene signature associated with immunotherapy response and clinical prognosis in clear cell renal cell carcinoma. Front. Genet., 2022, 13, 798846.
[http://dx.doi.org/10.3389/fgene.2022.798846] [PMID: 35656315]
[59]
Wang, Q.; Li, Z.; Yang, J.; Peng, S.; Zhou, Q.; Yao, K.; Cai, W.; Xie, Z.; Qin, F.; Li, H.; Chen, X.; Li, K.; Huang, H. Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer. Cancer Biol. Med., 2022, 19(8), 1193-1210.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0550] [PMID: 34591415]
[60]
Huang, H.; Hua, Q. NEIL3 mediates lung cancer progression and modulates pi3k/akt/mtor signaling: A potential therapeutic target. Int. J. Genomics, 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/8348499] [PMID: 35535347]
[61]
Zhang, F.; Lu, J.; Yang, J.; Dai, Q.; Du, X.; Xu, Y.; Zhang, C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics, 2023, 75(1), 39-51.
[http://dx.doi.org/10.1007/s00251-022-01277-2] [PMID: 36114381]
[62]
Cantelmo, A.R.; Conradi, L.C.; Brajic, A.; Goveia, J.; Kalucka, J.; Pircher, A.; Chaturvedi, P.; Hol, J.; Thienpont, B.; Teuwen, L.A.; Schoors, S.; Boeckx, B.; Vriens, J.; Kuchnio, A.; Veys, K.; Cruys, B.; Finotto, L.; Treps, L.; Stav-Noraas, T.E.; Bifari, F.; Stapor, P.; Decimo, I.; Kampen, K.; De Bock, K.; Haraldsen, G.; Schoonjans, L.; Rabelink, T.; Eelen, G.; Ghesquière, B.; Rehman, J.; Lambrechts, D.; Malik, A.B.; Dewerchin, M.; Carmeliet, P. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell, 2016, 30(6), 968-985.
[http://dx.doi.org/10.1016/j.ccell.2016.10.006] [PMID: 27866851]
[63]
Matsumoto, K.; Noda, T.; Kobayashi, S.; Sakano, Y.; Yokota, Y.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Akita, H.; Gotoh, K.; Takeda, Y.; Tanemura, M.; Umeshita, K.; Doki, Y.; Eguchi, H. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma. Cancer Lett., 2021, 500, 29-40.
[http://dx.doi.org/10.1016/j.canlet.2020.12.011] [PMID: 33307155]
[64]
Othman, E.M.; Habib, H.A.; Zahran, M.E.; Amin, A.; Heeba, G.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 Pathways. Int. J. Mol. Sci., 2023, 24(16), 12651.
[http://dx.doi.org/10.3390/ijms241612651] [PMID: 37628836]
[65]
Bouabdallah, S.; Al-Maktoum, A.; Amin, A. Steroidal saponins: Naturally occurring compounds as inhibitors of the hallmarks of cancer. Cancers, 2023, 15(15), 3900.
[http://dx.doi.org/10.3390/cancers15153900] [PMID: 37568716]
[66]
Wu, C.X.; Zhao, W.P.; Kishi, H.; Dokan, J.; Jin, Z.X.; Wei, X.C.; Yokoyama, K.K.; Muraguchi, A. Activation of mouse RAG-2 promoter by Myc-associated zinc finger protein. Biochem. Biophys. Res. Commun., 2004, 317(4), 1096-1102.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.159] [PMID: 15094381]
[67]
Ray, A.; Dhar, S.; Ray, B.K. Control of VEGF expression in triple-negative breast carcinoma cells by suppression of SAF-1 transcription factor activity. Mol. Cancer Res., 2011, 9(8), 1030-1041.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0598] [PMID: 21665940]
[68]
Ray, A.; Ray, B.K. Induction of Ras by SAF -1/ MAZ through a feed-forward loop promotes angiogenesis in breast cancer. Cancer Med., 2015, 4(2), 224-234.
[http://dx.doi.org/10.1002/cam4.362] [PMID: 25449683]
[69]
Yao, Y.; Ma, J.; Xue, Y.; Wang, P.; Li, Z.; Li, Z.; Hu, Y.; Shang, X.; Liu, Y. MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol. Oncol., 2015, 9(3), 640-656.
[http://dx.doi.org/10.1016/j.molonc.2014.11.003] [PMID: 25487955]
[70]
Izzo, M.W.; Strachan, G.D.; Stubbs, M.C.; Hall, D.J. Transcriptional repression from the c-myc P2 promoter by the zinc finger protein ZF87/MAZ. J. Biol. Chem., 1999, 274(27), 19498-19506.
[http://dx.doi.org/10.1074/jbc.274.27.19498] [PMID: 10383467]
[71]
Su, J.M.; Lai, X.M.; Lan, K.H.; Li, C.P.; Chao, Y.; Yen, S.H.; Chang, F.Y.; Lee, S.D.; Lee, W.P. X protein of hepatitis B virus functions as a transcriptional corepressor on the human telomerase promoter. Hepatology, 2007, 46(2), 402-413.
[http://dx.doi.org/10.1002/hep.21675] [PMID: 17559154]
[72]
Lee, W.P.; Lan, K.H.; Li, C.P.; Chao, Y.; Lin, H.C.; Lee, S.D. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett., 2016, 375(1), 9-19.
[http://dx.doi.org/10.1016/j.canlet.2016.02.023] [PMID: 26902421]
[73]
Zheng, C.; Wu, H.; Jin, S.; Li, D.; Tan, S.; Zhu, X. Roles of Myc-associated zinc finger protein in malignant tumors. Asia Pac. J. Clin. Oncol., 2022, 18(6), 506-514.
[http://dx.doi.org/10.1111/ajco.13748] [PMID: 35098656]
[74]
Franz, H.; Greschik, H.; Willmann, D.; Ozretić, L.; Jilg, C.A.; Wardelmann, E.; Jung, M.; Buettner, R.; Schüle, R. The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget, 2015, 6(7), 4773-4789.
[http://dx.doi.org/10.18632/oncotarget.3000] [PMID: 25749382]
[75]
Zhao, X.; Ye, N.; Feng, X.; Ju, H.; Liu, R.; Lu, W. MicroRNA-29b-3p Inhibits the Migration and Invasion of Gastric Cancer Cells by Regulating the Autophagy-Associated Protein MAZ. OncoTargets Ther., 2021, 14, 3239-3249.
[http://dx.doi.org/10.2147/OTT.S274215] [PMID: 34040389]
[76]
Luo, W.; Zhu, X.; Liu, W.; Ren, Y.; Bei, C.; Qin, L.; Miao, X.; Tang, F.; Tang, G.; Tan, S. MYC associated zinc finger protein promotes the invasion and metastasis of hepatocellular carcinoma by inducing epithelial mesenchymal transition. Oncotarget, 2016, 7(52), 86420-86432.
[http://dx.doi.org/10.18632/oncotarget.13416] [PMID: 27861158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy