Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

止泻药洛哌丁胺在体外和体内诱导细胞凋亡和抑制细胞转移治疗黑色素瘤中的应用

卷 24, 期 10, 2024

发表于: 01 February, 2024

页: [1015 - 1030] 页: 16

弟呕挨: 10.2174/0115680096283086240116093400

价格: $65

Open Access Journals Promotions 2
摘要

背景:黑色素瘤是世界范围内最常见的皮肤肿瘤,目前临床上仍缺乏有效的治疗药物。将现有药物重新用于临床肿瘤治疗是一种有吸引力且有效的策略。洛哌丁胺是一种常用的抗腹泻药物,具有良好的安全性。然而,洛哌丁胺在黑色素瘤中的作用和机制尚不清楚。本文在体外和体内研究了洛哌丁胺潜在的抗黑色素瘤作用及其机制。 方法:在本研究中,我们通过MTT、菌落形成和EUD结合试验证明洛哌丁胺对黑色素瘤细胞活力和增殖有很强的抑制作用。同时,建立异种移植瘤模型,研究洛哌丁胺的体内抗黑色素瘤活性。此外,通过Annexin V-FITC细胞凋亡检测、细胞周期、线粒体膜电位测定、活性氧水平检测和凋亡相关蛋白分析,探讨洛哌丁胺对黑色素瘤细胞凋亡的影响及其潜在机制。此外,通过迁移和侵袭试验研究了洛哌丁胺抑制黑色素瘤的转移。采用免疫组织化学和免疫荧光染色法验证洛哌丁胺抗黑色素瘤的体内机制。最后进行血常规、血生化分析及苏木精-伊红(H&E)染色,探讨洛哌丁胺的安全性。 结果:洛哌丁胺在体外和体内均能明显抑制黑色素瘤细胞增殖。同时,洛哌丁胺在体外通过亚g1细胞群的积累、活性氧水平的提高、线粒体膜电位的耗竭以及凋亡相关蛋白的激活,诱导黑色素瘤细胞凋亡。值得注意的是,在体内也观察到诱导细胞凋亡的作用。随后,洛哌丁胺在体外和体内显著抑制黑色素瘤细胞的迁移和侵袭。最终,洛哌丁胺被证明具有良好的安全性。 结论:这些发现表明,洛哌丁胺的重新利用可能是一种新的、安全的替代策略,可以通过抑制增殖、诱导细胞凋亡和细胞周期阻滞、抑制迁移和侵袭来治疗黑色素瘤。

关键词: 洛哌丁胺,黑色素瘤,细胞凋亡,迁移,侵袭,药物再利用。

图形摘要
[1]
Medhin, L.B.; Beasley, A.B.; Warburton, L.; Amanuel, B.; Gray, E.S. Extracellular vesicles as a liquid biopsy for melanoma: Are we there yet? Semin. Cancer Biol., 2023, 89, 92-98.
[http://dx.doi.org/10.1016/j.semcancer.2023.01.008] [PMID: 36706847]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Allen, K.J.H.; Malo, M.E.; Jiao, R.; Dadachova, E. Targeting melanin in melanoma with radionuclide therapy. Int. J. Mol. Sci., 2022, 23(17), 9520.
[http://dx.doi.org/10.3390/ijms23179520] [PMID: 36076924]
[4]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[5]
Reijers, I.L.M.; Menzies, A.M.; van Akkooi, A.C.J.; Versluis, J.M.; van den Heuvel, N.M.J.; Saw, R.P.M.; Pennington, T.E.; Kapiteijn, E.; van der Veldt, A.A.M.; Suijkerbuijk, K.P.M.; Hospers, G.A.P.; Rozeman, E.A.; Klop, W.M.C.; van Houdt, W.J.; Sikorska, K.; van der Hage, J.A.; Grünhagen, D.J.; Wouters, M.W.; Witkamp, A.J.; Zuur, C.L.; Lijnsvelt, J.M.; Torres Acosta, A.; Grijpink-Ongering, L.G.; Gonzalez, M.; Jóźwiak, K.; Bierman, C.; Shannon, K.F.; Ch’ng, S.; Colebatch, A.J.; Spillane, A.J.; Haanen, J.B.A.G.; Rawson, R.V.; van de Wiel, B.A.; van de Poll-Franse, L.V.; Scolyer, R.A.; Boekhout, A.H.; Long, G.V.; Blank, C.U. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: The PRADO trial. Nat. Med., 2022, 28(6), 1178-1188.
[http://dx.doi.org/10.1038/s41591-022-01851-x] [PMID: 35661157]
[6]
Sahu, A.; Wang, X.; Munson, P.; Klomp, J.P.G.; Wang, X.; Gu, S.S.; Han, Y.; Qian, G.; Nicol, P.; Zeng, Z.; Wang, C.; Tokheim, C.; Zhang, W.; Fu, J.; Wang, J.; Nair, N.U.; Rens, J.A.P.; Bourajjaj, M.; Jansen, B.; Leenders, I.; Lemmers, J.; Musters, M.; van Zanten, S.; van Zelst, L.; Worthington, J.; Liu, J.S.; Juric, D.; Meyer, C.A.; Oubrie, A.; Liu, X.S.; Fisher, D.E.; Flaherty, K.T. Discovery of targets for immune–metabolic antitumor drugs identifies estrogen-related receptor alpha. Cancer Discov., 2023, 13(3), 672-701.
[http://dx.doi.org/10.1158/2159-8290.CD-22-0244] [PMID: 36745048]
[7]
Shen, S.; Gao, Y.; Ouyang, Z.; Jia, B.; Shen, M.; Shi, X. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity. J. Control. Release, 2023, 355, 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.076] [PMID: 36736909]
[8]
Serratì, S.; Guida, M.; Di Fonte, R.; De Summa, S.; Strippoli, S.; Iacobazzi, R.M.; Quarta, A.; De Risi, I.; Guida, G.; Paradiso, A.; Porcelli, L.; Azzariti, A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol. Cancer, 2022, 21(1), 20.
[http://dx.doi.org/10.1186/s12943-021-01490-9] [PMID: 35042524]
[9]
Pasquali, S.; Hadjinicolaou, A.V.; Chiarion Sileni, V.; Rossi, C.R.; Mocellin, S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Libr., 2018, 2020(11), CD011123.
[http://dx.doi.org/10.1002/14651858.CD011123.pub2] [PMID: 29405038]
[10]
van Akkooi, A.C.J.; Blank, C.; Eggermont, A.M.M. Neo-adjuvant immunotherapy emerges as best medical practice, and will be the new standard of care for macroscopic stage III melanoma. Eur. J. Cancer, 2023, 182, 38-42.
[http://dx.doi.org/10.1016/j.ejca.2023.01.004] [PMID: 36738540]
[11]
Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Olofsson Bagge, R.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol., 2023, 20(2), 99-115.
[http://dx.doi.org/10.1038/s41571-022-00714-1] [PMID: 36600005]
[12]
Charpignon, M.L.; Vakulenko-Lagun, B.; Zheng, B.; Magdamo, C.; Su, B.; Evans, K.; Rodriguez, S.; Sokolov, A.; Boswell, S.; Sheu, Y.H.; Somai, M.; Middleton, L.; Hyman, B.T.; Betensky, R.A.; Finkelstein, S.N.; Welsch, R.E.; Tzoulaki, I.; Blacker, D.; Das, S.; Albers, M.W. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat. Commun., 2022, 13(1), 7652.
[http://dx.doi.org/10.1038/s41467-022-35157-w] [PMID: 36496454]
[13]
Bennett, D.F.; Goyala, A.; Statzer, C.; Beckett, C.W.; Tyshkovskiy, A.; Gladyshev, V.N.; Ewald, C.Y.; de Magalhães, J.P. Rilmenidine extends lifespan and healthspan in Caenorhabditis elegans via a nischarin I1-imidazoline receptor. Aging Cell, 2023, 22(2), e13774.
[http://dx.doi.org/10.1111/acel.13774] [PMID: 36670049]
[14]
Meco, D.; Attinà, G.; Mastrangelo, S.; Navarra, P.; Ruggiero, A. Emerging perspectives on the antiparasitic mebendazole as a repurposed drug for the treatment of brain cancers. Int. J. Mol. Sci., 2023, 24(2), 1334-13353.
[http://dx.doi.org/10.3390/ijms24021334] [PMID: 36674870]
[15]
Sezaki, M.; Huang, G. Repurposing immunosuppressants for antileukemia therapy. EMBO Mol. Med., 2023, 15(1), e17042.
[http://dx.doi.org/10.15252/emmm.202217042] [PMID: 36453114]
[16]
Chu, Q.; An, J.; Liu, P.; Song, Y.; Zhai, X.; Yang, R.; Niu, J.; Yang, C.; Li, B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J. Exp. Med., 2023, 220(3), e20221316.
[http://dx.doi.org/10.1084/jem.20221316] [PMID: 36520461]
[17]
Yang, K.; Yang, Y.; Fan, S.; Xia, J.; Zheng, Q.; Dong, X.; Liu, J.; Liu, Q.; Lei, L.; Zhang, Y.; Li, B.; Gao, Z.; Zhang, R.; Liu, B.; Wang, Z.; Zhou, X. DRONet: Effectiveness-driven drug repositioning framework using network embedding and ranking learning. Brief. Bioinform., 2023, 24(1), bbac518.
[http://dx.doi.org/10.1093/bib/bbac518] [PMID: 36562715]
[18]
Spitschak, A.; Gupta, S.; Singh, K.P.; Logotheti, S.; Pützer, B.M. Drug repurposing at the interface of melanoma immunotherapy and autoimmune disease. Pharmaceutics, 2022, 15(1), 83-108.
[http://dx.doi.org/10.3390/pharmaceutics15010083] [PMID: 36678712]
[19]
Bedoya-Cardona, J.E.; Rubio-Carrasquilla, M.; Ramírez-Velásquez, I.M.; Valdés-Tresanco, M.S.; Moreno, E. Identifying potential molecular targets in fungi based on (Dis)similarities in binding site architecture with proteins of the human pharmacolome. Molecules, 2023, 28(2), 692-708.
[http://dx.doi.org/10.3390/molecules28020692] [PMID: 36677748]
[20]
Ma, S.; Patell, R.; Miller, E.; Ren, S.; Marquez-Garcia, J.; Panoff, S.; Sharma, R.; Pinson, A.; Elavalakanar, P.; Weber, G.; Uhlmann, E.; Neuberg, D.; Soman, S.; Zwicker, J.I. Antiplatelet medications and intracranial hemorrhage in patients with primary brain tumors. J. Thromb. Haemost., 2023, 21(5), 1148-1155.
[http://dx.doi.org/10.1016/j.jtha.2023.01.031] [PMID: 36740041]
[21]
Majidi, A.; Na, R.; Jordan, S.J.; DeFazio, A.; Obermair, A.; Friedlander, M.; Grant, P.; Webb, P.M. Common analgesics and ovarian cancer survival: The Ovarian cancer prognosis and lifestyle (OPAL) study. J. Natl. Cancer Inst., 2023, 115(5), 570-577.
[http://dx.doi.org/10.1093/jnci/djac239] [PMID: 36744914]
[22]
Zhu, C.; Li, K.; Peng, X.X.; Yao, T.J.; Wang, Z.Y.; Hu, P.; Cai, D.; Liu, H.Y. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front. Immunol., 2022, 13, 1083788-1083794.
[http://dx.doi.org/10.3389/fimmu.2022.1083788] [PMID: 36561763]
[23]
Kralj, J.; Pernar Kovač, M.; Dabelić, S.; Polančec, D.S.; Wachtmeister, T.; Köhrer, K.; Brozovic, A. Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br. J. Cancer, 2023, 128(7), 1344-1359.
[http://dx.doi.org/10.1038/s41416-023-02140-1] [PMID: 36717670]
[24]
Lembo, A.; Sultan, S.; Chang, L.; Heidelbaugh, J.J.; Smalley, W.; Verne, G.N. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology, 2022, 163(1), 137-151.
[http://dx.doi.org/10.1053/j.gastro.2022.04.017] [PMID: 35738725]
[25]
Chan, A.; Ruiz-Borrego, M.; Marx, G.; Chien, A.J.; Rugo, H.S.; Brufsky, A.; Thirlwell, M.; Trudeau, M.; Bose, R.; García-Sáenz, J.A.; Egle, D.; Pistilli, B.; Wassermann, J.; Cheong, K.A.; Schnappauf, B.; Semsek, D.; Singer, C.F.; Foruzan, N.; DiPrimeo, D.; McCulloch, L.; Hurvitz, S.A.; Barcenas, C.H. Final findings from the CONTROL trial: Strategies to reduce the incidence and severity of neratinib-associated diarrhea in patients with HER2-positive early-stage breast cancer. Breast, 2023, 67, 94-101.
[http://dx.doi.org/10.1016/j.breast.2022.12.003] [PMID: 36702070]
[26]
He, X.; Zhu, L.; Li, S.; Chen, Z.; Zhao, X. Loperamide, an antidiarrheal agent, induces apoptosis and DNA damage in leukemia cells. Oncol. Lett., 2017, 15(1), 765-774.
[http://dx.doi.org/10.3892/ol.2017.7435] [PMID: 29399146]
[27]
Gong, X.W.; Xu, Y.H.; Chen, X.L.; Wang, Y.X. Loperamide, an antidiarrhea drug, has antitumor activity by inducing cell apoptosis. Pharmacol. Res., 2012, 65(3), 372-378.
[http://dx.doi.org/10.1016/j.phrs.2011.11.007] [PMID: 22119769]
[28]
Yang, S.; Zhang, Y.; Luo, Y.; Xu, B.; Yao, Y.; Deng, Y.; Yang, F.; Ye, T.; Wang, G.; Cheng, Z.; Zheng, Y.; Xie, Y. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed. Pharmacother., 2018, 103, 101-110.
[http://dx.doi.org/10.1016/j.biopha.2018.02.076] [PMID: 29635122]
[29]
Yang, S.; Gao, X.; He, Y.; Hu, Y.; Xu, B.; Cheng, Z.; Xiang, M.; Xie, Y. Applying an innovative biodegradable self-assembly nanomicelles to deliver α-mangostin for improving anti-melanoma activity. Cell Death Dis., 2019, 10(3), 146-159.
[http://dx.doi.org/10.1038/s41419-019-1323-9] [PMID: 30770785]
[30]
Li, W.; Jiang, W.S.; Su, Y.R.; Tu, K.W.; Zou, L.; Liao, C.R.; Wu, Q.; Wang, Z.H.; Zhong, Z.M.; Chen, J.T.; Zhu, S.Y. PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis., 2023, 14(2), 88.
[http://dx.doi.org/10.1038/s41419-023-05595-5] [PMID: 36750550]
[31]
Dong, P.; Shi, Q.; Peng, R.; Yuan, Y.; Xie, X. N,N-dimethyl chitosan oligosaccharide (DMCOS) promotes antifungal activity by causing mitochondrial damage. Carbohydr. Polym., 2023, 303, 120459.
[http://dx.doi.org/10.1016/j.carbpol.2022.120459] [PMID: 36657838]
[32]
Larrue, C.; Mouche, S.; Lin, S.; Simonetta, F.; Scheidegger, N.K.; Poulain, L.; Birsen, R.; Sarry, J.E.; Stegmaier, K.; Tamburini, J. Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia. Leukemia, 2023, 37(4), 765-775.
[http://dx.doi.org/10.1038/s41375-023-01835-x] [PMID: 36739349]
[33]
Zerhouni, M.; Piskounova, E. Running to outcompete metastasis. Cancer Res., 2022, 82(22), 4124-4125.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-2898] [PMID: 36377384]
[34]
Houles, T.; Lavoie, G.; Nourreddine, S.; Cheung, W.; Vaillancourt-Jean, É.; Guérin, C.M.; Bouttier, M.; Grondin, B.; Lin, S.; Saba-El-Leil, M.K.; Angers, S.; Meloche, S.; Roux, P.P. CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma. Nat. Commun., 2022, 13(1), 6457-6472.
[http://dx.doi.org/10.1038/s41467-022-34179-8] [PMID: 36309522]
[35]
Claps, G.; Faouzi, S.; Quidville, V.; Chehade, F.; Shen, S.; Vagner, S.; Robert, C. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol., 2022, 19(12), 749-762.
[http://dx.doi.org/10.1038/s41571-022-00686-2] [PMID: 36207413]
[36]
Onódi, Z.; Koch, S.; Rubinstein, J.; Ferdinandy, P.; Varga, Z.V. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br. J. Pharmacol., 2023, 180(6), 685-700.
[http://dx.doi.org/10.1111/bph.16001] [PMID: 36484549]
[37]
Schipper, L.J.; Zeverijn, L.J.; Garnett, M.J.; Voest, E.E. Can drug repurposing accelerate precision oncology? Cancer Discov., 2022, 12(7), 1634-1641.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0612] [PMID: 35642948]
[38]
Yin, Y.; Yu, X.; Feng, R.; Li, Y.; Zhao, Y.; Liu, Z. Drug repurposing applications to overcome male predominance via targeting G2/M checkpoint in human esophageal squamous cell carcinoma. Cancers, 2022, 14(23), 5854-5872.
[http://dx.doi.org/10.3390/cancers14235854] [PMID: 36497337]
[39]
Meyer, N.; Henkel, L.; Linder, B.; Zielke, S.; Tascher, G.; Trautmann, S.; Geisslinger, G.; Münch, C.; Fulda, S.; Tegeder, I.; Kögel, D. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy, 2021, 17(11), 3424-3443.
[http://dx.doi.org/10.1080/15548627.2021.1874208] [PMID: 33461384]
[40]
Zielke, S.; Meyer, N.; Mari, M.; Abou-El-Ardat, K.; Reggiori, F.; van Wijk, S.J.L.; Kögel, D.; Fulda, S. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis., 2018, 9(10), 994-1009.
[http://dx.doi.org/10.1038/s41419-018-1003-1] [PMID: 30250198]
[41]
Kim, I.Y.; Shim, M.J.; Lee, D.M.; Lee, A.R.; Kim, M.A.; Yoon, M.J.; Kwon, M.R.; Lee, H.I.; Seo, M.J.; Choi, Y.W.; Choi, K.S. Loperamide overcomes the resistance of colon cancer cells to bortezomib by inducing CHOP-mediated paraptosis-like cell death. Biochem. Pharmacol., 2019, 162, 41-54.
[http://dx.doi.org/10.1016/j.bcp.2018.12.006] [PMID: 30529689]
[42]
Wang, Z.; Mačáková, M.; Bugai, A.; Kuznetsov, S.G.; Hassinen, A.; Lenasi, T.; Potdar, S.; Friedel, C.C.; Barborič, M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res., 2023, 51(4), 1687-1706.
[http://dx.doi.org/10.1093/nar/gkad001] [PMID: 36727434]
[43]
Prasad, D.; Illek, K.; Fischer, F.; Holstein, K.; Classen, A.K. Bilateral JNK activation is a hallmark of interface surveillance and promotes elimination of aberrant cells. eLife, 2023, 12, e80809.
[http://dx.doi.org/10.7554/eLife.80809] [PMID: 36744859]
[44]
Wang, Z.; Hu, H.; Heitink, L.; Rogers, K.; You, Y.; Tan, T.; Suen, C.L.W.; Garnham, A.; Chen, H.; Lieschke, E.; Diepstraten, S.T.; Chang, C.; Chen, T.; Moujalled, D.; Sutherland, K.; Lessene, G.; Sieber, O.M.; Visvader, J.; Kelly, G.L.; Strasser, A. The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ., 2023, 30(4), 1033-1046.
[http://dx.doi.org/10.1038/s41418-023-01122-3] [PMID: 36739334]
[45]
Diepstraten, S.T.; Young, S.; La Marca, J.E.; Wang, Z.; Kluck, R.M.; Strasser, A.; Kelly, G.L. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ., 2023, 30(4), 1005-1017.
[http://dx.doi.org/10.1038/s41418-023-01117-0] [PMID: 36755070]
[46]
Jung-Garcia, Y.; Maiques, O.; Monger, J.; Rodriguez-Hernandez, I.; Fanshawe, B.; Domart, M.C.; Renshaw, M.J.; Marti, R.M.; Matias-Guiu, X.; Collinson, L.M.; Sanz-Moreno, V.; Carlton, J.G. LAP1 supports nuclear adaptability during constrained melanoma cell migration and invasion. Nat. Cell Biol., 2023, 25(1), 108-119.
[http://dx.doi.org/10.1038/s41556-022-01042-3] [PMID: 36624187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy