Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cordyceps militaris: A Comprehensive Study on Laboratory Cultivation and Anticancer Potential in Dalton's Ascites Lymphoma Tumor Model

Author(s): Diksha Dutta, Namram Sushindrajit Singh, Rohit Aggarwal and Akalesh Kumar Verma*

Volume 24, Issue 9, 2024

Published on: 02 February, 2024

Page: [668 - 690] Pages: 23

DOI: 10.2174/0118715206282174240115082518

Price: $65

Abstract

Background: Cancer, a predominant cause of mortality, poses a formidable challenge in our pursuit of elevating life expectancy. Throughout history, individuals have sought natural remedies with minimal side effects as an appealing substitute for chemotherapeutic drugs. One such remedy is Cordyceps militaris, a renowned medicinal mushroom deeply entrenched in Asian ethnomedicine. Revered for its rejuvenating and curative attributes, it relied upon for ages.

Objective: The mushroom’s soaring demand outpaced natural availability, necessitating controlled laboratory cultivation as the core focus and exploring the potential of methanolic extracts from harvested Cordyceps militaris fruiting bodies against Dalton's Lymphoma Ascites (DLA) cells in vitro, with a specific emphasis on its anticancer traits.

Methods: For cultivation, we employed a diverse range of rice substrates, among which bora rice showed promising growth of C. militaris fruiting bodies. To assess DLA cell cytotoxicity, several assays, including trypan blue exclusion assay, MTT assay, and LDH assay, were employed at different time points (24-96 h), which provided valuable insights on DLA cell viability and proliferation, shedding light on its therapeutic potential against cancer.

Results: Our studies unveiled that methanolic extract prompts apoptosis in DLA cells via AO/EB dual staining, manifesting consistent apoptosis indicators such as membrane blebbing, chromatin condensation, nuclei fragmentation, and cellular shrinkage at 48-96 h of treatment. Furthermore, these striking repercussions of apoptosis were comprehended by an in silico approach having molecular docking simulation against antiapoptotic proteins like BCL-2, BCL-XL, MCL-1, BFL-1 & HSP100.

Conclusion: Methanolic C. militaris extracts exhibited cytotoxicity and apoptotic alterations in DLA cells.

Keywords: Apoptosis, cancer, Cordyceps militaris, cultivation, daltons lymphoma, docking.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Nam, K.S.; Jo, Y.S.; Kim, Y.H.; Hyun, J.W.; Kim, H.W. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life Sci., 2001, 69(2), 229-237.
[http://dx.doi.org/10.1016/S0024-3205(01)01125-0] [PMID: 11441913]
[3]
Holliday, J.C.; Cleaver, M.P. Medicinal value of the caterpillar fungi species of the genus cordyceps (Fr) link (Ascomycetes). A review. Int. J. Med. Mushrooms, 2008, 10(3), 219-234.
[http://dx.doi.org/10.1615/IntJMedMushr.v10.i3.30]
[4]
Jędrejko, K.J.; Lazur, J.; Muszyńska, B. Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods, 2021, 10(11), 2634.
[http://dx.doi.org/10.3390/foods10112634] [PMID: 34828915]
[5]
Jo, E.; Jang, H.J.; Shen, L.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.; Jang, I.S.; Park, S.J. Cordyceps militaris exerts anticancer effect on non–small cell lung cancer by inhibiting hedgehog signaling via suppression of TCTN3. Integr. Cancer Ther., 2020, 19, 1534735420923756.
[http://dx.doi.org/10.1177/1534735420923756] [PMID: 32456485]
[6]
Kang, J.Y.; Lee, B.; Kim, C.H.; Choi, J.H.; Kim, M.S. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. Lebensm. Wiss. Technol., 2022, 167, 113830.
[http://dx.doi.org/10.1016/j.lwt.2022.113830]
[7]
Choi, S.B.; Park, C.H.; Choi, M.K.; Jun, D.W.; Park, S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci. Biotechnol. Biochem., 2004, 68(11), 2257-2264.
[http://dx.doi.org/10.1271/bbb.68.2257] [PMID: 15564662]
[8]
Lee, C.T.; Huang, K.S.; Shaw, J.F.; Chen, J.R.; Kuo, W.S.; Shen, G.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.T.; Wang, J.S.; Hsiang, Y.P.; Lin, Y.M.; Hsu, H.H.; Yang, C.H. Trends in the immunomodulatory effects of cordyceps militaris: Total extracts, polysaccharides and cordycepin. Front. Pharmacol., 2020, 11, 575704.
[http://dx.doi.org/10.3389/fphar.2020.575704] [PMID: 33328984]
[9]
Liu, X.C.; Zhu, Z.Y.; Liu, Y.L.; Sun, H.Q. Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. Int. J. Biol. Macromol., 2019, 130, 307-314.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.155] [PMID: 30825564]
[10]
Won, S.Y.; Park, E.H. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol., 2005, 96(3), 555-561.
[http://dx.doi.org/10.1016/j.jep.2004.10.009] [PMID: 15619578]
[11]
Yoo, H.S.; Shin, J.W.; Cho, J.H.; Son, C.G.; Lee, Y.W.; Park, S.Y.; Cho, C.K. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin., 2004, 25(5), 657-665.
[PMID: 15132834]
[12]
Joshi, M. Anticancer, antibacterial and antioxidant activities of cordyceps militaris. Indian J. Exp. Biol., 2019, 57, 15-20.
[13]
Wang, B.S.; Lee, C.P.; Chen, Z.T.; Yu, H.M.; Duh, P.D. Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J. Funct. Foods, 2012, 4(2), 489-495.
[http://dx.doi.org/10.1016/j.jff.2012.02.009]
[14]
Yu, S.H.; Dubey, N.K.; Li, W.S.; Liu, M.C.; Chiang, H.S.; Leu, S.J.; Shieh, Y.H.; Tsai, F.C.; Deng, W.P. Cordyceps militaris treatment preserves renal function in type 2 diabetic nephropathy mice. PLoS One, 2016, 11(11), e0166342.
[http://dx.doi.org/10.1371/journal.pone.0166342] [PMID: 27832180]
[15]
Sun, H.; Yu, X.; Li, T.; Zhu, Z. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. Int. J. Biol. Macromol., 2021, 166, 496-508.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.207] [PMID: 33129900]
[16]
Wang, L.; Xu, N.; Zhang, J.; Zhao, H.; Lin, L.; Jia, S.; Jia, L.; Tsai, F.C.; Deng, W.P. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr. Polym., 2015, 131, 355-362.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.016] [PMID: 26256194]
[17]
Kim, Y.O.; Kim, H.J.; Abu-Taweel, G.M.; Oh, J.; Sung, G.H. Neuroprotective and therapeutic effect of Cordyceps militaris on ischemia-induced neuronal death and cognitive impairments. Saudi J. Biol. Sci., 2019, 26(7), 1352-1357.
[http://dx.doi.org/10.1016/j.sjbs.2018.08.011] [PMID: 31762595]
[18]
Das, S.K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia, 2010, 81(8), 961-968.
[http://dx.doi.org/10.1016/j.fitote.2010.07.010] [PMID: 20650308]
[19]
Shin, S.; Lee, S.; Kwon, J.; Moon, S.; Lee, S.; Lee, C.K.; Cho, K.; Ha, N.J.; Kim, K. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw., 2009, 9(3), 98-105.
[http://dx.doi.org/10.4110/in.2009.9.3.98] [PMID: 20107539]
[20]
Zhou, X.; Gong, Z.; Su, Y.; Lin, J.; Tang, K. Cordyceps fungi: Natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol., 2009, 61(3), 279-291.
[http://dx.doi.org/10.1211/jpp.61.03.0002] [PMID: 19222900]
[21]
Smiderle, F.R.; Sassaki, G.L.; Van Griensven, L.J.L.D.; Iacomini, M. Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris. Carbohydr. Polym., 2013, 97(1), 74-80.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.049] [PMID: 23769519]
[22]
Lu, M.C.; El-Shazly, M.; Wu, T.Y.; Du, Y.C.; Chang, T.T.; Chen, C.F.; Hsu, Y.M.; Lai, K.H.; Chiu, C.P.; Chang, F.R.; Wu, Y.C. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther., 2013, 139(2), 124-156.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.001] [PMID: 23563277]
[23]
Chiu, C.P.; Hwang, T.L.; Chan, Y.; El-Shazly, M.; Wu, T.Y.; Lo, I.W.; Hsu, Y.M.; Lai, K.H.; Hou, M.F.; Yuan, S.S.; Chang, F.R.; Wu, Y.C. Research and development of Cordyceps in Taiwan. Food Sci. Hum. Wellness, 2016, 5(4), 177-185.
[http://dx.doi.org/10.1016/j.fshw.2016.08.001]
[24]
Holliday, J. Cordyceps: A highly coveted medicinal mushroom. In: Medicinal Plants and Fungi: Recent Advances in Research and Development; Springer: Singapore, 2017; pp. 59-91.
[http://dx.doi.org/10.1007/978-981-10-5978-0_3]
[25]
Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol., 2017, 66, 48-62.
[http://dx.doi.org/10.1016/j.tifs.2017.05.010]
[26]
Sung, J.M.; Choi, Y.S.; Lee, H.K.; Kim, S.H.; Kim, Y.O.; Sung, G.H. Production of fruiting body using cultures of entomopathogenic fungal species. Korean J. Mycol., 1999, 27, 15-19.
[27]
Sung, J.M.; Choi, Y.S.; Shrestha, B.; Park, Y.J. Investigation on artificial fruiting of Cordyceps militaris. Hanguk Kyun. Hakoe Chi, 2002, 30(1), 6-10.
[http://dx.doi.org/10.4489/KJM.2002.30.1.006]
[28]
Sato, H.; Shimazu, M. Homothallism in Cordyceps militaris. In: Book of abstracts; 7th international mycological congress; Oslo, Norway, 2002.
[29]
Shrestha, B.; Kim, H.K.; Sung, G.H.; Spatafora, J.W.; Sung, J.M. Bipolar heterothallism, a principal mating system of Cordyceps militaris In Vitro. Biotechnol. Bioprocess Eng.; BBE, 2004, 9(6), 440-446.
[http://dx.doi.org/10.1007/BF02933483]
[30]
Shrestha, B.; Choi, S.K.; Kim, H.K.; Kim, T.W.; Sung, J.M. Genetic analysis of pigmentation in Cordyceps militaris. Mycobiology, 2005, 33(3), 125-130.
[http://dx.doi.org/10.4489/MYCO.2005.33.3.125] [PMID: 24049487]
[31]
Shrestha, B.; Han, S.K.; Lee, W.H.; Choi, S.K.; Lee, J.O.; Sung, J.M. Distribution and in vitro Fruiting of Cordyceps militaris in Korea. Mycobiology, 2005, 33(4), 178-181.
[http://dx.doi.org/10.4489/MYCO.2005.33.4.178] [PMID: 24049497]
[32]
Jin, C.Y.; Kim, G.Y.; Choi, Y.H. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 Cells. J. Microbiol. Biotechnol., 2008, 18(12), 1997-2003.
[PMID: 19131705]
[33]
Park, S.E.; Yoo, H.S.; Jin, C.Y.; Hong, S.H.; Lee, Y.W.; Kim, B.W.; Lee, S.H.; Kim, W.J.; Cho, C.K.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem. Toxicol., 2009, 47(7), 1667-1675.
[http://dx.doi.org/10.1016/j.fct.2009.04.014] [PMID: 19393284]
[34]
Yang, C-H.; Kao, Y-H.; Huang, K-S.; Wang, C-Y.; Lin, L-W. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis., 2012, 3(11), e431.
[http://dx.doi.org/10.1038/cddis.2012.172] [PMID: 23190603]
[35]
Ruma, M.W.; Putranto, E.W.; Kondo, E.; Watanabe, R.; Saito, K.; Inoue, Y.; Yamamoto, K.I.; Nakata, S.; Kaihata, M.; Murata, H.; Sakaguchi, M. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells. Int. J. Oncol., 2014, 45(1), 209-218.
[http://dx.doi.org/10.3892/ijo.2014.2397] [PMID: 24789042]
[36]
Park, C.; Hong, S.; Lee, J.Y.; Kim, G.Y.; Choi, B.; Lee, Y.; Park, D.; Park, Y.M.; Jeong, Y.K.; Choi, Y. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol. Rep., 2005, 13(6), 1211-1216.
[http://dx.doi.org/10.3892/or.13.6.1211] [PMID: 15870944]
[37]
Rao, Y.K.; Fang, S.H.; Wu, W.S.; Tzeng, Y.M. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J. Ethnopharmacol., 2010, 131(2), 363-367.
[http://dx.doi.org/10.1016/j.jep.2010.07.020] [PMID: 20633630]
[38]
Reis, F.S.; Barros, L.; Calhelha, R.C.; Ćirić, A.; van Griensven, L.J.L.D.; Soković, M.; Ferreira, I.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol., 2013, 62, 91-98.
[http://dx.doi.org/10.1016/j.fct.2013.08.033] [PMID: 23994083]
[39]
Jo, E.; Jang, H.J.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.S.; Jang, I.S.; Park, S.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement. Med. Thera., 2020, 20(1), 1-12.
[http://dx.doi.org/10.1186/s12906-019-2780-5] [PMID: 32020859]
[40]
Lee, E.J.; Kim, W.J.; Moon, S.K. Cordycepin suppresses TNF‐alpha‐induced invasion, migration and matrix metalloproteinase‐9 expression in human bladder cancer cells. Phytother. Res., 2010, 24(12), 1755-1761.
[http://dx.doi.org/10.1002/ptr.3132] [PMID: 20564512]
[41]
Guo, Z.; Chen, W.; Dai, G.; Huang, Y. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int. J. Mol. Med., 2019, 45(1), 141-150.
[http://dx.doi.org/10.3892/ijmm.2019.4391] [PMID: 31746344]
[42]
Liu, P.; Ma, J.; Liang, R.; He, X.; Zhao, G. Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity. Heliyon, 2023, 9(3), e14184.
[http://dx.doi.org/10.1016/j.heliyon.2023.e14184] [PMID: 36923906]
[43]
Sangiliyandi, G.; Kanth, S.B.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5, 753-762.
[http://dx.doi.org/10.2147/IJN.S11727] [PMID: 21042421]
[44]
Zhao, R.; Guo, C. Optimizing on liquid culture media of Cordyceps sinensis mycelia. J. Tianj. Normal Univ., 2008, 28, 8-11.
[45]
Tuli, H.S.; Sandhu, S.S.; Kashyap, D.; Sharma, A.K. Optimization of extraction conditions and antimicrobial potential of a bioactive metabolite, cordycepin from Cordyceps militaris 3936. World J. Pharm. Pharm. Sci., 2014, 3, 1525-1535.
[46]
Harbourne, J.B. Phytochemical Methods: A Guide to Modern Technique of Plant Analysis, 3rd ed.; Chapman and Hall Ltd: London, 1998.
[47]
Raaman, N. Phytochemical techniques, 1st ed.; New Delhi Publishing Agency: New Delhi, 2006.
[http://dx.doi.org/10.59317/9789390083404]
[48]
Khandelwal, K.R. Practical pharmacognosy, 19th ed.; Nirali Prakashan: Pune, 2009.
[49]
Shah, P.; Modi, H.; Shukla, M.; Lahiri, S.K. Preliminary phytochemical analysis and antibacterial activity of Ganoderma lucidum collected from Dang district of Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 246-255.
[50]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 1997, 21(1), 3B.
[http://dx.doi.org/10.1002/0471142735.ima03bs21] [PMID: 18432654]
[51]
Tian, T.; Song, L.; Zheng, Q.; Hu, X.; Yu, R. Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction. Pharmacogn. Mag., 2014, 10(39), 325-331.
[http://dx.doi.org/10.4103/0973-1296.137374] [PMID: 25210321]
[52]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497.
[http://dx.doi.org/10.1101/pdb.prot095497] [PMID: 29858337]
[53]
Squier, M.K.T.; Cohen, J.J. Standard quantitative assays for apoptosis. Mol. Biotechnol., 2001, 19(3), 305-312.
[http://dx.doi.org/10.1385/MB:19:3:305] [PMID: 11721626]
[54]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[55]
Alvarez, J.C. High-throughput docking as a source of novel drug leads. Curr. Opin. Chem. Biol., 2004, 8(4), 365-370.
[http://dx.doi.org/10.1016/j.cbpa.2004.05.001] [PMID: 15288245]
[56]
Bitencourt-Ferreira, G.; De Azevedo, W.F. Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 146-167.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10]
[57]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[58]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[59]
Goddard, T.D.; Huang, C.C.; Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol., 2007, 157(1), 281-287.
[http://dx.doi.org/10.1016/j.jsb.2006.06.010] [PMID: 16963278]
[60]
BIOVIA Discovery Studio Visualizer. Available from: https://www. 3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/ (Accessed January 12, 2021).
[61]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[62]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[63]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[64]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[65]
Park, J.P.; Kim, S.W.; Hwang, H.J.; Yun, J.W. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol., 2001, 33(1), 76-81.
[http://dx.doi.org/10.1046/j.1472-765X.2001.00950.x] [PMID: 11442820]
[66]
Xiao, J.H.; Chen, D.X.; Liu, J.W.; Liu, Z.L.; Wan, W.H.; Fang, N.; Xiao, Y.; Qi, Y.; Liang, Z.Q. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J. Appl. Microbiol., 2004, 96(5), 1105-1116.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02235.x] [PMID: 15078528]
[67]
Tong, Y.K.; Kuang, T.; Wu, Y.X.; Zhang, Q.Y.; Ren, J. Comparison of components of Cordyceps mycelium and natural Cordyceps sinensis. Shipin Yanjiu Yu Kaifa, 1997, 18(4), 40-42.
[68]
Jiang, X.L.; Sun, Y. The determination of active components in various Cordyceps militaris strains. Acta Edulis Fungi, 1999, 6, 47-50.
[69]
Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms, 2014, 16(3), 273-291.
[http://dx.doi.org/10.1615/IntJMedMushr.v16.i3.80] [PMID: 24941169]
[70]
Zhang, J.; Wen, C.; Duan, Y.; Zhang, H.; Ma, H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol., 2019, 132, 906-914.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.020] [PMID: 30954592]
[71]
Basak, S.; Sengupta, S.; Chattopadhyay, K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys. Rev., 2019, 11(6), 851-872.
[http://dx.doi.org/10.1007/s12551-019-00580-9] [PMID: 31444739]
[72]
Lee, H.H.; Lee, S.; Lee, K.; Shin, Y.S.; Kang, H.; Cho, H. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru, 2015, 23(1), 35.
[http://dx.doi.org/10.1186/s40199-015-0117-6] [PMID: 26141646]
[73]
Wang, X.A.; Xiang, S.S.; Li, H.F.; Wu, X.S.; Li, M.L.; Shu, Y.J.; Zhang, F.; Cao, Y.; Ye, Y.Y.; Bao, R.F.; Weng, H.; Wu, W.G.; Mu, J.S.; Hu, Y.P.; Jiang, L.; Tan, Z.J.; Lu, W.; Wang, P.; Liu, Y.B. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules, 2014, 19(8), 11350-11365.
[http://dx.doi.org/10.3390/molecules190811350] [PMID: 25090123]
[74]
Liao, Y.; Ling, J.; Zhang, G.; Liu, F.; Tao, S.; Han, Z.; Chen, S.; Chen, Z.; Le, H. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14(5), 761-771.
[http://dx.doi.org/10.1080/15384101.2014.1000097] [PMID: 25590866]
[75]
Xu, J.C.; Zhou, X.P.; Wang, X.A.; Xu, M.D.; Chen, T.; Chen, T.Y.; Zhou, P.H.; Zhang, Y.Q. Cordycepin induces apoptosis and G2/M phase arrest through the erk pathways in esophageal cancer cells. J. Cancer, 2019, 10(11), 2415-2424.
[http://dx.doi.org/10.7150/jca.32071] [PMID: 31258746]
[76]
Lu, H.; Li, X.; Zhang, J.; Shi, H.; Zhu, X.; He, X. Effects of cordycepin on HepG2 and EA.hy926 cells: Potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol. Lett., 2014, 7(5), 1556-1562.
[http://dx.doi.org/10.3892/ol.2014.1965] [PMID: 24765175]
[77]
Song, J.; Wang, Y.; Teng, M.; Zhang, S.; Yin, M.; Lu, J.; Liu, Y.; Lee, R.J.; Wang, D.; Teng, L. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells. Mol. Med. Rep., 2016, 13(6), 5132-5140.
[http://dx.doi.org/10.3892/mmr.2016.5175] [PMID: 27109250]
[78]
Hu, Z.; Lai, Y.; Ma, C.; Zuo, L.; Xiao, G.; Gao, H.; Xie, B.; Huang, X.; Gan, H.; Huang, D.; Yao, N.; Feng, B.; Ru, J.; Chen, Y.; Cai, D. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase‐3/PARP/GSDME pathways in A549 cell line. Food Sci. Nutr., 2022, 10(1), 21-38.
[http://dx.doi.org/10.1002/fsn3.2636] [PMID: 35035907]
[79]
Bai, K.C.; Sheu, F. A novel protein from edible fungi Cordyceps militaris that induces apoptosis. J. Food Drug Anal., 2018, 26(1), 21-30.
[http://dx.doi.org/10.1016/j.jfda.2016.10.013] [PMID: 29389557]
[80]
Wang, Y.; Kanneganti, T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J., 2021, 19, 4641-4657.
[http://dx.doi.org/10.1016/j.csbj.2021.07.038] [PMID: 34504660]
[81]
Baskić, D.; Popović, S.; Ristić, P.; Arsenijević, N. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int., 2006, 30(11), 924-932.
[http://dx.doi.org/10.1016/j.cellbi.2006.06.016] [PMID: 16895761]
[82]
Liu, K.; Liu, P.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res., 2015, 21, 15-20.
[http://dx.doi.org/10.12659/MSMBR.893327] [PMID: 25664686]
[83]
Lee, H.; Kim, Y.J.; Kim, H.W.; Lee, D.H.; Sung, M.K.; Park, T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull., 2006, 29(4), 670-674.
[http://dx.doi.org/10.1248/bpb.29.670] [PMID: 16595897]
[84]
Moldoveanu, T.; Follis, A.V.; Kriwacki, R.W.; Green, D.R. Many players in BCL-2 family affairs. Trends Biochem. Sci., 2014, 39(3), 101-111.
[http://dx.doi.org/10.1016/j.tibs.2013.12.006] [PMID: 24503222]
[85]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25(1), 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[86]
Pandey, P.; Saleh, A.; Nakazawa, A.; Kumar, S.; Srinivasula, S.M.; Kumar, V.; Weichselbaum, R.; Nalin, C.; Alnemri, E.S.; Kufe, D.; Kharbanda, S. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J., 2000, 19(16), 4310-4322.
[http://dx.doi.org/10.1093/emboj/19.16.4310] [PMID: 10944114]
[87]
Oldendorf, W.H. Lipid solubility and drug penetration of the blood brain barrier. Exp. Biol. Med., 1974, 147(3), 813-816.
[http://dx.doi.org/10.3181/00379727-147-38444] [PMID: 4445171]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy