Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Green Methodologies for Tetrazole Synthesis from Different Starting Materials: A Recent Update

Author(s): Shivangi Jaiswal, Jaya Dwivedi*, Dharma Kishore and Swapnil Sharma*

Volume 28, Issue 2, 2024

Published on: 31 January, 2024

Page: [134 - 160] Pages: 27

DOI: 10.2174/0113852728283721240109092312

Price: $65

Abstract

Tetrazole is a most versatile pharmacophore of which more than twenty FDAapproved drugs have been marketed globally for the management of various diseases. In spite of many remarkable and consistent efforts having been made by the chemists towards the development of greener and sustainable strategies for the synthesis of tetrazole derivatives, this approach still needs more attention. The present review focuses on the green synthetic approach for the preparation of tetrazole derivatives from different starting materials such as nitrile, isonitrile, carbonyl, amine, amide, oxime and terminal alkyne functions. The mechanism of tetrazole synthesis from different substrates is discussed. In addition to this, a four component Ugi-azide reaction to the tetrazole synthesis is also described. Of note, the present articles exploited several water-mediated and solvent-free methodologies for tetrazole synthesis. The important key features of tetrazole synthesis were pinpointing in each synthetic scheme which provides excellent guide to those searching for selective procedure to achieve the desired transformation. This review seeks to present a timely account (2011-2023) on the splendid array of ecofriendly procedures of synthesis known today for the preparation of tetrazole derivatives from different starting materials. The rational of this review is to enlighten recent advancements in the synthesis of tetrazole derivatives from different substrates.

Keywords: Tetrazole, one-pot, metal-catalyzed, microwave, nanocatalyst, ultrasound, ionic-liquid.

Graphical Abstract
[1]
a) Banerjee, M.; Panjikar, P.C.; Das, D.; Iyer, S.; Bhosle, A.A.; Chatterjee, A. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron, 2022, 112, 132753.
[http://dx.doi.org/10.1016/j.tet.2022.132753];
b) Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron, 2022, 126, 133085.
[http://dx.doi.org/10.1016/j.tet.2022.133085];
c) Ranjith, R. The chemistry and biological significance of imidazole, benzimidazole, benzoxazole, tetrazole and quinazolinone nucleus. J. Chem. Pharm. Res., 2016, 8(5), 505-526.;
d) Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in tetrazole chemistry (2009–16). Adv. Heterocycl. Chem., 2017, 123, 1-62.
[http://dx.doi.org/10.1016/bs.aihch.2016.12.003]
[2]
a) Arafa, W.A.A.; Ghoneim, A.A.; Mourad, A.K. N-Naphthoyl thiourea derivatives: An efficient ultrasonic-assisted synthesis, reaction, and in vitro anticancer evaluations. ACS Omega, 2022, 7(7), 6210-6222.
[http://dx.doi.org/10.1021/acsomega.1c06718] [PMID: 35224384];
b) Borah, B.; Chowhan, L.R. Ultrasound-assisted transition-metal-free catalysis: A sustainable route towards the synthesis of bioactive heterocycles. RSC Adv., 2022, 12(22), 14022-14051.
[http://dx.doi.org/10.1039/D2RA02063G] [PMID: 35558846];
c) Garg, S.; Sohal, H.S.; Malhi, D.S.; Kaur, M.; Singh, K.; Sharma, A.; Mutreja, V.; Thakur, D.; Kaur, L. Electrochemical method: A green approach for the synthesis of organic compounds. Curr. Org. Chem., 2022, 26(10), 899-919.
[http://dx.doi.org/10.2174/1385272826666220516113152];
d) Nair, G.M.; Sajini, T.; Mathew, B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open, 2022, 5, 100080.
[http://dx.doi.org/10.1016/j.talo.2021.100080]
[3]
a) Banger, A.; Gautam, S.; Jadoun, S.; Jangid, N.K.; Srivastava, A.; Pulidindi, I.N.; Dwivedi, J.; Srivastava, M. Synthetic methods and applications of carbon nanodots. Catalysts, 2023, 13(5), 858.
[http://dx.doi.org/10.3390/catal13050858];
b) Chauhan, D.; Dwivedi, J.; Sankararamakrishnan, N. Facile synthesis of smart biopolymeric nanofibers towards toxic ion removal and disinfection control. RSC Advances, 2014, 4(97), 54694-54702.
[http://dx.doi.org/10.1039/C4RA11172A];
c) Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774];
d) Tak, K.; Sharma, R.; Dave, V.; Jain, S.; Sharma, S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2020, 11(22), 3741-3748.
[http://dx.doi.org/10.1021/acschemneuro.0c00273] [PMID: 33119989]
[]
e) Sain, S.; Jain, S.; Srivastava, M.; Vishwakarma, R.; Dwivedi, J. Application of palladium-catalyzed cross-coupling reactions in organic synthesis. Curr. Org. Synth., 2020, 16(8), 1105-1142.
[http://dx.doi.org/10.2174/1570179416666191104093533] [PMID: 31984919]
[4]
a) Wan, C.; Li, G.; Wang, J.; Xu, L.; Cheng, D.; Chen, F.; Asakura, Y.; Kang, Y.; Yamauchi, Y. Modulating electronic metal‐support interactions to boost visible‐light‐driven hydrolysis of ammonia borane: Nickel‐platinum nanoparticles supported on phosphorus‐doped titania. Angew. Chem. Int. Ed., 2023, 62(40), e202305371.
[http://dx.doi.org/10.1002/anie.202305371] [PMID: 37291046];
b) Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm mediated wastewater treatment: A comprehensive review. Mater. Adv., 2023.;
c) Arya, N.; Dwivedi, J.; Khedkar, V.M.; Coutinho, E.C.; Jain, K.S. Design, synthesis and biological evaluation of some 2-azetidinone derivatives as potential antihyperlipidemic agents. Arch. Pharm., 2013, 346(12), 872-881.
[http://dx.doi.org/10.1002/ardp.201300262] [PMID: 24142910]
[5]
a) Wan, C.; Liu, X.; Wang, J.; Chen, F.; Cheng, D.G. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res., 2023, 16(5), 6260-6269.
[http://dx.doi.org/10.1007/s12274-023-5388-5];
b) Panchal, J.; Jain, S.; Jain, P.K.; Kishore, D.; Dwivedi, J. Greener approach toward synthesis of biologically active s‐TRIAZINE (TCT) derivatives: A recent update. J. Heterocycl. Chem., 2021, 58(11), 2049-2066.
[http://dx.doi.org/10.1002/jhet.4343];
c) Misra, A.; Dwivedi, J.; Shukla, S.; Kishore, D.; Sharma, S. Bacterial cell leakage potential of newly synthesized quinazoline derivatives of 1,5‐benzodiazepines analogue. J. Heterocycl. Chem., 2020, 57(4), 1545-1558.
[http://dx.doi.org/10.1002/jhet.3879];
d) Mishra, S.; Dwivedi, J.; Kumar, A.; Sankararamakrishnan, N. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes. RSC Advances, 2016, 6(98), 95865-95878.
[http://dx.doi.org/10.1039/C6RA18965B];
e) Rani, M.; Sharma, S.; Chauhan, R.; Sharma, S.; Dwivedi, J. Synthesis, characterization and antibacterial evaluation of some azole derivatives. Indian J. Pharmaceut. Educ. Res., 2017, 51(4), 650-655.
[http://dx.doi.org/10.5530/ijper.51.4.96];
f) Shukla, S.; Dwivedi, J.; Yaduvanshi, N.; Jain, S. Medicinal and biological significance of phenoxazine derivatives. Mini Rev. Med. Chem., 2021, 21(12), 1541-1555.
[http://dx.doi.org/10.2174/1389557520666201214102151] [PMID: 33319658]
[6]
a) Wan, C.; Liang, Y.; Zhou, L.; Huang, J.; Wang, J.; Chen, F.; Zhan, X.; Cheng, D.G. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Energy Environm., 2022, 9(2), 333-343.
[http://dx.doi.org/10.2139/ssrn.4028655];
b) Dwivedi, J.; Devi, K.; Asmat, Y.; Jain, S.; Sharma, S. Synthesis, characterization, antibacterial and antiepileptic studies of some novel thiazolidinone derivatives. J. Saudi Chem. Soc., 2016, 20, S16-S20.
[http://dx.doi.org/10.1016/j.jscs.2012.09.001];
c) Arora, D.; Dwivedi, J.; Kumar, S.; Kishore, D. Greener approach toward the generation of dimedone derivatives. Synth. Commun., 2018, 48(2), 115-134.
[http://dx.doi.org/10.1080/00397911.2017.1387924];
d) Mishra, S.; Dwivedi, J.; Kumar, A.; Sankararamakrishnan, N. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium. RSC Advances, 2015, 5(42), 33023-33036.
[http://dx.doi.org/10.1039/C5RA03168K]
[7]
Panchal, J.; Misra, N.; Devi, M.; Sharma, A.; Jain, S.; Jain, P.; Dwivedi, J.; Sharma, S. Development of an efficient alternative synthesis of the endothelin receptor antago-nist bosentan. Org. Prep. Proced. Int., 2023, 55(5), 404-410.
[http://dx.doi.org/10.1080/00304948.2023.2170665]
[8]
Dewangan, D.; Nakhate, K.; Mishra, A.; Thakur, A.S.; Rajak, H.; Dwivedi, J.; Sharma, S.; Paliwal, S. Design, synthesis, and characterization of quinoxaline derivatives as a potent antimicrobial agent. J. Heterocycl. Chem., 2019, 56(2), 566-578.
[http://dx.doi.org/10.1002/jhet.3431]
[9]
Bajaj, J.; Dwivedi, J.; Sahu, R.; Dave, V.; Verma, K.; Joshi, S.; Sati, B.; Sharma, S.; Seidel, V.; Mishra, A.P. Antidepressant activity of Spathodea campanulata in mice and predictive affinity of spatheosides towards type A monoamine oxidase. Cell. Mol. Biol., 2021, 67(1), 1-8.
[http://dx.doi.org/10.14715/cmb/2021.67.1.1] [PMID: 34817375]
[10]
Sinha, K.; Dwivedi, J.; Singh, P.; Shankar Prasad Sinha, V. Spatio-temporal dynamics of water quality in river sources of drinking water in Uttarakhand with reference to human health. Environ. Sci. Pollut. Res. Int., 2022, 29(43), 64756-64774.
[http://dx.doi.org/10.1007/s11356-022-20302-1] [PMID: 35478393]
[11]
Singh, N.; Srivastava, I.; Mohapatra, A.K.; Singh, A.; Dwivedi, J.; Sankararamakrishnan, N. Ultra-fast and robust capture of fluoride by an amino terephthalic acid-facilitated lanthanum-based organic framework: Insight into performance and mechanisms. New J. Chem., 2023, 47(4), 2026-2039.
[http://dx.doi.org/10.1039/D2NJ05576G]
[12]
Arora, D.; Dwivedi, J.; Arora, S.; Kumar, S.; Kishore, D. Organocatalyzed synthesis and antibacterial activity of novel quinolino annulated analogues of azepinones. J. Heterocycl. Chem., 2018, 55(9), 2178-2187.
[http://dx.doi.org/10.1002/jhet.3260]
[13]
Joshi, P.; Bisht, A.; Joshi, S.; Semwal, D.; Nema, N.K.; Dwivedi, J.; Sharma, S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother. Res., 2022, 36(8), 3143-3180.
[http://dx.doi.org/10.1002/ptr.7522] [PMID: 35790042]
[14]
Dwivedi, J.; Singh, M.; Sharma, S.; Sharma, S. Antioxidant and nephroprotective potential of Aegle marmelos leaves extract. J. Herbs Spices Med. Plants, 2017, 23(4), 363-377.
[http://dx.doi.org/10.1080/10496475.2017.1345029]
[15]
Verma, K.; Jaiswal, R.; Paliwal, S.; Dwivedi, J.; Sharma, S. An insight into PI3k/Akt pathway and associated protein-protein interactions in metabolic syndrome: A recent update. J. Cell. Biochem., 2023, 124(7), 923-942.
[http://dx.doi.org/10.1002/jcb.30433] [PMID: 37408526]
[16]
Gururani, R.; Patel, S.; Bisht, A.; Jain, S.; Paliwal, S.; Dwivedi, J.; Sharma, S. Tylophora indica (Burm. f.) Merr alleviates tracheal smooth muscle hyperresponsiveness in ovalbumin‐induced allergic‐asthma model in guinea‐pigs: Evidences from ex vivo, in silico and in vivo studies. Fundam. Clin. Pharmacol., 2023, 37(6), 1153-1169.
[http://dx.doi.org/10.1111/fcp.12927] [PMID: 37354029]
[17]
a) Gosalia, U.A.; Srivastava, M.; Yaduvanshi, N.; Jaiswal, S.; Jain, S.; Kishore, D.; Dwivedi, J.; Sharma, S. One-pot mediated synthesis of pyrimidine and quinazoline annulated derivatives of nitrogen containing five membered rings through their nitrile derivatives as antibacterial agents. Bull. Chem. Soc. Ethiop., 2023, 37(5), 1193-1208.;
b) Siddiqui, N.; Husain, A. Pharmacological and pharmaceutical profile of valsartan: A review. J. Appl. Pharm. Sci., 2011, 12-19.;
c) Jiang, X. Continuous-flow oxidation of amines based on nitrogen-rich heterocycles: A facile and sustainable approach for promising nitro derivatives. Org. Process Res. Dev., 2022, 26(10), 2823-2829.;
d) Shen, T. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des. Devel. Ther., 2021, 15, 2099-2107.;
e) Li, S. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J. Biomed. Mater. Res. A, 2022, 110(2), 424-442.;
f) Roberti, R. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug-drug interactions and tolerability. CNS Drugs, 2021, 35(6), 609-618.;
g) Seyed Hashtroudi, M. Ru-catalyzed one-pot synthesis of heterocyclic backbones. Catalysts, 2023, 131, 87.;
h) Puskarich, M.A. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine, 2021, 37.;
i) Soni, A. A decade of synthesis of N-heterocyclic derivatives via magnetically retrievable Fe3O4@ SiO2@ Cu (II) nanocatalysts: A review (2013-present). Synth. Commun., 2023, 1-37.;
j) Ghobadi, E. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur. J. Med. Chem., 2022, 231, 14161.;
k) Wang, T. Functionalized tetrazole energetics: A route to enhanced performance. Z. Anorg. Allg. Chem., 2021, 647(4), 157-191.
[18]
a) Molaei, S.; Moeini, N.; Ghadermazi, M. Synthesis of CoFe2O4@ Amino glycol/Gd nanocomposite as a high-efficiency and reusable nanocatalyst for green oxidation of sulfides and synthesis of 5-substituted 1H-tetrazoles. J. Org. Chem., 2022, 977, 122459.;
b) He, P.; Zhang, J.G. Energetic salts based on tetrazole N‐oxide. Chem. Eur. J., 2016, 22(23), 7670-7685.;
c) Al-Majed, A.R.A.; Assiri, E. Losartan: Comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol., 2015, 40, 159-194.
[http://dx.doi.org/10.1016/bs.podrm.2015.02.003] [PMID: 26051686]
[19]
a) Kaushik, N.; Kumar, N.; Kumar, A.; Singh, U.K. Tetrazoles: Synthesis and biological activity. Immunol. Endocr. Metab. Agents Med. Chem., 2018, 18(1), 3-21.
[http://dx.doi.org/10.2174/1871522218666180525100850];
b) Xu, Y.; Kong, J.; Hu, P. Computational drug repurposing for Alzheimer’s disease using risk genes from GWAS and single-cell RNA sequencing studies. Front. Pharmacol., 2021, 12, 617537.
[http://dx.doi.org/10.3389/fphar.2021.617537] [PMID: 34276354];
c) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Kaur, N.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4‐benzodiazepine nucleus via click approach. ChemistrySelect, 2023, 8(6), e202204710.
[http://dx.doi.org/10.1002/slct.202204710];
d) Sain, S.; Jaiswal, S.; Jain, S.; Misra, N.; Srivastava, A.; Jendra, R.; Kishore, D.; Dwivedi, J.; Wabaidur, S.M.; Islam, M.A.; Sharma, S. Synthesis and theoretical studies of biologically active thieno nucleus incorporated Tri and tetracyclic nitrogen containing heterocyclics scaffolds via suzuki cross‐coupling reaction. Chem. Biodivers., 2022, 19(12), e202200540.
[http://dx.doi.org/10.1002/cbdv.202200540] [PMID: 36310125];
e) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734];
f) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Jain, S.; Jain, S.; Verma, K.; Verma, R.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine. J. Mol. Struct., 2023, 1286, 135571.
[http://dx.doi.org/10.1016/j.molstruc.2023.135571];
g) Jaiswal, S.; Devi, M.; Sharma, N.; Rathi, K.; Dwivedi, J.; Sharma, S. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review. Org. Prep. Proced. Int., 2022, 54(5), 387-422.
[http://dx.doi.org/10.1080/00304948.2022.2069456]
[20]
a) Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569];
b) Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236];
c) Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[PMID: 28356016]
[21]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184, 111744.
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[22]
Wang, S.Q.; Wang, Y.F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[23]
Swami, S.; Sahu, S.N.; Shrivastava, R. Nanomaterial catalyzed green synthesis of tetrazoles and its derivatives: A review on recent advancements. RSC Adv., 2021, 11(62), 39058-39086.
[http://dx.doi.org/10.1039/D1RA05955F] [PMID: 35492456]
[24]
Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: A recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[25]
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. Chitosan supported 1-phenyl-1H-tetrazole-5-thiol ionic liquid copper(II) complex as an efficient catalyst for the synthesis of arylaminotetrazoles. J. Mol. Liq., 2021, 341, 117398.
[http://dx.doi.org/10.1016/j.molliq.2021.117398]
[26]
Nasrollahzadeh, M.; Nezafat, Z.; Bidgoli, N.S.S.; Shafiei, N. Use of tetrazoles in catalysis and energetic applications: Recent developments. Mol. Cataly., 2021, 513, 111788.
[http://dx.doi.org/10.1016/j.mcat.2021.111788]
[27]
Pokatilov, F.A.; Akamova, H.V.; Kizhnyaev, V.N. Synthesis and properties of tetrazole-containing polyelectrolytes based on chitosan, starch, and arabinogalactan. e-Polymers,, 2022, 221, 203-213.
[28]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[29]
Elewa, S.I.; Fatthallah, N.A.; Nessim, M.I.; El-Farargy, A.F. Synthesis and characterization of some tetrazoles and their prospective for aerobic micro-fouling mitigation. Arab. J. Chem., 2020, 13(12), 8750-8757.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.005]
[30]
Nazhan Khurshid, M.; Hameed Jumaa, F.; Salem Jassim, S. Synthesis, characterization, and evaluation of the biological activity of tetrazole compounds derived from the nitrogenous base uracil. Mater. Today Proc., 2022, 49, 3630-3639.
[http://dx.doi.org/10.1016/j.matpr.2021.08.203]
[31]
El-Remaily, M.A.E.A.A.A.; Elhady, O.M. Iron (III)‐porphyrin complex FeTSPP as an efficient catalyst for synthesis of tetrazole derivatives via [2 + 3]cycloaddition reaction in aqueous medium. Appl. Organomet. Chem., 2019, 33(8), e4989.
[http://dx.doi.org/10.1002/aoc.4989]
[32]
Yaduvanshi, N.; Jaiswal, S.; Tewari, S.; Shukla, S.; Wabaidur, S.M.; Dwivedi, J.; Sharma, S. Palladium nanoparticles and their composites: Green synthesis and applications with special emphasis to organic transformations. Inorg. Chem. Commun., 2023, 151, 110600.
[http://dx.doi.org/10.1016/j.inoche.2023.110600]
[33]
Carpentier, F.; Felpin, F.X.; Zammattio, F.; Le Grognec, E. Synthesis of 5-substituted 1H-tetrazoles from nitriles by continuous flow: Application to the synthesis of valsartan. Org. Process Res. Dev., 2020, 24(5), 752-761.
[http://dx.doi.org/10.1021/acs.oprd.9b00526]
[34]
Jani, M.A.; Bahrami, K. Synthesis of 5‐substituted 1H‐tetrazoles and oxidation of sulfides by using boehmite nanoparticles/nickel‐curcumin as a robust and extremely efficient green nanocatalyst. Appl. Organomet. Chem., 2020, 34(12), e6014.
[http://dx.doi.org/10.1002/aoc.6014]
[35]
Yıldız, Y.; Esirden, İ.; Erken, E.; Demir, E.; Kaya, M.; Şen, F. Microwave (Mw)‐assisted synthesis of 5‐substituted 1H‐tetrazoles via [3+2] cycloaddition catalyzed by mw‐pd/co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect, 2016, 1(8), 1695-1701.
[http://dx.doi.org/10.1002/slct.201600265]
[36]
Padmaja, R.D.; Chanda, K. A robust and recyclable ionic liquid-supported copper(II) catalyst for the synthesis of 5-substituted-1H-tetrazoles using microwave irradiation. Res. Chem. Intermed., 2020, 46(2), 1307-1317.
[http://dx.doi.org/10.1007/s11164-019-04035-4]
[37]
Dofe, V.S.; Sarkate, A.P.; Tiwari, S.V.; Lokwani, D.K.; Karnik, K.S.; Kale, I.A.; Dodamani, S.; Jalalpure, S.S.; Burra, P.V.L.S. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg. Med. Chem. Lett., 2020, 30(22), 127592.
[http://dx.doi.org/10.1016/j.bmcl.2020.127592] [PMID: 33010448]
[38]
Tamoradi, T.; Veisi, H.; Karmakar, B.; Gholami, J. A competent green methodology for the synthesis of aryl thioethers and 1H-tetrazole over magnetically retrievable novel CoFe2O4@l-asparagine anchored Cu, Ni nanocatalyst. Mater. Sci. Eng. C, 2020, 107, 110260.
[http://dx.doi.org/10.1016/j.msec.2019.110260] [PMID: 31761157]
[39]
Tamoradi, T.; Ghorbani-Choghamarani, A.; Ghadermazi, M.; Veisi, H. SBA15@Glycine-M (M= Ni and Cu): Two green, novel and efficient catalysts for the one-pot synthesis of 5-substituted tetrazole and polyhydroquinoline derivatives. Solid State Sci., 2019, 91, 96-107.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.020]
[40]
Reddivari, C.K.R.; Devineni, S.R.; Venkateshwarulu, J.K.M.; Baki, V.B.; Chippada, A.R.; Wudayagiri, R.; Venkata, R.R.Y.; Chamarthi, N.R. ZnBr2-SiO2 catalyzed green synthesis of tetrazoles: Molecular docking and antioxidant activity studies. Eur. J. Chem., 2017, 8(1), 66-75.
[http://dx.doi.org/10.5155/eurjchem.8.1.66-75.1515]
[41]
Hameed, A.; Ali, S.A.; Khan, A.A.; Moin, S.T.; Khan, K.M.; Hashim, J.; Basha, F.Z.; Malik, M.I. Solvent-free click chemistry for tetrazole synthesis from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-Based fluorinated ionic liquids, their micellization, and density functional theory studies. RSC Advances, 2014, 4(109), 64128-64137.
[http://dx.doi.org/10.1039/C4RA13393E]
[42]
Jahanshahi, R.; Akhlaghinia, B. Expanded perlite: An inexpensive natural efficient heterogeneous catalyst for the green and highly accelerated solvent-free synthesis of 5-substituted-1H-tetrazoles using [bmim]N3 and nitriles. RSC Advances, 2015, 5(126), 104087-104094.
[http://dx.doi.org/10.1039/C5RA21481E]
[43]
Arya, N.; Jagdale, A.Y.; Patil, T.A.; Yeramwar, S.S.; Holikatti, S.S.; Dwivedi, J.; Shishoo, C.J.; Jain, K.S. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem., 2014, 74, 619-656.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.002] [PMID: 24531200]
[44]
Khalafi-Nezhad, A.; Mohammadi, S. Highly efficient synthesis of 1- and 5-substituted 1H-tetrazoles using chitosan derived magnetic ionic liquid as a recyclable biopolymer-supported catalyst. RSC Adv., 2013, 3(13), 4362-4371.
[http://dx.doi.org/10.1039/c3ra23107k]
[45]
Lambat, T.L.; Chopra, P.K.P.G.; Mahmood, S.H. Microwave: A green contrivance for the synthesis of N-heterocyclic compounds. Curr. Org. Chem., 2020, 24(22), 2527-2554.
[http://dx.doi.org/10.2174/1385272824999200622114919]
[46]
Mehraban, J.A.; Azizi, K.; Jalali, M.S.; Heydari, A. Choline azide: New reagent and ionic liquid in catalyst‐free and solvent‐free synthesis of 5‐substituted‐1H‐tetrazoles: A triple function reagent. ChemistrySelect, 2018, 3(1), 116-121.
[http://dx.doi.org/10.1002/slct.201702427]
[47]
Motahharifar, N.; Nasrollahzadeh, M.; Taheri-Kafrani, A.; Varma, R.S.; Shokouhimehr, M. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in ecofriendly media. Carbohydr. Polym., 2020, 232, 115819.
[http://dx.doi.org/10.1016/j.carbpol.2019.115819] [PMID: 31952615]
[48]
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. Copper(II) complex anchored on magnetic chitosan functionalized trichlorotriazine: An efficient heterogeneous catalyst for the synthesis of tetrazole derivatives. Colloid Interface Sci. Commun., 2021, 44, 100471.
[http://dx.doi.org/10.1016/j.colcom.2021.100471]
[49]
Ashok, D.; Nagaraju, N.; Lakshmi, B.V.; Sarasija, M. Microwave assisted synthesis of 5-[4-(3-Phenyl-4,5-dihydro-1H-pyrazol-5-yl)phenyl]-1H-tetrazole derivatives and their antimicrobial activity. Russ. J. Gen. Chem., 2019, 89(9), 1905-1910.
[http://dx.doi.org/10.1134/S1070363219090275]
[50]
Sivaguru, P.; Theerthagiri, P.; Lalitha, A. Metal free organic transformation: Cyanuric chloride catalyzed synthesis of 5-substituted-1H-tetrazoles. Tetrahedron Lett., 2015, 56(17), 2203-2206.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.032]
[51]
Atarod, M.; Safari, J.; Tebyanian, H. Ultrasound irradiation and green synthesized CuO-NiO-ZnO mixed metal oxide: An efficient sono/nano-catalytic system toward a regioselective synthesis of 1-aryl-5-amino-1H-tetrazoles. Synth. Commun., 2020, 50(13), 1993-2006.
[http://dx.doi.org/10.1080/00397911.2020.1761396]
[52]
Pourhassan, F.; Eshghi, H. Novel hybrid thioamide ligand supported copper nanoparticles on SBA-15: A copper rich robust nanoreactor for green synthesis of triazoles and tetrazoles in water medium. Catal. Lett., 2020, 150(5), 1287-1300.
[http://dx.doi.org/10.1007/s10562-019-03031-y]
[53]
Dong, S.; Wang, T.; Wang, H.; Qian, K.; Zhang, Z.; Zuo, Y.; Luo, G.; Jin, Y.; Wang, Z. Synthesis and evaluation of 5‐(o‐Tolyl)‐1H‐tetrazole derivatives as potent anticonvulsant agents. Arch. Pharm., 2017, 350(5), 1600389.
[http://dx.doi.org/10.1002/ardp.201600389]
[54]
Mani, P.; Singh, A.K.; Awasthi, S.K. AgNO3 catalyzed synthesis of 5-substituted-1H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett., 2014, 55(11), 1879-1882.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.117]
[55]
Molaei, S.; Ghadermazi, M. Cu attached functionalized mesoporous MCM-41: A novel heterogeneous nanocatalyst for eco-friendly one-step thioether formation reaction and synthesis of 5-substituted 1H-tetrazoles. Res. Chem. Intermed., 2021, 47(11), 4557-4581.
[http://dx.doi.org/10.1007/s11164-021-04543-2]
[56]
Zhu, K.; Wang, L.; Chen, Q.; He, M. Iron-catalyzed oxidative dehydrogenative coupling of ethers with aryl tetrazoles. Tetrahedron Lett., 2015, 56(34), 4943-4946.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.091]
[57]
Panchal, J.; Jaiswal, S.; Jain, S.; Kumawat, J.; Sharma, A.; Jain, P.; Jain, S.; Verma, K.; Dwivedi, J.; Sharma, S. Development of novel bosentan analogues as endothelin receptor antagonists for pulmonary arterial hypertension. Eur. J. Med. Chem., 2023, 259, 115681.
[http://dx.doi.org/10.1016/j.ejmech.2023.115681] [PMID: 37515921]
[58]
Nimesh, S.; Ang, H.G. Crystal structure and improved synthesis of 1‐(2H-tetrazol‐5‐yl)guanidium nitrate. Propellants Explos. Pyrotech., 2016, 41(4), 719-724.
[http://dx.doi.org/10.1002/prep.201600005]
[59]
Kamijo, S.; Jin, T.; Huo, Z.; Gyoung, Y.S.; Shim, J.G.; Yamamoto, Y. Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Mol. Divers., 2003, 6(3-4), 181-192.
[PMID: 15068080]
[60]
Lang, L.; Zhou, H.; Xue, M.; Wang, X.; Xu, Z. Mesoporous ZnS hollow spheres-catalyzed synthesis of 5-substituted 1H-tetrazoles. Mater. Lett., 2013, 106, 443-446.
[http://dx.doi.org/10.1016/j.matlet.2013.05.067]
[61]
Rostamizadeh, S.; Ghaieni, H.; Aryan, R.; Amani, A. Zinc chloride catalyzed synthesis of 5-substituted 1H-tetrazoles under solvent free condition. Chin. Chem. Lett., 2009, 20(11), 1311-1314.
[http://dx.doi.org/10.1016/j.cclet.2009.06.020]
[62]
Aali, E.; Gholizadeh, M.; Noroozi-Shad, N. 1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. J. Mol. Struct., 2022, 1247, 131289.
[http://dx.doi.org/10.1016/j.molstruc.2021.131289]
[63]
Telvekar, V.; Bhagat, S. L-Proline: An efficient organocatalyst for the synthesis of 5-substituted 1H-tetrazoles via [3+ 2] cycloaddition of nitriles and sodium azide. Synlett, 2018, 29(7), 874-879.
[http://dx.doi.org/10.1055/s-0036-1591534]
[64]
Venkateshwarlu, G.; Premalatha, A.; Rajanna, K.C.; Saiprakash, P.K. Cadmium chloride as an efficient catalyst for neat synthesis of 5-substituted 1H-tetrazoles. Synth. Commun., 2009, 39(24), 4479-4485.
[http://dx.doi.org/10.1080/00397910902917682]
[65]
Kikhavani, T.; Moradi, P.; Mashari-Karir, M.; Naji, J. A new copper Schiff‐base complex of 3,4‐diaminobenzophenone stabilized on magnetic MCM‐41 as a ho-moselective and reusable catalyst in the synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2022, 36(12), e6895.
[http://dx.doi.org/10.1002/aoc.6895]
[66]
Akbari, M.; Nikoorazm, M.; Tahmasbi, B.; Ghorbani-Choghamarani, A. The new Schiff‐base complex of copper(II) grafted on mesoporous KIT‐6 as an effective nanostructure catalyst for the homoselective synthesis of various tetrazoles. Appl. Organomet. Chem., 2023, e7317.
[http://dx.doi.org/10.1002/aoc.7317]
[67]
Moradi, P. Investigation of Fe3O4@boehmite NPs as efficient and magnetically recoverable nanocatalyst in the homoselective synthesis of tetrazoles. RSC Adv., 2022, 12(52), 33459-33468.
[http://dx.doi.org/10.1039/D2RA04759D] [PMID: 36424985]
[68]
Jabbari, A.; Moradi, P.; Tahmasbi, B. Synthesis of tetrazoles catalyzed by a new and recoverable nanocatalyst of cobalt on modified boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)thiourea. RSC Adv., 2023, 13(13), 8890-8900.
[http://dx.doi.org/10.1039/D2RA07510E] [PMID: 36936843]
[69]
Moradi, P.; Zarei, B.; Abbasi Tyula, Y.; Nikoorazm, M. Novel neodymium complex on MCM‐41 magnetic nanocomposite as a practical, selective, and returnable nanocatalyst in the synthesis of tetrazoles with antifungal properties in agricultural. Appl. Organomet. Chem., 2023, 37(4), e7020.
[http://dx.doi.org/10.1002/aoc.7020]
[70]
Tahmasbi, B.; Nikoorazm, M.; Moradi, P.; Abbasi Tyula, Y. A Schiff base complex of lanthanum on modified MCM-41 as a reusable nanocatalyst in the homoselective synthesis of 5-substituted 1H-tetrazoles. RSC Adv., 2022, 12(53), 34303-34317.
[http://dx.doi.org/10.1039/D2RA05413B] [PMID: 36545578]
[71]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Khanmoradi, M.; Abbasi Tyula, Y.; Darabi, M.; Koolivand, M. Synthesis and characterization of a new Schiff-base complex of copper on magnetic MCM-41 nanoparticles as efficient and reusable nanocatalyst in the synthesis of tetrazoles. Polyhedron, 2023, 244, 116587.
[http://dx.doi.org/10.1016/j.poly.2023.116587]
[72]
Collection, M.A.; Nikoorazm, M.; Tahmasbi, B.; Ghorbani-Choghamarani, A. Homoselective Synthesis of tetrazoles and chemoselective oxidation of sulfides using Ni (II)-Schiff base complex stabilized on 3-dimensional mesoporous KIT-6 surface as a recyclable nanocatalyst. Inorg. Chem. Commun., 2023, 111852.
[73]
Darabi, M.; Nikoorazm, M.; Tahmasbi, B.; Ghorbani-Choghamarani, A. Immobilization of Ni(II) complex on the surface of mesoporous modified-KIT-6 as a new, reusable and highly efficient nanocatalyst for the synthesis of tetrazole and pyranopyrazole derivatives. RSC Adv., 2023, 13(18), 12572-12588.
[http://dx.doi.org/10.1039/D2RA08269A] [PMID: 37101952]
[74]
Tyula, Y.A.; Moradi, P.; Nikoorazm, M. A new neodymium complex on boehmite nanoparticles with 1,3‐Bis(pyridine‐3‐ylmethyl)thiourea as a practical and reusable nanocatalyst for the chemoselective synthesis of tetrazoles. ChemistrySelect, 2023, 8(24), e202301674.
[http://dx.doi.org/10.1002/slct.202301674]
[75]
Moradi, P.; Kikhavani, T.; Abbasi Tyula, Y. A new samarium complex of 1,3-bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles. Sci. Rep., 2023, 13(1), 5902.
[http://dx.doi.org/10.1038/s41598-023-33109-y] [PMID: 37041186]
[76]
Norouzi, M.; Moradi, P.; Khanmoradi, M. Aluminium-based ionic liquid grafted on biochar as a heterogeneous catalyst for the selective synthesis of tetrazole and 2,3-dihydroquinazolin 4(1H)-one derivatives. RSC Adv., 2023, 13(50), 35569-35582.
[http://dx.doi.org/10.1039/D3RA06440A] [PMID: 38077976]
[77]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 34(11), e5919.
[http://dx.doi.org/10.1002/aoc.5919]
[78]
Nikoorazm, M.; Rezaei, Z.; Tahmasbi, B. Two Schiff-base complexes of copper and zirconium oxide supported on mesoporous MCM-41 as an organic-inorganic hybrid catalysts in the chemo and homoselective oxidation of sulfides and synthesis of tetrazoles. J. Porous Mater., 2020, 27(3), 671-689.
[http://dx.doi.org/10.1007/s10934-019-00835-6]
[79]
Tahmasbi, B.; Ghorbani-Choghamarani, A.; Moradi, P. Palladium fabricated on boehmite as an organic-inorganic hybrid nanocatalyst for C–C cross coupling and homoselective cycloaddition reactions. New J. Chem., 2020, 44(9), 3717-3727.
[http://dx.doi.org/10.1039/C9NJ06129K]
[80]
Moradi, P.; Hajjami, M.; Tahmasbi, B. Fabricated copper catalyst on biochar nanoparticles for the synthesis of tetrazoles as antimicrobial agents. Polyhedron, 2020, 175, 114169.
[http://dx.doi.org/10.1016/j.poly.2019.114169]
[81]
Dömling, A.; Wang, Y.; Patil, P. Easy synthesis of two positional isomeric tetrazole libraries. Synthesis, 2016, 48(21), 3701-3712.
[http://dx.doi.org/10.1055/s-0035-1562435]
[82]
Qiu, G.; Mamboury, M.; Wang, Q.; Zhu, J. Ketenimines from isocyanides and allyl carbonates: Palladium‐catalyzed synthesis of β,γ‐unsaturated amides and tetrazoles. Angew. Chem. Int. Ed., 2016, 55(49), 15377-15381.
[http://dx.doi.org/10.1002/anie.201609034] [PMID: 27862731]
[83]
Seelam, M.; Kammela, P.R.; Shaikh, B.; Tamminana, R.; Bogiri, S. Cobalt-promoted one-pot reaction of isothiocyanates toward the synthesis of aryl/alkylcyanamides and substituted tetrazoles. Chem. Heterocycl. Compd., 2018, 54(5), 535-544.
[http://dx.doi.org/10.1007/s10593-018-2303-1]
[84]
Shmatova, O.I.; Nenajdenko, V.G. Synthesis of tetrazole-derived organocatalysts via azido-Ugi reaction with cyclic ketimines. J. Org. Chem., 2013, 78(18), 9214-9222.
[http://dx.doi.org/10.1021/jo401428q] [PMID: 23944996]
[85]
Kal-Koshvandi, A.T.; Maleki, A.; Tarlani, A.; Soroush, M.R. Synthesis and characterization of ultrapure HKUST‐1 MOFs as reusable heterogeneous catalysts for the green synthesis of tetrazole derivatives. ChemistrySelect, 2020, 5(11), 3164-3172.
[http://dx.doi.org/10.1002/slct.201904637]
[86]
Wang, H.; Wang, Y.; Han, Y.; Zhao, W.; Wang, X. Humic acid as an efficient and reusable catalyst for one pot three-component green synthesis of 5-substituted 1H-tetrazoles in water. RSC Adv., 2020, 10(2), 784-789.
[http://dx.doi.org/10.1039/C9RA08523H] [PMID: 35494449]
[87]
Ghamari kargar, P.; Bagherzade, G. The anchoring of a Cu(II)–salophen complex on magnetic mesoporous cellulose nanofibers: Green synthesis and an investigation of its catalytic role in tetrazole reactions through a facile one-pot route. RSC Adv., 2021, 11(31), 19203-19220.
[http://dx.doi.org/10.1039/D1RA01913A] [PMID: 35478649]
[88]
Kazemnejadi, M.; Sardarian, A.R. Ecofriendly synthesis of a heterogeneous polyvinyl alcohol immobilized copper(II) Schiff base complex as an efficient, reusable cata-lyst for the one-pot three-component green preparation of 5-substituted 1H-tetrazoles under mild conditions. RSC Adv., 2016, 6(94), 91999-92006.
[http://dx.doi.org/10.1039/C6RA19631D]
[89]
Khan, K.M.; Fatima, I.; Saad, S.M.; Taha, M.; Voelter, W. An efficient onepot protocol for the conversion of benzaldehydes into tetrazole analogs. Tetrahedron Lett., 2016, 57(5), 523-524.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.067]
[90]
Abdollahi-Alibeik, M.; Moaddeli, A. Multi-component one-pot reaction of aldehyde, hydroxylamine and sodium azide catalyzed by Cu-MCM-41 nanoparticles: A novel method for the synthesis of 5-substituted 1H-tetrazole derivatives. New J. Chem., 2015, 39(3), 2116-2122.
[http://dx.doi.org/10.1039/C4NJ01042F]
[91]
Saiprathima, P.; Srinivas, K.; Sridhar, B.; Rao, M.M. “On water” one-pot synthesis of quaternary centered 3-hydroxy-3-(1H-tetrazol-5-yl)indolin-2-ones. RSC Adv., 2013, 3(21), 7708-7712.
[http://dx.doi.org/10.1039/c3ra00021d]
[92]
Verma, F.; Sahu, A.; Singh, P.K.; Rai, A.; Singh, M.; Rai, V.K. Visible-light driven regioselective synthesis of 1H-tetrazoles from aldehydes through isocyanide-based [3 + 2] cycloaddition. Green Chem., 2018, 20(16), 3783-3789.
[http://dx.doi.org/10.1039/C8GC01321G]
[93]
Zhang, J.; Wang, X.; Kuang, Y.; Wu, J. Generation of sulfonylated tetrazoles through an iron-catalyzed multicomponent reaction involving sulfur dioxide. iScience, 2020, 23(12), 101872.
[http://dx.doi.org/10.1016/j.isci.2020.101872] [PMID: 33336165]
[94]
Gaydou, M.; Echavarren, A.M. Gold-catalyzed synthesis of tetrazoles from alkynes by C-C bond cleavage. Angew. Chem. Int. Ed., 2013, 52(50), 13468-13471.
[http://dx.doi.org/10.1002/anie.201308076] [PMID: 24227650]
[95]
Maham, M.; Nasrollahzadeh, M. One‐pot green synthesis of Cu/bone nanocomposite and its catalytic activity in the synthesis of 1‐substituted 1H ‐1,2,3,4‐tetrazoles and reduction of hazardous pollutants. Appl. Organomet. Chem., 2019, 33(9), e5097.
[http://dx.doi.org/10.1002/aoc.5097]
[96]
Abdelraheem, E.M.M.; de Haan, M.P.; Patil, P.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Shaabani, S.; Dömling, A. Concise synthesis of tetrazole macrocycle. Org. Lett., 2017, 19(19), 5078-5081.
[http://dx.doi.org/10.1021/acs.orglett.7b02319] [PMID: 28901777]
[97]
Naeimi, H.; Kiani, F.; Moradian, M. ZnS nanoparticles as an efficient and reusable heterogeneous catalyst for synthesis of 1-substituted-1H-tetrazoles under solvent-free conditions. J. Nanopart. Res., 2014, 16(9), 2590.
[http://dx.doi.org/10.1007/s11051-014-2590-0]
[98]
Flores-Reyes, J.C.; Blanco-Carapia, R.E.; López-Olvera, A.; Islas-Jácome, P.; Medina-Martínez, Y.; Rincón-Guevara, M.A.; Ibarra, I.A.; Lomas-Romero, L.; González-Zamora, E.; Islas-Jácome, A. Synthesis of new bis 1-substituted 1h-tetrazoles via efficient heterocyclizations from symmetric dianilines, methyl orthoester, and sodium azide. Proceedings, 2019, 41(1), 26.
[http://dx.doi.org/10.3390/ecsoc-23-06521]
[99]
Khan, F.A.K.; Zaheer, Z.; Sangshetti, J.N.; Ahmed, R.Z. Facile one-pot synthesis, antibacterial activity and in silico ADME prediction of 1-substituted-1H-1,2,3,4-tetrazoles. Chem. Data Collect., 2018, 15-16, 107-114.
[http://dx.doi.org/10.1016/j.cdc.2018.05.001]
[100]
Ghasemzadeh, M.S.; Akhlaghinia, B. 2-Aminoethanesulfonic acid immobilized on epichlorohydrin functionalized Fe3O4@WO3(Fe3O4@WO3-EAE-SO3H): A novel magnetically recyclable heterogeneous nanocatalyst for the green one-pot synthesis of 1-substituted-1H-1,2,3,4-tetrazoles in water. Bull. Chem. Soc. Jpn., 2017, 90(10), 1119-1128.
[http://dx.doi.org/10.1246/bcsj.20170148]
[101]
Pawar, H.R.; Chikate, R.C. One pot three component solvent free synthesis of N-substituted tetrazoles using RuO2/MMT catalyst. J. Mol. Struct., 2021, 1225, 128985.
[http://dx.doi.org/10.1016/j.molstruc.2020.128985]
[102]
Jasim, S.A.; Tanjung, F.A.; Sharma, S.; Mahmoud, M.Z.; Kadhim, S.B.; Kazemnejadi, M. Ultrasound and microwave irradiated sustainable synthesis of 5- and 1-substituted tetrazoles in TAIm[I] ionic liquid. Res. Chem. Intermed., 2022, 48(8), 3547-3566.
[http://dx.doi.org/10.1007/s11164-022-04756-z]
[103]
Vedpathak, S.G.; Momle, R.G.; Kakade, G.K.; Ingle, V.S. An improved and convenient route for the synthesis of 5-methyl-1H-tetrazol-1-yl substituted benzenamines. World J. Pharm. Res., 2016, 5(12), 1049-1057.
[104]
Chuprun, S.S.; Protas, A.V.; Fedorova, O.S.; Vaulina, D.D.; Krasikova, R.N.; Popova, E.A.; Trifonov, R.E. Enantioselectivity of the reaction of α-amino acids with sodi-um azide and triethyl orthoformate in the synthesis of tetrazoles. Russ. J. Org. Chem., 2016, 52(12), 1863-1865.
[http://dx.doi.org/10.1134/S1070428016120307]
[105]
Nasrollahzadeh, M.; Sajjadi, M.; Tahsili, M.R.; Shokouhimehr, M.; Varma, R.S. Synthesis of 1-substituted 1H-1,2,3,4-tetrazoles using biosynthesized Ag/sodium borosilicate nanocomposite. ACS Omega, 2019, 4(5), 8985-9000.
[http://dx.doi.org/10.1021/acsomega.9b00800] [PMID: 31459987]
[106]
Habibi, D.; Nasrollahzadeh, M.; Kamali, T.A. Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the Natrolite zeolite as a new and reusable heterogeneous catalyst. Green Chem., 2011, 13(12), 3499-3504.
[http://dx.doi.org/10.1039/c1gc15245a]
[107]
Sribalan, R.; Lavanya, A.; Kirubavathi, M.; Padmini, V. Selective synthesis of ureas and tetrazoles from amides controlled by experimental conditions using convention-al and microwave irradiation. J. Saudi Chem. Soc., 2018, 22(2), 198-207.
[http://dx.doi.org/10.1016/j.jscs.2016.03.004]
[108]
Verma, N.; Bera, S.; Mondal, D. Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem. Heterocycl. Compd., 2022, 58(2-3), 73-83.
[http://dx.doi.org/10.1007/s10593-022-03059-w]
[109]
Ishihara, K.; Shioiri, T.; Matsugi, M. An expeditious approach to tetrazoles from amides utilizing phosphorazidates. Org. Lett., 2020, 22(16), 6244-6247.
[http://dx.doi.org/10.1021/acs.orglett.0c01890] [PMID: 32634317]
[110]
Ishihara, K.; Shioiri, T.; Matsugi, M. Stereospecific synthesis of 1,5-disubstituted tetrazoles from ketoximes via a Beckmann rearrangement facilitated by diphenyl phosphorazidate. Tetrahedron Lett., 2019, 60(18), 1295-1298.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.014]
[111]
Anuradha, L.; Layek, S.; Agrahari, B.; Pathak, D.D. Chitosan‐supported copper(II) schiff base complexes: Applications in synthesis of 5‐substituted 1h‐tetrazoles and oxidative homo‐coupling of terminal alkynes. ChemistrySelect, 2017, 2(23), 6865-6876.
[http://dx.doi.org/10.1002/slct.201701252]
[112]
Nazeri, M.T.; Nowee, A.B.; Javanbakht, S.; Farhid, H.; Shaabani, A.; Notash, B. Highly efficient azido-Ugi multicomponent reactions for the synthesis of bioactive te-trazoles bearing sulfonamide scaffolds. Tetrahedron, 2021, 91, 132243.
[http://dx.doi.org/10.1016/j.tet.2021.132243]
[113]
Zarezin, D.P.; Khrustalev, V.N.; Nenajdenko, V.G. Diastereoselectivity of Azido-Ugi reaction with secondary amines. Stereoselective synthesis of tetrazole derivatives. J. Org. Chem., 2017, 82(12), 6100-6107.
[http://dx.doi.org/10.1021/acs.joc.7b00611] [PMID: 28558241]
[114]
Safa, K.D.; Shokri, T.; Abbasi, H.; Teimuri-Mofrad, R. One‐pot synthesis of new 1,5‐disubstituted tetrazoles bearing 2,2‐Bis(trimethylsilyl)ethenyl Groups via The ugi four‐component condensation reaction catalyzed by MgBr2·2Et2O. J. Heterocycl. Chem., 2014, 51(1), 80-84.
[http://dx.doi.org/10.1002/jhet.1858]
[115]
Zarezin, D.P.; Kabylda, A.M.; Vinogradova, V.I.; Dorovatovskii, P.V.; Khrustalev, V.N.; Nenajdenko, V.G. Efficient synthesis of tetrazole derivatives of cytisine using the azido-Ugi reaction. Tetrahedron, 2018, 74(32), 4315-4322.
[http://dx.doi.org/10.1016/j.tet.2018.06.045]
[116]
Ojeda, G.M.; Ranjan, P.; Fedoseev, P.; Amable, L.; Sharma, U.K.; Rivera, D.G.; Van der Eycken, E.V. Combining the Ugi-azide multicomponent reaction and rhodi-um(III)-catalyzed annulation for the synthesis of tetrazoleisoquinolone/pyridone hybrids. Beilstein J. Org. Chem., 2019, 15(1), 2447-2457.
[http://dx.doi.org/10.3762/bjoc.15.237] [PMID: 31666879]
[117]
Amanpour, T.; Mirzaei, P.; Bazgir, A. Isocyanide-based four-component synthesis of ferrocenyl 1,5-disubstituted tetrazoles. Tetrahedron Lett., 2012, 53(11), 1421-1423.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.038]
[118]
Wang, Y.; Patil, P.; Kurpiewska, K.; Kalinowska-Tluscik, J.; Dömling, A. Two cycles with one catch: hydrazine in Ugi 4-CR and its postcyclizations. ACS Comb. Sci., 2017, 19(3), 193-198.
[http://dx.doi.org/10.1021/acscombsci.7b00009] [PMID: 28181791]
[119]
Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. MCR synthesis of a tetracyclic tetrazole scaffold. Bioorg. Med. Chem., 2015, 23(11), 2699-2715.
[http://dx.doi.org/10.1016/j.bmc.2014.12.021] [PMID: 25630499]
[120]
Patil, P.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Ammonia-promoted one-pot tetrazolopiperidinone synthesis by Ugi reaction. ACS Comb. Sci., 2017, 19(5), 343-350.
[http://dx.doi.org/10.1021/acscombsci.7b00033] [PMID: 28240545]
[121]
Kroon, E.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Cleavable β-cyanoethyl isocyanide in the Ugi tetrazole reaction. Org. Lett., 2016, 18(19), 4762-4765.
[http://dx.doi.org/10.1021/acs.orglett.6b01826] [PMID: 27610711]
[122]
Gunawan, S.; Hulme, C. Bifunctional building blocks in the Ugi-azide condensation reaction: A general strategy toward exploration of new molecular diversity. Org. Biomol. Chem., 2013, 11(36), 6036-6046.
[http://dx.doi.org/10.1039/c3ob40900g] [PMID: 23912086]
[123]
Pharande, S.G.; Corrales Escobosa, A.R.; Gámez-Montaño, R. Endogenous water-triggered and ultrasound accelerated synthesis of 1,5-disubstituted tetrazoles via a solvent and catalyst-free Ugi-azide reaction. Green Chem., 2017, 19(5), 1259-1262.
[http://dx.doi.org/10.1039/C6GC03324E]
[124]
a) Zarganes-Tzitzikas, T.; Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. Concise synthesis of tetrazole-ketopiperazines by two consecutive ugi reactions. Eur. J. Org. Chem., 2015, 2015(1), 51-55.
[http://dx.doi.org/10.1002/ejoc.201403401] [PMID: 26949370];
b) Zhao, T.; Boltjes, A.; Herdtweck, E.; Dömling, A. Tritylamine as an ammonia surrogate in the Ugi tetrazole synthesis. Org. Lett., 2013, 15(3), 639-641.
[http://dx.doi.org/10.1021/ol303348m] [PMID: 23331054]
[125]
a) Gunawan, S.; Petit, J.; Hulme, C. Concise one-pot preparation of unique bis-pyrrolidinone tetrazoles. ACS Comb. Sci., 2012, 14(3), 160-163.
[http://dx.doi.org/10.1021/co200209a] [PMID: 22330239];
b) Chandgude, A.L.; Dömling, A. Convergent three‐component tetrazole synthesis. Eur. J. Org. Chem., 2016, 2016(14), 2383-2387.
[http://dx.doi.org/10.1002/ejoc.201600317]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy