Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Systematic Review Article

Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review

Author(s): Kavya Singh*, Navjeet Kaur* and Ashish Prabhu

Volume 24, Issue 8, 2024

Published on: 02 February, 2024

Page: [737 - 753] Pages: 17

DOI: 10.2174/0115680266282179240124072121

Price: $65

Open Access Journals Promotions 2
Abstract

Background: SARS-CoV-2, the unique coronavirus that causes COVID-19, has wreaked damage around the globe, with victims displaying a wide range of difficulties that have encouraged medical professionals to look for innovative technical solutions and therapeutic approaches. Artificial intelligence-based methods have contributed a significant part in tackling complicated issues, and some institutions have been quick to embrace and tailor these solutions in response to the COVID-19 pandemic's obstacles. Here, in this review article, we have covered a few DL techniques for COVID-19 detection and diagnosis, as well as ML techniques for COVID-19 identification, severity classification, vaccine and drug development, mortality rate prediction, contact tracing, risk assessment, and public distancing. This review illustrates the overall impact of AI/ML tools on tackling and managing the outbreak.

Purpose: The focus of this research was to undertake a thorough evaluation of the literature on the part of Artificial Intelligence (AI) as a complete and efficient solution in the battle against the COVID-19 epidemic in the domains of detection and diagnostics of disease, mortality prediction and vaccine as well as drug development.

Methods: A comprehensive exploration of PubMed, Web of Science, and Science Direct was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations to find all possibly suitable papers conducted and made publicly available between December 1, 2019, and August 2023. COVID-19, along with AI-specific words, was used to create the query syntax.

Results: During the period covered by the search strategy, 961 articles were published and released online. Out of these, a total of 135 papers were chosen for additional investigation. Mortality rate prediction, early detection and diagnosis, vaccine as well as drug development, and lastly, incorporation of AI for supervising and controlling the COVID-19 pandemic were the four main topics focused entirely on AI applications used to tackle the COVID-19 crisis. Out of 135, 60 research papers focused on the detection and diagnosis of the COVID-19 pandemic. Next, 19 of the 135 studies applied a machine-learning approach for mortality rate prediction. Another 22 research publications emphasized the vaccine as well as drug development. Finally, the remaining studies were concentrated on controlling the COVID-19 pandemic by applying AI AI-based approach to it.

Conclusion: We compiled papers from the available COVID-19 literature that used AI-based methodologies to impart insights into various COVID-19 topics in this comprehensive study. Our results suggest crucial characteristics, data types, and COVID-19 tools that can aid in medical and translational research facilitation.

Keywords: Artificial intelligence, Deep learning, Machine learning, X-ray, COVID-19 and CT-scan images, Vaccine development, Drug research, Disease diagnostics.

« Previous
Graphical Abstract
[1]
Razai, M.S.; Doerholt, K.; Ladhani, S.; Oakeshott, P. Coronavirus disease 2019 (covid-19): A guide for UK GPs. BMJ, 2020, 368, m800.
[http://dx.doi.org/10.1136/bmj.m800] [PMID: 32144127]
[2]
Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J., 2019, 6(2), 94-98.
[http://dx.doi.org/10.7861/futurehosp.6-2-94] [PMID: 31363513]
[3]
Browning, L.; Colling, R.; Rakha, E.; Rajpoot, N.; Rittscher, J.; James, J.A.; Salto-Tellez, M.; Snead, D.R.J.; Verrill, C. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: The PathLAKE consortium perspective. J. Clin. Pathol., 2021, 74(7), 443-447.
[http://dx.doi.org/10.1136/jclinpath-2020-206854] [PMID: 32620678]
[4]
Estrada, M.A.R.; Ndoma, A. The uses of unmanned aerial vehicles –UAV’s- (or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Comput. Sci., 2019, 149, 375-383.
[http://dx.doi.org/10.1016/j.procs.2019.01.151]
[5]
Elaziz, M.A.; Hosny, K.M.; Salah, A.; Darwish, M.M.; Lu, S.; Sahlol, A.T. New machine learning method for image-based diagnosis of COVID-19. PLoS One, 2020, 15(6), e0235187.
[http://dx.doi.org/10.1371/journal.pone.0235187] [PMID: 32589673]
[6]
Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med., 2020, 43(2), 635-640.
[http://dx.doi.org/10.1007/s13246-020-00865-4] [PMID: 32524445]
[7]
Luo, J.; Cao, S.; Ding, N.; Liao, X.; Peng, L.; Xu, C. A deep learning method to assist with chronic atrophic gastritis diagnosis using white light images. Dig. Liver Dis., 2022, 54(11), 1513-1519.
[http://dx.doi.org/10.1016/j.dld.2022.04.025] [PMID: 35610166]
[8]
Luo, J.; Sun, Y.; Chi, J.; Liao, X.; Xu, C. A novel deep learning-based method for COVID-19 pneumonia detection from CT images. BMC Med. Inform. Decis. Mak., 2022, 22(1), 284.
[http://dx.doi.org/10.1186/s12911-022-02022-1] [PMID: 36324135]
[9]
Usman, M.; Gunjan, V.K.; Wajid, M.; Zubair, M.; Siddiquee, K.N. Speech as a biomarker for COVID-19 detection using machine learning. Comput. Intell. Neurosci., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/6093613] [PMID: 35444694]
[10]
Partila, P. Human stress detection from the speech in danger situation. In: Mobile Multimedia/Image Processing; Security, and Applications, 2019.
[http://dx.doi.org/10.1117/12.2521405]
[11]
Vaid, A.; Somani, S.; Russak, A.J.; De Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.; Richter, F.; Zhao, S.; Beckmann, N.D.; Naik, N.; Kia, A.; Timsina, P.; Lala, A.; Paranjpe, M.; Golden, E.; Danieletto, M.; Singh, M.; Meyer, D.; O’Reilly, P.F.; Huckins, L.; Kovatch, P.; Finkelstein, J.; Freeman, R.M.; Argulian, E.; Kasarskis, A.; Percha, B.; Aberg, J.A.; Bagiella, E.; Horowitz, C.R.; Murphy, B.; Nestler, E.J.; Schadt, E.E.; Cho, J.H.; Cordon-Cardo, C.; Fuster, V.; Charney, D.S.; Reich, D.L.; Bottinger, E.P.; Levin, M.A.; Narula, J.; Fayad, Z.A.; Just, A.C.; Charney, A.W.; Nadkarni, G.N.; Glicksberg, B.S. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation. J. Med. Internet Res., 2020, 22(11), e24018.
[http://dx.doi.org/10.2196/24018] [PMID: 33027032]
[12]
Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[13]
Abubaker Bagabir, S.; Ibrahim, N.K.; Abubaker Bagabir, H.; Hashem Ateeq, R. Covid-19 and artificial intelligence: Genome sequencing, drug development and vaccine discovery. J. Infect. Public Health, 2022, 15(2), 289-296.
[http://dx.doi.org/10.1016/j.jiph.2022.01.011] [PMID: 35078755]
[14]
Albahri, A.S.; Hamid, R.A.; Alwan, J.; Al-qays, Z.T.; Zaidan, A.A.; Zaidan, B.B.; Albahri, A.O.S.; AlAmoodi, A.H.; Khlaf, J.M.; Almahdi, E.M.; Thabet, E.; Hadi, S.M.; Mohammed, K.I.; Alsalem, M.A.; Al-Obaidi, J.R.; Madhloom, H.T. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. J. Med. Syst., 2020, 44(7), 122.
[http://dx.doi.org/10.1007/s10916-020-01582-x] [PMID: 32451808]
[15]
Kim, M.; Yun, J.; Cho, Y.; Shin, K.; Jang, R.; Bae, H.; Kim, N. Deep learning in medical imaging. Neurospine, 2019, 16(4), 657-668.
[http://dx.doi.org/10.14245/ns.1938396.198] [PMID: 31905454]
[16]
Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Programs Biomed., 2020, 196, 105608.
[http://dx.doi.org/10.1016/j.cmpb.2020.105608] [PMID: 32599338]
[17]
Mei, X.; Lee, H.C.; Diao, K.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M.; Bernheim, A.; Mani, V.; Calcagno, C.; Li, K.; Li, S.; Shan, H.; Lv, J.; Zhao, T.; Xia, J.; Long, Q.; Steinberger, S.; Jacobi, A.; Deyer, T.; Luksza, M.; Liu, F.; Little, B.P.; Fayad, Z.A.; Yang, Y. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat. Med., 2020, 26(8), 1224-1228.
[http://dx.doi.org/10.1038/s41591-020-0931-3] [PMID: 32427924]
[18]
Pereira, R.M.; Bertolini, D.; Teixeira, L.O.; Silla, C.N., Jr; Costa, Y.M.G. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Programs Biomed., 2020, 194, 105532.
[http://dx.doi.org/10.1016/j.cmpb.2020.105532] [PMID: 32446037]
[19]
Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Al-Turjman, F.; Pinheiro, P.R. CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access, 2020, 8, 91916-91923.
[http://dx.doi.org/10.1109/ACCESS.2020.2994762] [PMID: 34192100]
[20]
Gupta, A.; Anjum; Gupta, S.; Katarya, R. InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl. Soft Comput., 2021, 99, 106859.
[http://dx.doi.org/10.1016/j.asoc.2020.106859] [PMID: 33162872]
[21]
Hasan, A.M.; AL-Jawad, M.M.; Jalab, H.A.; Shaiba, H.; Ibrahim, R.W.; AL-Shamasneh, A.R. Classification of Covid-19 coronavirus, pneumonia and healthy lungs in CT scans using Q-deformed entropy and deep learning features. Entropy, 2020, 22(5), 517.
[http://dx.doi.org/10.3390/e22050517] [PMID: 33286289]
[22]
Das, D.; Santosh, K.C.; Pal, U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med., 2020, 43(3), 915-925.
[http://dx.doi.org/10.1007/s13246-020-00888-x] [PMID: 32588200]
[23]
Yi, P.H.; Kim, T.K.; Lin, C.T. Generalizability of deep learning tuberculosis classifier to COVID-19 chest radiographs: New tricks for an old algorithm? J. Thorac. Imaging, 2020, 35(4), W102-W104.
[http://dx.doi.org/10.1097/RTI.0000000000000532] [PMID: 32427650]
[24]
Wu, X.; Hui, H.; Niu, M.; Li, L.; Wang, L.; He, B.; Yang, X.; Li, L.; Li, H.; Tian, J.; Zha, Y. Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study. Eur. J. Radiol., 2020, 128, 109041.
[http://dx.doi.org/10.1016/j.ejrad.2020.109041] [PMID: 32408222]
[25]
Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed., 2020, 196, 105581.
[http://dx.doi.org/10.1016/j.cmpb.2020.105581] [PMID: 32534344]
[26]
Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med., 2020, 121, 103805.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103805] [PMID: 32568679]
[27]
Ucar, F.; Korkmaz, D. COVIDiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med. Hypotheses, 2020, 140, 109761.
[http://dx.doi.org/10.1016/j.mehy.2020.109761] [PMID: 32344309]
[28]
Vaid, S.; Kalantar, R.; Bhandari, M. Deep learning COVID-19 detection bias: Accuracy through artificial intelligence. Int. Orthop., 2020, 44(8), 1539-1542.
[http://dx.doi.org/10.1007/s00264-020-04609-7] [PMID: 32462314]
[29]
Ko, H.; Chung, H.; Kang, W.S.; Kim, K.W.; Shin, Y.; Kang, S.J.; Lee, J.H.; Kim, Y.J.; Kim, N.Y.; Jung, H.; Lee, J. COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation. J. Med. Internet Res., 2020, 22(6), e19569.
[http://dx.doi.org/10.2196/19569] [PMID: 32568730]
[30]
Dey, N.; Rajinikanth, V.; Fong, S.J.; Kaiser, M.S.; Mahmud, M. Social group optimization-assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cognit. Comput., 2020, 12(5), 1011-1023.
[http://dx.doi.org/10.1007/s12559-020-09751-3] [PMID: 32837591]
[31]
Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn., 2021, 39(15), 5682-5689.
[http://dx.doi.org/10.1080/07391102.2020.1788642] [PMID: 32619398]
[32]
Yang, S.; Jiang, L.; Cao, Z.; Wang, L.; Cao, J.; Feng, R.; Zhang, Z.; Xue, X.; Shi, Y.; Shan, F. Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: A pilot study. Ann. Transl. Med., 2020, 8(7), 450.
[http://dx.doi.org/10.21037/atm.2020.03.132] [PMID: 32395494]
[33]
El Asnaoui, K.; Chawki, Y. Using X-ray images and deep learning for automated detection of coronavirus disease. J. Biomol. Struct. Dyn., 2021, 39(10), 3615-3626.
[http://dx.doi.org/10.1080/07391102.2020.1767212] [PMID: 32397844]
[34]
Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 2020, 121, 103792.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103792] [PMID: 32568675]
[35]
Loey, M.; Smarandache, F.; Khalifa, N.E.M. Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on GAN and deep transfer learning. Symmetry, 2020, 12(4)
[http://dx.doi.org/10.3390/sym12040651]
[36]
Butt, C. Retracted article: Deep learning system to screen coronavirus disease 2019 pneumonia. Appl. Intell., 2020.
[37]
Saiz, F.; Barandiaran, I. COVID-19 detection in chest X-ray images using a deep learning approach. Int. J. Interact. Multimed., 2020, 6(2), 4.
[http://dx.doi.org/10.9781/ijimai.2020.04.003]
[38]
Ni, Q.; Sun, Z.Y.; Qi, L.; Chen, W.; Yang, Y.; Wang, L.; Zhang, X.; Yang, L.; Fang, Y.; Xing, Z.; Zhou, Z.; Yu, Y.; Lu, G.M.; Zhang, L.J. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur. Radiol., 2020, 30(12), 6517-6527.
[http://dx.doi.org/10.1007/s00330-020-07044-9] [PMID: 32617690]
[39]
Wang, S.; Zha, Y.; Li, W.; Wu, Q.; Li, X.; Niu, M.; Wang, M.; Qiu, X.; Li, H.; Yu, H.; Gong, W.; Bai, Y.; Li, L.; Zhu, Y.; Wang, L.; Tian, J. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur. Respir. J., 2020, 56(2), 2000775.
[http://dx.doi.org/10.1183/13993003.00775-2020] [PMID: 32444412]
[40]
Rahimzadeh, M.; Attar, A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform. Med. Unlocked., 2020, 19, 100360.
[http://dx.doi.org/10.1016/j.imu.2020.100360] [PMID: 32501424]
[41]
Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Singh, V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals, 2020, 138, 109944.
[http://dx.doi.org/10.1016/j.chaos.2020.109944] [PMID: 32536759]
[42]
Ardakani, A.A.; Kanafi, A.R.; Acharya, U.R.; Khadem, N.; Mohammadi, A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med., 2020, 121, 103795.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103795] [PMID: 32568676]
[43]
Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; Cao, K.; Liu, D.; Wang, G.; Xu, Q.; Fang, X.; Zhang, S.; Xia, J.; Xia, J. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology, 2020, 296(2), E65-E71.
[http://dx.doi.org/10.1148/radiol.2020200905] [PMID: 32191588]
[44]
Li, J.; Long, X.; Wang, X.; Fang, F.; Lv, X.; Zhang, D.; Sun, Y.; Hu, S.; Lin, Z.; Xiong, N. Radiology indispensable for tracking COVID-19. Diagn. Interv. Imaging, 2021, 102(2), 69-75.
[http://dx.doi.org/10.1016/j.diii.2020.11.008] [PMID: 33281082]
[45]
Song, J.; Wang, H.; Liu, Y.; Wu, W.; Dai, G.; Wu, Z.; Zhu, P.; Zhang, W.; Yeom, K.W.; Deng, K. End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(11), 2516-2524.
[http://dx.doi.org/10.1007/s00259-020-04929-1] [PMID: 32567006]
[46]
Arias-Garzón, D.; Alzate-Grisales, J.A.; Orozco-Arias, S.; Arteaga-Arteaga, H.B.; Bravo-Ortiz, M.A.; Mora-Rubio, A.; Saborit-Torres, J.M.; Serrano, J.Á.M.; de la Iglesia Vayá, M.; Cardona-Morales, O.; Tabares-Soto, R. COVID-19 detection in X-ray images using convolutional neural networks. Machine Learning with Applications, 2021, 6, 100138.
[http://dx.doi.org/10.1016/j.mlwa.2021.100138] [PMID: 34939042]
[47]
Das, A.K.; Ghosh, S.; Thunder, S.; Dutta, R.; Agarwal, S.; Chakrabarti, A. Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl., 2021, 24(3), 1111-1124.
[http://dx.doi.org/10.1007/s10044-021-00970-4]
[48]
Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Jamalipour Soufi, G. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal., 2020, 65, 101794.
[http://dx.doi.org/10.1016/j.media.2020.101794] [PMID: 32781377]
[49]
Duran-Lopez, L.; Dominguez-Morales, J.P.; Corral-Jaime, J.; Vicente-Diaz, S.; Linares-Barranco, A. COVID-XNet: A custom deep learning system to diagnose and locate COVID-19 in chest X-ray images. Appl. Sci., 2020, 10(16), 5683.
[http://dx.doi.org/10.3390/app10165683]
[50]
Jain, R.; Gupta, M.; Taneja, S.; Hemanth, D.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell., 2021, 51(3), 1690-1700.
[http://dx.doi.org/10.1007/s10489-020-01902-1] [PMID: 34764553]
[51]
Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Lozano Rizk, J.E. Deep-learning based detection of COVID-19 using lung ultrasound imagery. PLoS One, 2021, 16(8), e0255886.
[http://dx.doi.org/10.1371/journal.pone.0255886] [PMID: 34388187]
[52]
Abdul Salam, M.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS One, 2021, 16(6), e0252573.
[http://dx.doi.org/10.1371/journal.pone.0252573] [PMID: 34101762]
[53]
Guan, X.; Zhang, B.; Fu, M.; Li, M.; Yuan, X.; Zhu, Y.; Peng, J.; Guo, H.; Lu, Y. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: Results from a retrospective cohort study. Ann. Med., 2021, 53(1), 257-266.
[http://dx.doi.org/10.1080/07853890.2020.1868564] [PMID: 33410720]
[54]
Phankokkruad, M. COVID-19 pneumonia detection in chest X-ray images using transfer learning of convolutional neural networks Proceedings of the 3rd International Conference on Data Science and Information Technology, 2020, pp. 147-152.
[http://dx.doi.org/10.1145/3414274.3414496]
[55]
Cohen, J.P.; Dao, L.; Roth, K.; Morrison, P.; Bengio, Y.; Abbasi, A.F.; Shen, B.; Mahsa, H.K.; Ghassemi, M.; Li, H.; Duong, T. Predicting COVID-19 pneumonia severity on chest X-ray with deep learning. Cureus, 2020, 12(7), e9448.
[http://dx.doi.org/10.7759/cureus.9448] [PMID: 32864270]
[56]
Yasin, R.; Gouda, W. Chest X-ray findings monitoring COVID-19 disease course and severity. Egypt. J. Radiol. Nucl. Med., 2020, 51(1)
[57]
Imran, A.; Posokhova, I.; Qureshi, H.N.; Masood, U.; Riaz, M.S.; Ali, K.; John, C.N.; Hussain, M.D.I.; Nabeel, M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform. Med. Unlocked., 2020, 20, 100378.
[http://dx.doi.org/10.1016/j.imu.2020.100378] [PMID: 32839734]
[58]
Schuller, B.W.; Schuller, D.M.; Qian, K.; Liu, J.; Zheng, H.; Li, X. COVID-19 and computer audition: An overview on what speech & sound analysis could contribute in the SARS-CoV-2 corona crisis. Frontiers in Digital Health, 2021, 3, 564906.
[http://dx.doi.org/10.3389/fdgth.2021.564906] [PMID: 34713079]
[59]
Brown, C. Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3474-3484.
[http://dx.doi.org/10.1145/3394486.3412865]
[60]
Al Hossain, F.; Lover, A.A.; Corey, G.A.; Reich, N.G.; Rahman, T. FluSense. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2020, 4(1), 1-28.
[http://dx.doi.org/10.1145/3381014] [PMID: 35846237]
[61]
Chowdhury, N.K.; Kabir, M.A.; Rahman, M.M.; Islam, S.M.S. Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method. Comput. Biol. Med., 2022, 145, 105405.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105405] [PMID: 35318171]
[62]
Nallanthighal, V.S.; Härmä, A.; Strik, H. Deep sensing of breathing signal during conversational speech. In: Interspeech 2019; , 2019; pp. 4110-4114.
[http://dx.doi.org/10.21437/Interspeech.2019-1796]
[63]
Chadaga, K.; Prabhu, S.; Vivekananda, B.K.; Niranjana, S.; Umakanth, S. Battling COVID-19 using machine learning: A review. Cogent Eng., 2021, 8(1), 1958666.
[http://dx.doi.org/10.1080/23311916.2021.1958666]
[64]
Nayak, S.S.; Darji, A.D.; Shah, P.K. Machine learning approach for detecting Covid-19 from speech signal using Mel frequency magnitude coefficient. Signal Image Video Process., 2023, 17(6), 3155-3162.
[http://dx.doi.org/10.1007/s11760-023-02537-8] [PMID: 37362229]
[65]
Hemdan, E.E.; El-Shafai, W.; Sayed, A. CR19: A framework for preliminary detection of COVID-19 in cough audio signals using machine learning algorithms for automated medical diagnosis applications. J. Ambient Intell. Humaniz. Comput., 2022, 1-13.
[PMID: 35126765]
[66]
Pahar, M.; Klopper, M.; Warren, R.; Niesler, T. COVID-19 cough classification using machine learning and global smartphone recordings. Comput. Biol. Med., 2021, 135, 104572.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104572] [PMID: 34182331]
[67]
Deshpande, G.; Batliner, A.; Schuller, B.W. AI-Based human audio processing for COVID-19: A comprehensive overview. Pattern Recognit., 2022, 122, 108289.
[http://dx.doi.org/10.1016/j.patcog.2021.108289] [PMID: 34483372]
[68]
Pentakota, P.; Rudraraju, G.; Sripada, N.R.; Mamidgi, B.; Gottipulla, C.; Jalukuru, C.; Palreddy, S.D.; Bhoge, N.K.R.; Firmal, P.; Yechuri, V.; Jain, M.; Peddireddi, V.S.; Bhimarasetty, D.M.; Sreenivas, S.; Prasad K, K.L.; Joshi, N.; Vijayan, S.; Turaga, S.; Avasarala, V. Screening COVID-19 by Swaasa AI platform using cough sounds: A cross-sectional study. Sci. Rep., 2023, 13(1), 18284.
[http://dx.doi.org/10.1038/s41598-023-45104-4] [PMID: 37880351]
[69]
Trivedy, S.; Goyal, M.; Mohapatra, P.R.; Mukherjee, A. Design and development of smartphone-enabled spirometer with a disease classification system using convolutional neural network. IEEE Trans. Instrum. Meas., 2020, 69(9), 7125-7135.
[http://dx.doi.org/10.1109/TIM.2020.2977793]
[70]
Thomas, S.; Abraham, A.; Baldwin, J.; Piplani, S.; Petrovsky, N. Artificial intelligence in vaccine and drug design. Methods Mol. Biol., 2022, 2410, 131-146.
[http://dx.doi.org/10.1007/978-1-0716-1884-4_6] [PMID: 34914045]
[71]
Pahikkala, T.; Airola, A.; Pietilä, S.; Shakyawar, S.; Szwajda, A.; Tang, J.; Aittokallio, T. Toward more realistic drug-target interaction predictions. Brief. Bioinform., 2015, 16(2), 325-337.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[72]
Lv, H.; Shi, L.; Berkenpas, J.W.; Dao, F.Y.; Zulfiqar, H.; Ding, H.; Zhang, Y.; Yang, L.; Cao, R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform., 2021, 22(6), bbab320.
[http://dx.doi.org/10.1093/bib/bbab320] [PMID: 34410360]
[73]
Floresta, G.; Zagni, C.; Gentile, D.; Patamia, V.; Rescifina, A. Artificial intelligence technologies for COVID-19 de novo drug design. Int. J. Mol. Sci., 2022, 23(6), 3261.
[http://dx.doi.org/10.3390/ijms23063261] [PMID: 35328682]
[74]
Santos, S.S.; Torres, M.; Galeano, D.; Sánchez, M.M.; Cernuzzi, L.; Paccanaro, A. Machine learning and network medicine approaches for drug repositioning for COVID-19. Patterns, 2022, 3(1), 100396.
[http://dx.doi.org/10.1016/j.patter.2021.100396] [PMID: 34778851]
[75]
Zhang, H.; Saravanan, K.M.; Yang, Y.; Hossain, M.T.; Li, J.; Ren, X.; Pan, Y.; Wei, Y. Deep learning based drug screening for novel coronavirus 2019-nCov. Interdiscip. Sci., 2020, 12(3), 368-376.
[http://dx.doi.org/10.1007/s12539-020-00376-6] [PMID: 32488835]
[76]
Jha, N.; Prashar, D.; Rashid, M.; Shafiq, M.; Khan, R.; Pruncu, C.I.; Tabrez Siddiqui, S.; Saravana Kumar, M. Deep learning approach for discovery of in silico drugs for combating COVID-19. J. Healthc. Eng., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/6668985] [PMID: 34326978]
[77]
Jin, W.; Stokes, J.M.; Eastman, R.T.; Itkin, Z.; Zakharov, A.V.; Collins, J.J.; Jaakkola, T.S.; Barzilay, R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl. Acad. Sci. USA, 2021, 118(39), e2105070118.
[http://dx.doi.org/10.1073/pnas.2105070118] [PMID: 34526388]
[78]
Rajput, A.; Thakur, A.; Mukhopadhyay, A.; Kamboj, S.; Rastogi, A.; Gautam, S.; Jassal, H.; Kumar, M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput. Struct. Biotechnol. J., 2021, 19, 3133-3148.
[http://dx.doi.org/10.1016/j.csbj.2021.05.037] [PMID: 34055238]
[79]
Ma, C.; Yao, Z.; Zhang, Q.; Zou, X. Quantitative integration of radiomic and genomic data improves survival prediction of low-grade glioma patients. Math. Biosci. Eng., 2021, 18(1), 727-744.
[http://dx.doi.org/10.3934/mbe.2021039] [PMID: 33525116]
[80]
Abdulaal, A.; Patel, A.; Charani, E.; Denny, S.; Mughal, N.; Moore, L. Prognostic modeling of COVID-19 using artificial intelligence in the United Kingdom: Model development and validation. J. Med. Internet Res., 2020, 22(8), e20259.
[http://dx.doi.org/10.2196/20259] [PMID: 32735549]
[81]
Abdulaal, A.; Patel, A.; Charani, E.; Denny, S.; Alqahtani, S.A.; Davies, G.W.; Mughal, N.; Moore, L.S.P. Comparison of deep learning with regression analysis in creating predictive models for SARS-CoV-2 outcomes. BMC Med. Inform. Decis. Mak., 2020, 20(1), 299.
[http://dx.doi.org/10.1186/s12911-020-01316-6] [PMID: 33213435]
[82]
Ko, H.; Chung, H.; Kang, W.S.; Park, C.; Kim, D.W.; Kim, S.E.; Chung, C.R.; Ko, R.E.; Lee, H.; Seo, J.H.; Choi, T.Y.; Jaimes, R.; Kim, K.W.; Lee, J. An artificial intelligence model to predict the mortality of COVID-19 patients at hospital admission time using routine blood samples: Development and validation of an ensemble model. J. Med. Internet Res., 2020, 22(12), e25442.
[http://dx.doi.org/10.2196/25442] [PMID: 33301414]
[83]
Song, Y.; Zhang, M.; Yin, L.; Wang, K.; Zhou, Y.; Zhou, M.; Lu, Y. COVID-19 treatment: Close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int. J. Antimicrob. Agents, 2020, 56(2), 106080.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106080] [PMID: 32634603]
[84]
Booth, A.L.; Abels, E.; McCaffrey, P. Development of a prognostic model for mortality in COVID-19 infection using machine learning. Mod. Pathol., 2021, 34(3), 522-531.
[http://dx.doi.org/10.1038/s41379-020-00700-x] [PMID: 33067522]
[85]
Li, Y.; Horowitz, M.A.; Liu, J.; Chew, A.; Lan, H.; Liu, Q.; Sha, D.; Yang, C. Individual-level fatality prediction of COVID-19 patients using AI methods. Front. Public Health, 2020, 8, 587937.
[http://dx.doi.org/10.3389/fpubh.2020.587937] [PMID: 33102426]
[86]
Zhu, J.S.; Ge, P.; Jiang, C.; Zhang, Y.; Li, X.; Zhao, Z.; Zhang, L.; Duong, T.Q. Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients. J. Am. Coll. Emerg. Physicians Open, 2020, 1(6), 1364-1373.
[http://dx.doi.org/10.1002/emp2.12205] [PMID: 32838390]
[87]
Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q.; Zhang, J.; Wang, X.; Chen, F.; Geng, Z.; Xiong, L.; Zhou, H.; Guo, Y.; Zeng, Y.; Shi, H.; Wang, L.; Xue, Y.; Wang, Z. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12), 1197-1207.
[http://dx.doi.org/10.1038/s41551-020-00633-5] [PMID: 33208927]
[88]
Yu, L.; Halalau, A.; Dalal, B.; Abbas, A.E.; Ivascu, F.; Amin, M.; Nair, G.B. Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19. PLoS One, 2021, 16(4), e0249285.
[http://dx.doi.org/10.1371/journal.pone.0249285] [PMID: 33793600]
[89]
Gao, Y.; Cai, G.Y.; Fang, W.; Li, H.Y.; Wang, S.Y.; Chen, L.; Yu, Y.; Liu, D.; Xu, S.; Cui, P.F.; Zeng, S.Q.; Feng, X.X.; Yu, R.D.; Wang, Y.; Yuan, Y.; Jiao, X.F.; Chi, J.H.; Liu, J.H.; Li, R.Y.; Zheng, X.; Song, C.Y.; Jin, N.; Gong, W.J.; Liu, X.Y.; Huang, L.; Tian, X.; Li, L.; Xing, H.; Ma, D.; Li, C.R.; Ye, F.; Gao, Q.L. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat. Commun., 2020, 11(1), 5033.
[http://dx.doi.org/10.1038/s41467-020-18684-2] [PMID: 33024092]
[90]
Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-Calderón, C.L.; Robinson, K.; Schneider, M.; Stein, B.; Estirado, A.; a Beccara, L.; Canino, R.; Dal Bello, M.; Pezzetti, F.; Pan, A. COVID-19 mortality risk assessment: An international multi-center study. PLoS One, 2020, 15(12), e0243262.
[http://dx.doi.org/10.1371/journal.pone.0243262] [PMID: 33296405]
[91]
An, C.; Lim, H.; Kim, D.W.; Chang, J.H.; Choi, Y.J.; Kim, S.W. Machine learning prediction for mortality of patients diagnosed with COVID-19: A nationwide Korean cohort study. Sci. Rep., 2020, 10(1), 18716.
[http://dx.doi.org/10.1038/s41598-020-75767-2] [PMID: 33127965]
[92]
Vaid, A.; Jaladanki, S.K.; Xu, J.; Teng, S.; Kumar, A.; Lee, S.; Somani, S.; Paranjpe, I.; De Freitas, J.K.; Wanyan, T.; Johnson, K.W.; Bicak, M.; Klang, E.; Kwon, Y.J.; Costa, A.; Zhao, S.; Miotto, R.; Charney, A.W.; Böttinger, E.; Fayad, Z.A.; Nadkarni, G.N.; Wang, F.; Glicksberg, B.S. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach. JMIR Med. Inform., 2021, 9(1), e24207.
[http://dx.doi.org/10.2196/24207] [PMID: 33400679]
[93]
Hu, C.; Liu, Z.; Jiang, Y.; Shi, O.; Zhang, X.; Xu, K.; Suo, C.; Wang, Q.; Song, Y.; Yu, K.; Mao, X.; Wu, X.; Wu, M.; Shi, T.; Jiang, W.; Mu, L.; Tully, D.C.; Xu, L.; Jin, L.; Li, S.; Tao, X.; Zhang, T.; Chen, X. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int. J. Epidemiol., 2021, 49(6), 1918-1929.
[http://dx.doi.org/10.1093/ije/dyaa171] [PMID: 32997743]
[94]
Stachel, A.; Daniel, K.; Ding, D.; Francois, F.; Phillips, M.; Lighter, J. Development and validation of a machine learning model to predict mortality risk in patients with COVID-19. BMJ Health Care Inform., 2021, 28(1), e100235.
[http://dx.doi.org/10.1136/bmjhci-2020-100235] [PMID: 33962987]
[95]
Bengio, Y.; Ippolito, D.; Janda, R.; Jarvie, M.; Prud’homme, B.; Rousseau, J.F.; Sharma, A.; Yu, Y.W. Inherent privacy limitations of decentralized contact tracing apps. J. Am. Med. Inform. Assoc., 2021, 28(1), 193-195.
[http://dx.doi.org/10.1093/jamia/ocaa153] [PMID: 32584990]
[96]
Maghdid, H.S.; Ghafoor, K.Z. A smartphone enabled approach to manage COVID-19 lockdown and economic crisis. SN Computer Science, 2020, 1(5), 271.
[http://dx.doi.org/10.1007/s42979-020-00290-0] [PMID: 33063052]
[97]
Hang, C.N.; Tsai, Y-Z.; Yu, P-D.; Chen, J.; Tan, C-W. Privacy-enhancing digital contact tracing with machine learning for pandemic response: A comprehensive review. Big Data and Cognitive Computing, 2023, 7(2), 108.
[http://dx.doi.org/10.3390/bdcc7020108]
[98]
Shen, J.; Ghatti, S.; Levkov, N.R.; Shen, H.; Sen, T.; Rheuban, K.; Enfield, K.; Facteau, N.R.; Engel, G.; Dowdell, K. A survey of COVID-19 detection and prediction approaches using mobile devices, AI, and telemedicine. Front. Artif. Intell., 2022, 5, 1034732.
[http://dx.doi.org/10.3389/frai.2022.1034732] [PMID: 36530356]
[99]
Song, H. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete & Continuous Dynamical Systems - B, 2021.
[100]
Torky, M.; Goda, E.; Snasel, V.; Hassanien, A.E. COVID-19 contact tracing and detection-based on blockchain technology. Informatics, 2021, 8(4), 72.
[http://dx.doi.org/10.3390/informatics8040072]
[101]
Klar, R.; Lanzerath, D. The ethics of COVID-19 tracking apps – challenges and voluntariness. Res. Ethics Rev., 2020, 16(3-4), 1-9.
[http://dx.doi.org/10.1177/1747016120943622]
[102]
Li, T.; Cobb, C.; Yang, J.J.; Baviskar, S.; Agarwal, Y.; Li, B.; Bauer, L.; Hong, J.I. What makes people install a COVID-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention. Pervasive Mobile Comput., 2021, 75, 101439.
[http://dx.doi.org/10.1016/j.pmcj.2021.101439] [PMID: 36569467]
[103]
Dubey, S.; Biswas, P.; Ghosh, R.; Chatterjee, S.; Dubey, M.J.; Chatterjee, S.; Lahiri, D.; Lavie, C.J. Psychosocial impact of COVID-19. Diabetes Metab. Syndr., 2020, 14(5), 779-788.
[http://dx.doi.org/10.1016/j.dsx.2020.05.035] [PMID: 32526627]
[104]
Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The impact of COVID-19 epidemic declaration on psychological consequences: A study on active weibo users. Int. J. Environ. Res. Public Health, 2020, 17(6), 2032.
[http://dx.doi.org/10.3390/ijerph17062032] [PMID: 32204411]
[105]
Pirouz, B.; Shaffiee Haghshenas, S.; Shaffiee Haghshenas, S.; Piro, P. Investigating a serious challenge in the sustainable development process: Analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability, 2020, 12(6), 2427.
[http://dx.doi.org/10.3390/su12062427]
[106]
Yadaw, A.S. Clinical predictors of COVID-19 mortality. medRxiv, 2020.
[107]
Ji, M.; Yuan, L.; Shen, W.; Lv, J.; Li, Y.; Chen, J.; Zhu, C.; Liu, B.; Liang, Z.; Lin, Q.; Xie, W.; Li, M.; Chen, Z.; Lu, X.; Ding, Y.; An, P.; Zhu, S.; Gao, M.; Ni, H.; Hu, L.; Shi, G.; Shi, L.; Dong, W. A predictive model for disease progression in non-severely ill patients with coronavirus disease 2019. Eur. Respir. J., 2020, 56(1), 2001234.
[http://dx.doi.org/10.1183/13993003.01234-2020] [PMID: 32430433]
[108]
Jiang, X.; Coffee, M.; Bari, A.; Wang, J.; Jiang, X.; Huang, J.; Shi, J.; Dai, J.; Cai, J.; Zhang, T.; Wu, Z.; He, G.; Huang, Y. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput. Mater. Continua, 2020, 62(3), 537-551.
[http://dx.doi.org/10.32604/cmc.2020.010691]
[109]
Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; Ye, L.; Gao, M.; Zhou, Z.; Li, L.; Wang, J.; Yang, Z.; Cai, H.; Xu, J.; Yang, L.; Cai, W.; Xu, W.; Wu, S.; Zhang, W.; Jiang, S.; Zheng, L.; Zhang, X.; Wang, L.; Lu, L.; Li, J.; Yin, H.; Wang, W.; Li, O.; Zhang, C.; Liang, L.; Wu, T.; Deng, R.; Wei, K.; Zhou, Y.; Chen, T.; Lau, J.Y.N.; Fok, M.; He, J.; Lin, T.; Li, W.; Wang, G. Clinically applicable AI System for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell, 2020, 181(6), 1423-1433.e11.
[http://dx.doi.org/10.1016/j.cell.2020.04.045] [PMID: 32416069]
[110]
Mashamba-Thompson, T.P.; Crayton, E.D. Blockchain and artificial intelligence technology for novel coronavirus disease-19 self-testing. Diagnostics, 2020, 10(4), 198.
[http://dx.doi.org/10.3390/diagnostics10040198] [PMID: 32244841]
[111]
Srinivasa Rao, A.S.R.; Vazquez, J.A. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infect. Control Hosp. Epidemiol., 2020, 41(7), 826-830.
[http://dx.doi.org/10.1017/ice.2020.61] [PMID: 32122430]
[112]
Yang, D.; Yurtsever, E.; Renganathan, V.; Redmill, K.A.; Özgüner, Ü. A vision-based social distancing and critical density detection system for COVID-19. Sensors, 2021, 21(13), 4608.
[http://dx.doi.org/10.3390/s21134608] [PMID: 34283141]
[113]
Ahmed, I.; Ahmad, M.; Rodrigues, J.J.P.C.; Jeon, G.; Din, S. A deep learning-based social distance monitoring framework for COVID-19. Sustain Cities Soc., 2021, 65, 102571.
[http://dx.doi.org/10.1016/j.scs.2020.102571] [PMID: 33163330]
[114]
Sahoo, S.K.; Palai, G.; Altahan, B.R.; Ahammad, S.H.; Priya, P.P.; Hossain, M.A.; Rashed, A.N.Z. An optimized deep learning approach for the prediction of social distance among individuals in public places during pandemic. New Gener. Comput., 2023, 41(1), 135-154.
[http://dx.doi.org/10.1007/s00354-022-00202-1] [PMID: 36620356]
[115]
Qin, B.; Li, D. Identifying facemask-wearing condition using image super-resolution with classification network to prevent COVID-19. Sensors, 2020, 20(18), 5236.
[http://dx.doi.org/10.3390/s20185236] [PMID: 32937867]
[116]
Sesagiri Raamkumar, A.; Tan, S.G.; Wee, H.L. Use of health belief model-based deep learning classifiers for COVID-19 social media content to examine public perceptions of physical distancing: Model development and case study. JMIR Public Health Surveill., 2020, 6(3), e20493.
[http://dx.doi.org/10.2196/20493] [PMID: 32540840]
[117]
Sahoo, S.K. A hybrid deep learning based approach for the prediction of social distancing among individuals in public places during Covid19 pandemic. J. Intell. Fuzzy Syst., 2023, 44(1), 981-999.
[http://dx.doi.org/10.3233/JIFS-221174]
[118]
Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr., 2020, 14(4), 337-339.
[http://dx.doi.org/10.1016/j.dsx.2020.04.012] [PMID: 32305024]
[119]
Chen, T.; Peng, L.; Yin, X.; Rong, J.; Yang, J.; Cong, G. Analysis of user satisfaction with online education platforms in China during the COVID-19 pandemic. Healthcare, 2020, 8(3), 200.
[http://dx.doi.org/10.3390/healthcare8030200] [PMID: 32645911]
[120]
Minetto, R.; Segundo, M.P.; Rotich, G.; Sarkar, S. Measuring human and economic activity from satellite imagery to support city-scale decision-making during COVID-19 pandemic. IEEE Trans. Big Data, 2021, 7(1), 56-68.
[http://dx.doi.org/10.1109/TBDATA.2020.3032839] [PMID: 37981992]
[121]
Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.A. Updating the neural network sediment load models using different sensitivity analysis methods: A regional application. J. Hydroinform., 2020, 22(3), 562-577.
[http://dx.doi.org/10.2166/hydro.2020.098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy