Research Article

Dissecting the Mechanisms of Intestinal Immune Homeostasis by Analyzing T-Cell Immune Response in Crohn's Disease and Colorectal Cancer

Author(s): Tianming Jiang, Jie Zheng, Nana Li, Xiaodong Li, Jixing He, Junde Zhou, Boshi Sun* and Qiang Chi*

Volume 24, Issue 5, 2024

Published on: 06 February, 2024

Page: [422 - 440] Pages: 19

DOI: 10.2174/0115665232294568240201073417

Price: $65

Abstract

Introduction: Crohn's disease (CD) and colorectal cancer (CRC) represent a group of intestinal disorders characterized by intricate pathogenic mechanisms linked to the disruption of intestinal immune homeostasis. Therefore, comprehending the immune response mechanisms in both categories of intestinal disorders is of paramount significance in the prevention and treatment of these debilitating intestinal ailments.

Method: IIn this study, we conducted single-cell analysis on paired samples obtained from primary colorectal tumors and individuals with Crohn's disease, which was aimed at deciphering the factors influencing the composition of the intestinal immune microenvironment. By aligning T cells across different tissues, we identified various T cell subtypes, such as γδ T cell, NK T cell, and regulatory T (Treg) cell, which maintained immune system homeostasis and were confirmed in enrichment analyses. Subsequently, we generated pseudo-time trajectories for subclusters of T cells in both syndromes to delineate their differentiation patterns and identify key driver genes

Result: Furthermore, cellular communication and transcription factor regulatory networks are all essential components of the intricate web of mechanisms that regulate intestinal immune homeostasis. The identified complex cellular interaction suggested potential T-lineage immunotherapeutic targets against epithelial cells with high copy number variation (CNV) levels in CD and CRC.

Conclusion: Finally, the analysis of regulon networks revealed several promising candidates for cell-specific transcription factors (TFs). This study focused on the immune molecular mechanism under intestinal diseases. It contributed to the novel insight of depicting a detailed immune landscape and revealing T-cell responding mechanisms in CD and CRC.

Keywords: Crohn's disease, colorectal cancer, immune microenvironment, scRNA-seq, T-cell responding, homeostasis.

Graphical Abstract
[1]
McDowell C, Farooq U, Haseeb M. Inflammatory Bowel Disease. Statpearls. Treasure Island 2023.
[2]
Ellul P, Schembri J, Baldacchino A, et al. Post-inflammatory polyp burden as a prognostic marker of disease-outcome in patients with inflammatory bowel disease. J Crohn’s Colitis 2023; 17(4): 489-96.
[http://dx.doi.org/10.1093/ecco-jcc/jjac169] [PMID: 36322687]
[3]
Dulai PS, Sandborn WJ, Gupta S. Colorectal cancer and dysplasia in inflammatory bowel disease: A review of disease epidemiology, pathophysiology, and management. Cancer Prev Res 2016; 9(12): 887-94.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0124] [PMID: 27679553]
[4]
Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990; 323(18): 1228-33.
[http://dx.doi.org/10.1056/NEJM199011013231802] [PMID: 2215606]
[5]
Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015; 372(15): 1441-52.
[http://dx.doi.org/10.1056/NEJMra1403718] [PMID: 25853748]
[6]
Jess T, Loftus EV Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: A population-based study from olmsted county, Minnesota. Gastroenterology 2006; 130(4): 1039-46.
[http://dx.doi.org/10.1053/j.gastro.2005.12.037] [PMID: 16618397]
[7]
Weismüller TJ, Wedemeyer J, Kubicka S, Strassburg CP, Manns MP. The challenges in primary sclerosing cholangitis – Aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol 2008; 48: S38-57.
[http://dx.doi.org/10.1016/j.jhep.2008.01.020] [PMID: 18304683]
[8]
Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G7-G17.
[http://dx.doi.org/10.1152/ajpgi.00079.2004] [PMID: 15194558]
[9]
Műzes G, Molnár B, Sipos F. Regulatory T cells in inflammatory bowel diseases and colorectal cancer. World J Gastroenterol 2012; 18(40): 5688-94.
[http://dx.doi.org/10.3748/wjg.v18.i40.5688] [PMID: 23155308]
[10]
Vaghari-Tabari M, Targhazeh N, Moein S, et al. From inflammatory bowel disease to colorectal cancer: What’s the role of miRNAs? Cancer Cell Int 2022; 22(1): 146.
[http://dx.doi.org/10.1186/s12935-022-02557-3] [PMID: 35410210]
[11]
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474(7351): 307-17.
[http://dx.doi.org/10.1038/nature10209] [PMID: 21677747]
[12]
Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 2009; 137(5): 1736-45.
[http://dx.doi.org/10.1053/j.gastro.2009.07.049] [PMID: 19632232]
[13]
Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 2022; 162(3): 715-730.e3.
[http://dx.doi.org/10.1053/j.gastro.2021.10.035] [PMID: 34757143]
[14]
Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017; 389(10080): 1741-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31711-1] [PMID: 27914655]
[15]
Ashton JJ, Boukas K, Davies J, et al. Ileal transcriptomic analysis in paediatric crohn’s disease reveals IL17- and NOD- signalling expression signatures in treatment-naïve patients and identifies epithelial cells driving differentially expressed genes. J Crohn’s Colitis 2021; 15(5): 774-86.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa236] [PMID: 33232439]
[16]
Lee HO, Hong Y, Etlioglu HE, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet 2020; 52(6): 594-603.
[http://dx.doi.org/10.1038/s41588-020-0636-z] [PMID: 32451460]
[17]
Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573-3587.e29.
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[18]
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72.
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[19]
Hu C, Li T, Xu Y, et al. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res 2023; 51(D1): D870-6.
[http://dx.doi.org/10.1093/nar/gkac947] [PMID: 36300619]
[20]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[21]
Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol 2019; 20(1): 185.
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[22]
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396-401.
[http://dx.doi.org/10.1126/science.1254257] [PMID: 24925914]
[23]
Chen K, Wang Y, Hou Y, et al. Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett 2022; 545: 215834.
[http://dx.doi.org/10.1016/j.canlet.2022.215834] [PMID: 35917973]
[24]
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381-6.
[http://dx.doi.org/10.1038/nbt.2859] [PMID: 24658644]
[25]
Garcia-Alonso L, Handfield LF, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet 2021; 53(12): 1698-711.
[http://dx.doi.org/10.1038/s41588-021-00972-2] [PMID: 34857954]
[26]
Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov 2021; 7(1): 331.
[http://dx.doi.org/10.1038/s41420-021-00663-1] [PMID: 34732701]
[27]
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: Single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083-6.
[http://dx.doi.org/10.1038/nmeth.4463] [PMID: 28991892]
[28]
Zheng Z, Yu T, Zhao X, Gao X, Zhao Y, Liu G. Intratumor heterogeneity: A new perspective on colorectal cancer research. Cancer Med 2020; 9(20): 7637-45.
[http://dx.doi.org/10.1002/cam4.3323] [PMID: 32853464]
[29]
Buikhuisen JY, Torang A, Medema JP. Exploring and modelling colon cancer inter-tumour heterogeneity: Opportunities and challenges. Oncogenesis 2020; 9(7): 66.
[http://dx.doi.org/10.1038/s41389-020-00250-6] [PMID: 32647253]
[30]
Lee RD, Munro SA, Knutson TP, LaRue RS, Heltemes-Harris LM, Farrar MA. Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat Commun 2021; 12(1): 6843.
[http://dx.doi.org/10.1038/s41467-021-27232-5] [PMID: 34824268]
[31]
Zhang C, Li D, Yu R, et al. Immune landscape of gastric carcinoma tumor microenvironment identifies a peritoneal relapse relevant immune signature. Front Immunol 2021; 12: 651033.
[http://dx.doi.org/10.3389/fimmu.2021.651033] [PMID: 34054812]
[32]
Li G, Zhang B, Hao J, et al. Identification of novel population-specific cell subsets in chinese ulcerative colitis patients using single-cell RNA sequencing. Cell Mol Gastroenterol Hepatol 2021; 12(1): 99-117.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.020] [PMID: 33545427]
[33]
Yi H, Li G, Long Y, et al. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene 2020; 39(28): 5152-64.
[http://dx.doi.org/10.1038/s41388-020-1351-z] [PMID: 32535615]
[34]
Wang H, Gong P, Chen T, et al. Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv Sci 2021; 8(8): 2004320.
[http://dx.doi.org/10.1002/advs.202004320] [PMID: 33898197]
[35]
Devlin JC, Axelrad J, Hine AM, et al. Single-cell transcriptional survey of ileal-anal pouch immune cells from ulcerative colitis patients. Gastroenterology 2021; 160(5): 1679-93.
[http://dx.doi.org/10.1053/j.gastro.2020.12.030] [PMID: 33359089]
[36]
Sathe A, Grimes SM, Lau BT, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res 2020; 26(11): 2640-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3231] [PMID: 32060101]
[37]
Wang R, Dang M, Harada K, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med 2021; 27(1): 141-51.
[http://dx.doi.org/10.1038/s41591-020-1125-8] [PMID: 33398161]
[38]
Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 2019; 178(3): 714-730.e22.
[http://dx.doi.org/10.1016/j.cell.2019.06.029] [PMID: 31348891]
[39]
Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70(3): 464-75.
[http://dx.doi.org/10.1136/gutjnl-2019-320368] [PMID: 32532891]
[40]
Fakih M, Ouyang C, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest 2019; 129(10): 4464-76.
[http://dx.doi.org/10.1172/JCI127046] [PMID: 31524634]
[41]
Okumura R, Takeda K. Maintenance of gut homeostasis by the mucosal immune system. Proc Jpn Acad, Ser B, Phys Biol Sci 2016; 92(9): 423-35.
[http://dx.doi.org/10.2183/pjab.92.423] [PMID: 27840390]
[42]
Hirsch D, Wangsa D, Zhu YJ, et al. Dynamics of genome alterations in crohn’s disease–associated colorectal carcinogenesis. Clin Cancer Res 2018; 24(20): 4997-5011.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0630] [PMID: 29967250]
[43]
Bonneville M, O’Brien RL, Born WK, Gammadelta T. γδ T cell effector functions: A blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467-78.
[http://dx.doi.org/10.1038/nri2781] [PMID: 20539306]
[44]
Zhang N, Bevan MJ. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011; 35(2): 161-8.
[http://dx.doi.org/10.1016/j.immuni.2011.07.010] [PMID: 21867926]
[45]
Kim M, Min YK, Jang J, Park H, Lee S, Lee CH. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer 2021; 9(7): e002503.
[http://dx.doi.org/10.1136/jitc-2021-002503] [PMID: 34253638]
[46]
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 2019; 17: 1-13.
[http://dx.doi.org/10.1016/j.csbj.2018.11.004] [PMID: 30581539]
[47]
Reis BS, Darcy PW, Khan IZ, et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022; 377(6603): 276-84.
[http://dx.doi.org/10.1126/science.abj8695] [PMID: 35857588]
[48]
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109-18.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[49]
Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018; 564(7735): 268-72.
[http://dx.doi.org/10.1038/s41586-018-0694-x] [PMID: 30479382]
[50]
Roda G, Jianyu X, Park MS, et al. Characterizing CEACAM5 interaction with CD8α and CD1d in intestinal homeostasis. Mucosal Immunol 2014; 7(3): 615-24.
[http://dx.doi.org/10.1038/mi.2013.80] [PMID: 24104458]
[51]
Saiz-Gonzalo G, Hanrahan N, Rossini V, et al. Regulation of CEACAM family members by IBD-associated triggers in intestinal epithelial cells, their correlation to inflammation and relevance to IBD pathogenesis. Front Immunol 2021; 12: 655960.
[http://dx.doi.org/10.3389/fimmu.2021.655960] [PMID: 34394073]
[52]
Cheng D, Semmens K, McManus E, et al. The nuclear transcription factor, TAF7, is a cytoplasmic regulator of protein synthesis. Sci Adv 2021; 7(50): eabi5751.
[http://dx.doi.org/10.1126/sciadv.abi5751] [PMID: 34890234]
[53]
Wang D, Diao H, Getzler AJ, et al. The transcription factor runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 2018; 48(4): 659-674.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.03.028] [PMID: 29669249]
[54]
Ha F, Khalil H. Crohn’s disease: A clinical update. Therap Adv Gastroenterol 2015; 8(6): 352-9.
[http://dx.doi.org/10.1177/1756283X15592585] [PMID: 26557891]
[55]
Kong L, Pokatayev V, Lefkovith A, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 2023; 56(2): 444-458.e5.
[http://dx.doi.org/10.1016/j.immuni.2023.01.002] [PMID: 36720220]
[56]
Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: A challenge for personalized medicine? Int J Mol Sci 2018; 19(12): 3733.
[http://dx.doi.org/10.3390/ijms19123733] [PMID: 30477151]
[57]
Fanelli GN, Dal Pozzo CA, Depetris I, et al. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20(1): 30.
[http://dx.doi.org/10.1186/s12935-020-1117-2] [PMID: 32015690]
[58]
Schönefeldt S, Wais T, Herling M, et al. The diverse roles of γδ T cells in cancer: From rapid immunity to aggressive lymphoma. Cancers 2021; 13(24): 6212.
[http://dx.doi.org/10.3390/cancers13246212] [PMID: 34944832]
[59]
Uldrich AP, Le Nours J, Pellicci DG, et al. CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14(11): 1137-45.
[http://dx.doi.org/10.1038/ni.2713] [PMID: 24076636]
[60]
De Rosa SC, Mitra DK, Watanabe N, Herzenberg LA, Herzenberg LA, Roederer M. Vδ1 and Vδ2 γδ T cells express distinct surface markers and might be developmentally distinct lineages. J Leukoc Biol 2001; 70(4): 518-26.
[http://dx.doi.org/10.1189/jlb.70.4.518] [PMID: 11590187]
[61]
Colombo MP, Piconese S. Regulatory T-cell inhibition versus depletion: The right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7(11): 880-7.
[http://dx.doi.org/10.1038/nrc2250] [PMID: 17957190]
[62]
Park M, Kang KW, Kim JW. The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46(1): 1-17.
[http://dx.doi.org/10.1007/s12272-023-01427-4] [PMID: 36645575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy