Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

Roles of AFAP1-AS1 in Gynecology and Urogenital System

Author(s): Xinyan Qiu, Yulin Huang, Lin Jin, Canying Yang and Jiwei Wang*

Volume 30, Issue 8, 2024

Published on: 12 February, 2024

Page: [639 - 647] Pages: 9

DOI: 10.2174/0113816128286229240129090915

Price: $65

Abstract

Background: Human disease onset and progression are strongly associated with aberrant long noncoding RNA (lncRNA) expression, highlighting the functional regulatory role of lncRNA. Actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a member of lncRNAs, is located on the antisense strand of Actin filament-associated protein 1 (AFAP1).

Methods: We conducted a comprehensive review of AFAP1-AS1's functions in gynecology and urogenital systems using the “PubMed” database.

Results: Our analysis reveals that AFAP1-AS1 is overexpressed and engages in the initiation and process of gynecological and urogenital diseases. The regulatory mechanisms employed by AFAP1-AS1 involve four major strategies: gene-level effects, competition for microRNA (miRNA) repression, protein binding, participation in signaling networks that influence cellular processes such as proliferative phenotype, migration, invasiveness, epithelial-mesenchymal transition (EMT), cycle regulation, drug resistance, and more. Furthermore, AFAP1-AS1 is implicated in guiding clinicopathological characteristics.

Conclusion: AFAP1-AS1 holds promise as a potent diagnostics and treatment option for gynecological and genitourinary systems in the future.

Keywords: LncRNA, AFAP1-AS1, regulatory mechanisms, biomarker, gynecology, urogenital system.

« Previous
[1]
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: LncRNA localization and function. J Cell Biol 2021; 220(2): e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[2]
Yan Y, Xu Z, Li Z, Sun L, Gong Z. An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front Mol Neurosci 2017; 10: 53.
[http://dx.doi.org/10.3389/fnmol.2017.00053] [PMID: 28293170]
[3]
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 2020; 18(1): 103.
[http://dx.doi.org/10.1186/s12958-020-00660-6] [PMID: 33126901]
[4]
Yang F, Lyu S, Dong S, Liu Y, Wang O, Zhang X. Expression profile analysis of long noncoding RNA in HER-2-enriched subtype breast cancer by next-generation sequencing and bioinformatics. OncoTargets Ther 2016; 9: 761-72.
[http://dx.doi.org/10.2147/OTT.S97664] [PMID: 26929647]
[5]
Tuluhong D, Dunzhu W, Wang J, et al. Prognostic value of differentially expressed LncRNAs in triple-negative breast cancer: A systematic review and meta-analysis. Crit Rev Eukaryot Gene Expr 2020; 30(5): 447-56.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2020035836] [PMID: 33389881]
[6]
Rodrigues de Bastos D, Nagai MA. In silico analyses identify lncRNAs: WDFY3-AS2, BDNF-AS and AFAP1-AS1 as potential prognostic factors for patients with triple-negative breast tumors. PLoS One 2020; 15(5): e0232284.
[http://dx.doi.org/10.1371/journal.pone.0232284] [PMID: 32401758]
[7]
Xi Y, Shi J, Li W, et al. Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes. BMC Genomics 2018; 19(1): 150.
[http://dx.doi.org/10.1186/s12864-018-4533-0] [PMID: 29458327]
[8]
Ma D, Chen C, Wu J, Wang H, Wu D. Up-regulated lncRNA AFAP1-AS1 indicates a poor prognosis and promotes carcinogenesis of breast cancer. Breast Cancer 2019; 26(1): 74-83.
[http://dx.doi.org/10.1007/s12282-018-0891-3] [PMID: 29974352]
[9]
Cai B, Wang X, Bu QA, et al. LncRNA AFAP1-AS1 knockdown represses cell proliferation, migration, and induced apoptosis in breast cancer by downregulating SEPT2 via sponging miR-497-5p. Cancer Biother Radiopharm 2022; 37(8): 662-72.
[http://dx.doi.org/10.1089/cbr.2020.3688] [PMID: 32955920]
[10]
Zhang X, Zhou Y, Mao F, Lin Y, Shen S, Sun Q. lncRNA AFAP1-AS1 promotes triple negative breast cancer cell proliferation and invasion via targeting miR-145 to regulate MTH1 expression. Sci Rep 2020; 10(1): 7662.
[http://dx.doi.org/10.1038/s41598-020-64713-x] [PMID: 32376943]
[11]
Zhang X, Li F, Zhou Y, et al. Long noncoding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple-negative breast cancer. Cell Death Dis 2021; 12(7): 627.
[http://dx.doi.org/10.1038/s41419-021-03917-z] [PMID: 34145213]
[12]
Zhang K, Liu P, Tang H, et al. AFAP1-AS1 promotes epithelial-mesenchymal transition and tumorigenesis through Wnt/β- catenin signaling pathway in triple-negative breast cancer. Front Pharmacol 2018; 9: 1248.
[http://dx.doi.org/10.3389/fphar.2018.01248] [PMID: 30505272]
[13]
Wu J, Xu W, Ma L, et al. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY) 2021; 13(14): 18191-222.
[http://dx.doi.org/10.18632/aging.203156] [PMID: 34289449]
[14]
Bo H, Fan L, Gong Z, et al. Upregulation and hypomethylation of lncRNA AFAP1-AS1 predicts a poor prognosis and promotes the migration and invasion of cervical cancer. Oncol Rep 2019; 41(4): 2431-9.
[http://dx.doi.org/10.3892/or.2019.7027] [PMID: 30816545]
[15]
Xia M, Duan LJ, Lu BN, Pang YZ, Pang ZR. LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin Med J 2021; 134(17): 2091-101.
[http://dx.doi.org/10.1097/CM9.0000000000001665] [PMID: 34334630]
[16]
Yang SL, Lin RX, Si LH, Cui MH, Zhang XW, Fan LM. Expression and functional role of long non-coding RNA AFAP1-AS1 in ovarian cancer. Eur Rev Med Pharmacol Sci 2016; 20(24): 5107-12.
[PMID: 28051261]
[17]
Liu B, Yan L, Chi Y, Sun Y, Yang X. Long non-coding RNA AFAP1-AS1 facilitates ovarian cancer progression by regulating the miR-107/PDK4 axis. J Ovarian Res 2021; 14(1): 60.
[http://dx.doi.org/10.1186/s13048-021-00808-x] [PMID: 33926489]
[18]
Zhong Y, Wang Y, Dang H, Wu X. LncRNA AFAP1-AS1 contributes to the progression of endometrial carcinoma by regulating miR-545-3p/VEGFA pathway. Mol Cell Probes 2020; 53: 101606.
[http://dx.doi.org/10.1016/j.mcp.2020.101606] [PMID: 32504788]
[19]
Zhang S, Zou Y, Tang X, et al. Silencing of AFAP1-AS1 lncRNA impairs cell proliferation and migration by epigenetically promoting DUSP5 expression in pre-eclampsia. J Cell Biochem 2021; 122(10): 1506-16.
[http://dx.doi.org/10.1002/jcb.30072] [PMID: 34192359]
[20]
Lin D, Huang Q, Wu R, et al. Long non-coding RNA AFAP1-AS1 promoting epithelial-mesenchymal transition of endometriosis is correlated with transcription factor ZEB1. Am J Reprod Immunol 2019; 81(1): e13074.
[http://dx.doi.org/10.1111/aji.13074] [PMID: 30506548]
[21]
Huan Q, Cheng SC, Du ZH, Ma HF, Li C. LncRNA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-β/Smad signaling via miR-424-5p. J Obstet Gynaecol Res 2021; 47(7): 2394-405.
[http://dx.doi.org/10.1111/jog.14801] [PMID: 33949053]
[22]
Wang X, Zhang M, Jiang L, Fang X, Zhang T. Exosomal AFAP1-AS1 binds to microRNA-15a-5p to promote the proliferation, migration, and invasion of ectopic endometrial stromal cells in endometriosis. Reprod Biol Endocrinol 2022; 20(1): 77.
[http://dx.doi.org/10.1186/s12958-022-00942-1] [PMID: 35513844]
[23]
Liu B, Jiang HY, Yuan T, et al. Long non-coding RNA AFAP1-AS1 facilitates prostate cancer progression by regulating miR-15b/IGF1R axis. Curr Pharm Des 2021; 27(41): 4261-9.
[http://dx.doi.org/10.2174/1381612827666210612052317] [PMID: 34126893]
[24]
Yang ZT, An F, Hu JD, Zhao WH. Long noncoding RNA AFAP1-AS1 accelerates the proliferation and metastasis of prostate cancer via inhibiting RBM5 expression. Eur Rev Med Pharmacol Sci 2019; 23(8): 3284-90.
[http://dx.doi.org/10.26355/eurrev_201904_17690] [PMID: 31081081]
[25]
Wang K, Sun H, Sun T, et al. Long non-coding RNA AFAP1-AS1 promotes proliferation and invasion in prostate cancer via targeting miR-512-3p. Gene 2020; 726: 144169.
[http://dx.doi.org/10.1016/j.gene.2019.144169] [PMID: 31669642]
[26]
Leng W, Liu Q, Zhang S, Sun D, Guo Y. LncRNA AFAP1-AS1 modulates the sensitivity of paclitaxel-resistant prostate cancer cells to paclitaxel via miR-195-5p/FKBP1A axis. Cancer Biol Ther 2020; 21(11): 1072-80.
[http://dx.doi.org/10.1080/15384047.2020.1829266] [PMID: 33138677]
[27]
Lan H, Zeng J, Chen G, Huang H. Survival prediction of kidney renal papillary cell carcinoma by comprehensive LncRNA characterization. Oncotarget 2017; 8(67): 110811-29.
[http://dx.doi.org/10.18632/oncotarget.22732] [PMID: 29340018]
[28]
Mu Z, Dong D, Wei N, et al. Silencing of lncRNA AFAP1-AS1 inhibits cell growth and metastasis in clear cell renal cell carcinoma. Oncol Res 2019; 27(6): 653-61.
[http://dx.doi.org/10.3727/096504018X15420748671075] [PMID: 30832752]
[29]
Gui JQ, Zhang C, Yang HB, Yu YW, Cui MR, Wang WS. LncRNA AFAP1-AS1 promotes proliferation ability and invasiveness of bladder cancer cells. Eur Rev Med Pharmacol Sci 2020; 24(17): 8747-55.
[http://dx.doi.org/10.26355/eurrev_202009_22813] [PMID: 32964963]
[30]
Naik H, Leung B, Laskin J, et al. Emotional distress and psychosocial needs in patients with breast cancer in British Columbia: Younger versus older adults. Breast Cancer Res Treat 2020; 179(2): 471-7.
[http://dx.doi.org/10.1007/s10549-019-05468-6] [PMID: 31630293]
[31]
Small W Jr, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis. Cancer 2017; 123(13): 2404-12.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[32]
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284-96.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[33]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[34]
Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia. Circ Res 2019; 124(7): 1094-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[35]
Mehedintu C, Plotogea MN, Ionescu S, Antonovici M. Endometriosis still a challenge. J Med Life 2014; 7(3): 349-57.
[PMID: 25408753]
[36]
Van Gorp T, Amant F, Neven P, Vergote I, Moerman P. Endometriosis and the development of malignant tumours of the pelvis: A review of literature. Best Pract Res Clin Obstet Gynaecol 2004; 18(2): 349-71.
[http://dx.doi.org/10.1016/j.bpobgyn.2003.03.001] [PMID: 15157647]
[37]
Carlo MI, Mukherjee S, Mandelker D, et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol 2018; 4(9): 1228-35.
[http://dx.doi.org/10.1001/jamaoncol.2018.1986] [PMID: 29978187]
[38]
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol 2017; 71(1): 96-108.
[http://dx.doi.org/10.1016/j.eururo.2016.06.010] [PMID: 27370177]
[39]
Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget 2016; 7(41): 67532-50.
[http://dx.doi.org/10.18632/oncotarget.11376] [PMID: 27556302]
[40]
Thomson DW, Dinger ME. Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet 2016; 17(5): 272-83.
[http://dx.doi.org/10.1038/nrg.2016.20] [PMID: 27040487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy