Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Exploring the Therapeutic Potential of Ginkgo biloba Polyphenols in Targeting Biomarkers of Colorectal Cancer: An In-silico Evaluation

Author(s): Sarra Hamdani, Hocine Allali* and Salim Bouchentouf

Volume 21, Issue 6, 2024

Published on: 02 February, 2024

Article ID: e020224226651 Pages: 14

DOI: 10.2174/0115701638282497240124102345

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Colorectal cancer (CRC) is a major contributor to cancer-related deaths worldwide, driving the need for effective anticancer therapies with fewer side effects. The exploration of Ginkgo biloba, a natural source, offers a hopeful avenue for novel treatments targeting key colorectal biomarkers involved in CRC treatment.

Objective: The aim of this study was to explore the binding affinity of natural molecules derived from G. biloba to essential biomarkers associated with CRC, including Kirsten rat sarcoma virus, neuroblastoma RAS mutations, serine/threonine-protein kinase B-Raf, phosphatidylinositol 3'-kinase, and deleted colorectal cancer, using molecular docking. The focus of this research was to evaluate how effectively these molecules bind to specified targets in order to identify potential inhibitors for the treatment of CRC.

Methods: A total of 152 polyphenolic compounds from G. biloba were selected and subjected to molecular docking simulations to evaluate their interactions with CRC-related biomarkers. The docking results were analysed to identify ligands exhibiting strong affinities towards the targeted genes, suggesting potential inhibitory effects.

Results: Docking simulations unveiled the strong binding affinities between selected polyphenolic compounds derived from G. biloba and genes associated with CRC. The complex glycoside structures that are found in flavonols are of significant importance. These compounds, including derivatives with distinctive arrangements, exhibited promising docking scores, signifying substantial interactions with the targeted biomarkers.

Conclusion: The study demonstrates the potential of G. biloba-derived molecules as effective anticancer agents for colorectal cancer. The identified ligands exhibit strong interactions with crucial CRC-related biomarkers, suggesting potential inhibition ability. Further in vitro and in vivo investigations are needed to validate and build upon these promising findings, advancing the development of novel and efficient CRC therapies.

Keywords: Colorectal cancer, polyphenols, Ginkgo biloba, colorectal biomarkers, docking scoring, targeted genes.

Graphical Abstract
[1]
Rosita AS, Begum TN. Molecular Docking analysis of the TNIK Receptor protein with a potential inhibitor from the NPACT database. Bioinformation 2020; 16(5): 387-92.
[http://dx.doi.org/10.6026/97320630016387] [PMID: 32831519]
[2]
Wong AHN, Ma B, Lui RN. New developments in targeted therapy for metastatic colorectal cancer. Ther Adv Med Oncol 2023; 15.
[http://dx.doi.org/10.1177/17588359221148540] [PMID: 36687386]
[3]
Matos I, Elez E, Capdevila J, Tabernero J. Emerging tyrosine kinase inhibitors for the treatment of metastatic colorectal cancer. Expert Opin Emerg Drugs 2016; 21(3): 267-82.
[http://dx.doi.org/10.1080/14728214.2016.1220535] [PMID: 27578253]
[4]
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14(10): 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[5]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Maes-Carballo M, García-García M, Martín-Díaz M, et al. A comprehensive systematic review of colorectal cancer screening clinical practices guidelines and consensus statements. Br J Cancer 2023; 128(6): 946-57.
[http://dx.doi.org/10.1038/s41416-022-02070-4] [PMID: 36476659]
[7]
Colon cancer is rising among young adults. Here are signs to watch for. National Geographic magazine. Science 2023. Available from: https://www.nationalgeographic.com/science/article/colon-cancer-increasing-young-adults-symptoms
[8]
Kuipers E, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG. Colorectal cancer. Nat Rev Dis Primers 1 2015; 15065: 1-25.
[http://dx.doi.org/10.1038/nrdp.2015.65]
[9]
Car I, Dittmann A, Klobučar M, Grbčić P, Kraljević Pavelić S, Sedić M. Secretome screening of BRAFV600E-mutated colon cancer cells resistant to Vemurafenib. Biology 2023; 12(4): 608.
[http://dx.doi.org/10.3390/biology12040608] [PMID: 37106808]
[10]
Garbe C , Abusaif S , Eigentler TK . Vemurafenib. In: Martens U, Ed. Small molecules in oncology Recent results in cancer research. Berlin, Heidelberg: Springer 2014; Vol 201: pp. 215-25.
[http://dx.doi.org/10.1007/978-3-642-54490-3_13]
[11]
Pidoux MS, Chambord J, Le Joncour S, Toulouse C, Xuereb F. Encorafenib dans le cancer colorectal métastatique: Cas d’une interaction avec des inducteurs enzymatiques puissants. Le Pharmacien Clinicien 2022; 57(4): e91-2.
[http://dx.doi.org/10.1016/j.phacli.2022.10.529]
[12]
Huijberts SCFA, Boelens MC, Bernards R, Opdam FL. Mutational profiles associated with resistance in patients with BRAFV600E mutant colorectal cancer treated with cetuximab and encorafenib +/− binimetinib or alpelisib. Br J Cancer 2021; 124(1): 176-82.
[http://dx.doi.org/10.1038/s41416-020-01147-2] [PMID: 33204026]
[13]
Piringer G, Decker J, Trommet V, et al. Ongoing complete response after treatment cessation with dabrafenib, trametinib, and cetuximab as third-line treatment in a patient with advanced BRAF-V600E mutated, microsatellite-stable colon cancer: A case report and literature review. Front Oncol 2023; 13: 1166545.
[http://dx.doi.org/10.3389/fonc.2023.1166545] [PMID: 37213293]
[14]
Klute KA, Rothe M, Garrett-Mayer E, et al. Cobimetinib plus vemurafenib in patients with colorectal cancer with BRAF mutations: Results from the targeted agent and profiling utilization registry (TAPUR) study. JCO Precis Oncol 2022; 6(6): e2200191.
[http://dx.doi.org/10.1200/PO.22.00191] [PMID: 36409971]
[15]
Roviello G, D’Angelo A, Petrioli R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. Transl Oncol 2020; 13(9): 100795.
[http://dx.doi.org/10.1016/j.tranon.2020.100795] [PMID: 32470910]
[16]
Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov 2016; 11(9): 907-16.
[http://dx.doi.org/10.1080/17460441.2016.1201057] [PMID: 27327499]
[17]
Shelledy L, Roman D. Vemurafenib: First-in-class BRAF-mutated inhibitor for the treatment of unresectable or metastatic melanoma. J Adv Pract Oncol 2015; 6(4): 361-5.
[http://dx.doi.org/10.6004/jadpro.2015.6.4.6] [PMID: 26705496]
[18]
Boccaccino A, Borelli B, Intini R, et al. Encorafenib plus cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: Real-life data from an Italian multicenter experience. ESMO Open 2022; 7(3): 100506.
[http://dx.doi.org/10.1016/j.esmoop.2022.100506] [PMID: 35696748]
[19]
Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat Med 2023; 29(5): 1103-12.
[http://dx.doi.org/10.1038/s41591-023-02321-8] [PMID: 37059834]
[20]
Rosen LS, LoRusso P, Ma WW, et al. A first-in-human phase I study to evaluate the MEK1/2 inhibitor, cobimetinib, administered daily in patients with advanced solid tumors. Invest New Drugs 2016; 34(5): 604-13.
[http://dx.doi.org/10.1007/s10637-016-0374-3] [PMID: 27424159]
[21]
Alaklabi S, Roy AM, Attwood K, et al. Real world outcomes with alpelisib in metastatic hormone receptor-positive breast cancer patients: A single institution experience. Front Oncol 2022; 12: 1012391.
[http://dx.doi.org/10.3389/fonc.2022.1012391] [PMID: 36338738]
[22]
Sibaud V, Baric L, Cantagrel A, et al. Management of toxicities of BRAF inhibitors and MEK inhibitors in advanced melanoma. Bull Cancer 2021; 108(5): 528-43.
[http://dx.doi.org/10.1016/j.bulcan.2020.12.014] [PMID: 33812673]
[23]
Heinzerling L, Eigentler TK, Fluck M, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open 2019; 4(3): e000491.
[http://dx.doi.org/10.1136/esmoopen-2019-000491] [PMID: 31231568]
[24]
Gertz HJ, Kiefer M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Des 2004; 10(3): 261-4.
[http://dx.doi.org/10.2174/1381612043386437] [PMID: 14754386]
[25]
Noor-E-Tabassum, Das R, Lami MS, et al. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications. Evid Based Complement Alternat Med 2022; 2022: 1-30.
[http://dx.doi.org/10.1155/2022/8288818]
[26]
Biernacka P, Adamska I, Felisiak K. The potential of Ginkgo biloba as a source of biologically active compounds-A review of the recent literature and patents. Molecules 2023; 28(10): 3993.
[http://dx.doi.org/10.3390/molecules28103993] [PMID: 37241734]
[27]
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2022; 39(3): 474-511.
[http://dx.doi.org/10.1039/D1NP00026H] [PMID: 34581387]
[28]
Gandini A, Puglisi S, Pirrone C, et al. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: State of the art and future perspectives. Front Oncol 2023; 13: 1161048.
[http://dx.doi.org/10.3389/fonc.2023.1161048] [PMID: 37207140]
[29]
García-Alfonso P, Lièvre A, Loupakis F, et al. Systematic review of randomised clinical trials and observational studies for patients with RAS wild-type or BRAF-mutant metastatic and/or unresectable colorectal cancer. Crit Rev Oncol Hematol 2022; 173: 103646.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103646] [PMID: 35344913]
[30]
Gouda MA, Subbiah V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: From melanoma to tissue-agnostic therapy. ESMO Open 2023; 8(2): 100788.
[http://dx.doi.org/10.1016/j.esmoop.2023.100788] [PMID: 36842301]
[31]
Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol Hematol 2023; 186: 103987.
[http://dx.doi.org/10.1016/j.critrevonc.2023.103987] [PMID: 37059275]
[32]
Mehlen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 2004; 22(16): 3420-8.
[http://dx.doi.org/10.1200/JCO.2004.02.019] [PMID: 15310786]
[33]
Purushothaman B, Suganthi N, Jothi A, Shanmugam K. Molecular docking studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An in silico approach. Res J Pharm Technol 2019; 12(7): 3423-7.
[http://dx.doi.org/10.5958/0974-360X.2019.00579.1]
[34]
Platteau P-L , Kartheuser A , Léonard D . Oncological outcomes of colorectal cancers resected by single-trocar laparoscopy compared to conventional laparoscopy. Faculty of Medicine and Dentistry. 2020. Available from: http://hdl.handle.net/2078.1/thesis:23674
[35]
Bosman FT. Les biomarqueurs prédictifs dans le cancer colorectal. Rev Med Suisse 2009; 5(211): 1513-8.
[PMID: 19694362]
[36]
Broutier L, Castets M. [DCC, come back of a suppressor gene in colorectal cancer]. Med Sci 2012; 28(5): 465-8.
[http://dx.doi.org/10.1051/medsci/2012285007] [PMID: 22642996]
[37]
Mehlen P, Goldschneider D. The dependence receptors DCC and UNC5H: Role of apoptosis in the control of tumorigenesis. J Soc Biol 2005; 199(3): 211-8.
[http://dx.doi.org/10.1051/jbio:2005022] [PMID: 16471261]
[38]
Glen R, Allen S. Ligand-protein docking: Cancer research at the interface between biology and chemistry. Curr Med Chem 2003; 10(9): 763-77.
[http://dx.doi.org/10.2174/0929867033457809] [PMID: 12678780]
[39]
Molecular Operating Environment (MOE) software applications. Avaialbe from: https://www.computabio.com/applications-of-molecular-operating-environment-moe-software.html
[40]
Qa’dan F, Nahrstedt A, Schmidt M, Mansoor K. Polyphenols from Ginkgo biloba. Sci Pharm 2010; 78(4): 897-907.
[http://dx.doi.org/10.3797/scipharm.1003-19] [PMID: 21179324]
[41]
Kobus J, Flaczyk E, Siger A, Nogala-Kałucka M, Korczak J, Pegg RB. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur J Lipid Sci Technol 2009; 111(11): 1150-60.
[http://dx.doi.org/10.1002/ejlt.200800299]
[42]
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 2022; 11(10): 1381.
[http://dx.doi.org/10.3390/plants11101381] [PMID: 35631806]
[43]
Okhti ZA, Abdalah ME, Hanna DB. Phytochemical structure and biological effect of Ginkgo biloba leaves: A review. Int J Pharmacol Res 2021; 13(2)
[44]
Gao H, Chen X, Li Y, et al. Quality evaluation of ginkgo biloba leaves based on non-targeted metabolomics and representative ingredient quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214: 123549.
[http://dx.doi.org/10.1016/j.jchromb.2022.123549] [PMID: 36481725]
[45]
Liu L, Wang Y, Zhang J, Wang S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J Pharm Biomed Anal 2021; 193: 113704.
[http://dx.doi.org/10.1016/j.jpba.2020.113704] [PMID: 33157480]
[46]
Belwal T, Giri L, Bahukhandi A, Tariq M, Kewlani P, Bhatt ID. Ginkgo biloba In nonvitamin and nonmineral nutritional supplements. Amsterdam, The Netherlands: Elsevier Inc. 2019; pp. 241-50.
[47]
Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: Integrated platform of small molecules and biological activities. In: Proc Annual Reports in Computational Chemistry. Wheeler R A, Spellmeyer D C. 2008; pp. 217-41.
[http://dx.doi.org/10.1016/S1574-1400(08)00012-1]
[48]
Pence HE, Williams A. ChemSpider: An online chemical information resource. J Chem Educ 2010; 87(11): 1123-4.
[http://dx.doi.org/10.1021/ed100697w]
[49]
Search and share chemistry. Available from: http://www.chemspider.com/
[50]
PubChem compound database. Available from: https://pubchem.ncbi.nlm.nih.gov/
[51]
Williams AJ. Chemspider: A platform for crowdsourced collaboration to curate data derived from public compound databases. In: Collaborative Computational Technologies for Biomedical Research. John Wiley & Sons, Ltd 2011; pp. 363-6.
[http://dx.doi.org/10.1002/9781118026038.ch22]
[52]
Chemical, Computing Group Inc In: Molecular Operating Environment (MOE) 2014.
[53]
McNamara JP, Hillier IH. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. Phys Chem Chem Phys 2007; 9(19): 2362-70.
[http://dx.doi.org/10.1039/b701890h] [PMID: 17492099]
[54]
Husch T, Vaucher AC, Reiher M. Semiempirical molecular orbital models based on the neglect of diatomic differential overlap approximation. Int J Quantum Chem 2018; 118(24): e25799.
[http://dx.doi.org/10.1002/qua.25799]
[55]
Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J Am Chem Soc 1985; 107(13): 3902-9.
[http://dx.doi.org/10.1021/ja00299a024]
[56]
Stewart JJP. MOPAC: A semiempirical molecular orbital program. J Comput Aided Mol Des 1990; 4(1): 1-103.
[http://dx.doi.org/10.1007/BF00128336] [PMID: 2197373]
[57]
Husch T, Reiher M. Comprehensive analysis of the neglect of diatomic differential overlap approximation. J Chem Theory Comput 2018; 14(10): 5169-79.
[http://dx.doi.org/10.1021/acs.jctc.8b00601] [PMID: 30189131]
[58]
Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996; 17(5-6): 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[59]
Halgren TA, Murphy RB, Friesner RA, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004; 47(7): 1750-9.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[60]
Fadlan A, Nusantoro YR. The effect of energy minimization on the molecular docking of acetone-based oxindole derivatives. JKPK (Jurnal Kimia dan Pendidikan Kimia) 2021; 6(1): 69-77. [Jurnal Kimia Dan Pendidikan Kimia].
[http://dx.doi.org/10.20961/jkpk.v6i1.45467]
[61]
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: Current research and future prospects. Int J Mol Sci 2020; 21(15): 5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[62]
Bisht S, Ahmad F, Sawaimoon S, Bhatia S, Das BR. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma. Med Oncol 2014; 31(9): 124.
[http://dx.doi.org/10.1007/s12032-014-0124-3] [PMID: 25073438]
[63]
Mirzapoor Abbasabadi Z, Hamedi Asl D, Rahmani B, et al. KRAS,NRAS,BRAF, andPIK3CA mutation rates, clinicopathological association, and their prognostic value in Iranian colorectal cancer patients. J Clin Lab Anal 2023; 37(5): e24868.
[http://dx.doi.org/10.1002/jcla.24868] [PMID: 36930789]
[64]
Li Y, Xiao J, Zhang T, Zheng Y, Jin H. Analysis of KRAS, NRAS, and BRAF mutations, microsatellite instability, and relevant prognosis effects in patients with early colorectal cancer: A cohort study in East Asia. Front Oncol 2022; 12: 897548.
[http://dx.doi.org/10.3389/fonc.2022.897548] [PMID: 35837115]
[65]
Kuhn N, Klinger B, Uhlitz F, et al. Mutation-specific effects of NRAS oncogenes in colorectal cancer cells. Adv Biol Regul 2021; 79: 100778.
[http://dx.doi.org/10.1016/j.jbior.2020.100778] [PMID: 33431353]
[66]
Venot Q, Canaud G. PIK3CA-related overgrowth spectrum: Animal model and drug discovery. C R Biol 2021; 344(2): 189-201.
[http://dx.doi.org/10.5802/crbiol.50] [PMID: 34213856]
[67]
Brotelle T, Bay J-O. PI3K-AKT-mTOR pathway: Description, therapeutic development, resistance, predictive/prognostic biomarkers and therapeutic applications for cancer. Bull Cancer 2016; 103(1): 18-29.
[http://dx.doi.org/10.1016/j.bulcan.2015.09.011] [PMID: 26582734]
[68]
Stein B, Douglas Smith B. Treatment options for patients with chronic myeloid leukemia who are resistant to or unable to tolerate imatinib. Clin Ther 2010; 32(5): 804-20.
[http://dx.doi.org/10.1016/j.clinthera.2010.05.003] [PMID: 20685492]
[69]
O’Hare T, Eide CA, Deininger MW. New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs 2008; 17(6): 865-78.
[http://dx.doi.org/10.1517/13543784.17.6.865] [PMID: 18491988]
[70]
RCSB Protein Data Bank Available from: https://www.rcsb.org/search
[71]
Soga S, Shirai H, Kobori M, Hirayama N. Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 2007; 47(2): 400-6.
[http://dx.doi.org/10.1021/ci6002202] [PMID: 17243757]
[72]
Verdonk ML, Taylor RD, Chessari G, Murray CW. Illustration of current challenges in molecular docking. In: Structure-based drug discovery. Dordrecht: Springer 2007; pp. 201-21.
[http://dx.doi.org/10.1007/1-4020-4407-0_8]
[73]
Brooijmans N. 27 Docking methods, ligand design, and validating data sets in the structural genomics ERA Natasja. In: Biology, Chemistry, Medicine. 2008.
[74]
Zheng L, Meng J, Jiang K, et al. Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Brief Bioinform 2022; 23(3): bbac051.
[http://dx.doi.org/10.1093/bib/bbac051] [PMID: 35289359]
[75]
Tang Z, Yuan X, Du R, et al. BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in BRAF-mutated colorectal cancers. Mol Cancer Ther 2015; 14(10): 2187-97.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0262] [PMID: 26208524]
[76]
Welsch ME, Kaplan A, Chambers JM, et al. Multivalent small-molecule Pan-RAS inhibitors. Cell 2017; 168(5): 878-889.e29.
[http://dx.doi.org/10.1016/j.cell.2017.02.006] [PMID: 28235199]
[77]
Buhrman G, Wink G, Mattos C. Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure 2007; 15(12): 1618-29.
[http://dx.doi.org/10.1016/j.str.2007.10.011] [PMID: 18073111]
[78]
Liu X, Zhou Q, Hart JR, et al. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kα. Proc Natl Acad Sci USA 2022; 119(46): e2215621119.
[http://dx.doi.org/10.1073/pnas.2215621119] [PMID: 36343266]
[79]
Chan WW, Wise SC, Kaufman MD, et al. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell 2011; 19(4): 556-68.
[http://dx.doi.org/10.1016/j.ccr.2011.03.003] [PMID: 21481795]
[80]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[81]
Ivanović V, Rančić M, Arsić B, Pavlović A. Lipinski’s rule of five, famous extensions and famous exceptions. Chemia Naissensis 2020; 3(1): 171-81.
[http://dx.doi.org/10.46793/ChemN3.1.171I]
[82]
Winstead E. Dabrafenib–Trametinib combination approved for solid tumors with BRAF mutations. National Cancer Institute 2022. Available from: https://www.cancer.gov/news-events/cancer-currentsblog/2022/fda-dabrafenib-trametinib-braf-solid-tumors
[83]
Mauri G, Bonazzina E, Amatu A, et al. The evolutionary landscape of treatment for BRAFV600E mutant metastatic colorectal cancer. Cancers 2021; 13(1): 137.
[http://dx.doi.org/10.3390/cancers13010137] [PMID: 33406649]
[84]
Lièvre A, de la Fouchardière C, Samalin E, et al. (BRAF V600E-mutant colorectal cancers: Where are we?). Bull Cancer 2020; 107(9): 881-95.
[http://dx.doi.org/10.1016/j.bulcan.2020.04.017] [PMID: 32674932]
[85]
Ramalingam PS, Balakrishnan P, Rajendran S, Jothi A, Ramalingam R, Arumugam S. Identification of dietary bioflavonoids as potential inhibitors against KRAS G12D mutant-novel insights from computer-aided drug discovery. Curr Issues Mol Biol 2023; 45(3): 2136-56.
[http://dx.doi.org/10.3390/cimb45030137] [PMID: 36975507]
[86]
Tang D, Kang R. Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene Ther 2022; 30(3): 391-3.
[http://dx.doi.org/10.1038/s41417-022-00561-3] [PMID: 36414681]
[87]
Hu Z, Martí J. Discovering and targeting dynamic drugging pockets of the oncogene KRAS-G12D. Cancer Biol 2022.
[http://dx.doi.org/10.1101/2022.07.01.498403]
[88]
Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 2021; 140: 111717.
[http://dx.doi.org/10.1016/j.biopha.2021.111717] [PMID: 34044280]
[89]
Randic T, Kozar I, Margue C, Utikal J, Kreis S. NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99: 102238.
[http://dx.doi.org/10.1016/j.ctrv.2021.102238] [PMID: 34098219]
[90]
Janku F, Wheler JJ, Hong DS, Kurzrock R. Bevacizumab-based treatment in colorectal cancer with a NRAS Q61K mutation. Target Oncol 2013; 8(3): 183-8.
[http://dx.doi.org/10.1007/s11523-013-0266-9] [PMID: 23400451]
[91]
Ranjbar R, Mohammadpour S, Torshizi Esfahani A, et al. Prevalence and prognostic role of PIK3CA E545K mutation in Iranian colorectal cancer patients. Gastroenterol Hepatol Bed Bench 2019; 12 (Suppl. 1): S22-9.
[PMID: 32099598]
[92]
Ligresti G, Militello L, Steelman LS, Cavallaro A, Basile F, Nicoletti F. PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell Cycle 2009; 8(9): 1352-8.
[http://dx.doi.org/10.4161/cc.8.9.8255]
[93]
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol Cancer 2019; 18(1): 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[94]
Mehlen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 2004; 22(16): 3420-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy