Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Progress in the Synthetic Methods of Pyrazoloquinoline Derivatives

Author(s): Rita M. Borik, Mohamed S. Mostafa, Mohamed S. Behalo and Rizk E. Khidre*

Volume 28, Issue 2, 2024

Published on: 23 January, 2024

Page: [117 - 133] Pages: 17

DOI: 10.2174/0113852728285959240108060645

Price: $65

Abstract

The focus of this review is on the synthetic routes available for different types of pyrazoloquinoline derivatives. There are three types of synthetic methods: i) from pyrazole derivatives; ii) from quinoline derivatives; and iii) miscellaneous methods. The position of the linkage between pyrazole and quinoline rings determines the seven isomers of pyrazoloquinolines. The purpose of this review is to provide a guide for both synthetic and medicinal chemists to discover and design new pyrazoloquinolines for medical purposes.

Keywords: Synthesis methods, heterocycles, pyrazoloquinoline, pyrazole, quinolines, pharmacological activities.

Graphical Abstract
[1]
Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed; Wiley-Blackwell: Oxford, 2010.
[2]
Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry III; Taylor, R.J.K., Ed.; Elsevier: Oxford, 2008.
[3]
Orru, R.V.A. Synthesis of Heterocycles via Multicomponent Reactions I; Ruijter, E., Ed.; Springer: Berlin, 2010.
[http://dx.doi.org/10.1007/978-3-642-12675-8]
[4]
Eycken, E. Microwave-Assisted Synthesis of Heterocycles; Kappe, C.O., Ed.; Springer: Berlin, 2006.
[http://dx.doi.org/10.1007/11497363]
[5]
Mekheimer, R.A.; Ahmed, E.A.; Sadek, K.U. Recent developments in the chemistry of pyrazolo[4,3-c]quinolines. Tetrahedron, 2012, 68(6), 1637-1667.
[http://dx.doi.org/10.1016/j.tet.2011.10.088]
[6]
Sabatini, S.; Gosetto, F.; Serritella, S.; Manfroni, G.; Tabarrini, O.; Iraci, N.; Brincat, J.P.; Carosati, E.; Villarini, M.; Kaatz, G.W.; Cecchetti, V. Pyrazolo[4,3-c][1,2]benzothiazines 5,5-dioxide: A promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem., 2012, 55(7), 3568-3572.
[http://dx.doi.org/10.1021/jm201446h] [PMID: 22432682]
[7]
Baraldi, P.G.; Tabrizi, M.A.; Preti, D.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N.A.; Moorman, A.R.; Varani, K.; Borea, P.A. New 2-arylpyrazolo[4,3-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. J. Med. Chem., 2005, 48(15), 5001-5008.
[http://dx.doi.org/10.1021/jm050125k] [PMID: 16033279]
[8]
Carotti, A.; Altomare, C.; Savini, L.; Chiasserini, L.; Pellerano, C.; Mascia, M.P.; Maciocco, E.; Busonero, F.; Mameli, M.; Biggio, G.; Sanna, E. High affinity central benzodiazepine receptor ligands. Part 3: Insights into the pharmacophore and pattern recognition study of intrinsic activities of pyrazolo[4,3-c]quinolin-3-ones. Bioorg. Med. Chem., 2003, 11(23), 5259-5272.
[http://dx.doi.org/10.1016/S0968-0896(03)00527-3] [PMID: 14604690]
[9]
Karthikeyan, C.; Amawi, H.; Viana, A.G.; Sanglard, L.; Hussein, N.; Saddler, M.; Ashby, C.R., Jr; Moorthy, N.S.H.N.; Trivedi, P.; Tiwari, A.K. lH-Pyrazolo[3,4-b]quinolin-3-amine derivatives inhibit growth of colon cancer cells via apoptosis and sub G1 cell cycle arrest. Bioorg. Med. Chem. Lett., 2018, 28(13), 2244-2249.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.045] [PMID: 29853331]
[10]
Baruah, B.; Dasu, K.; Vaitilingam, B.; Vanguri, A.; Rao Casturi, S.; Rao Yeleswarapu, K. 1,2-Diaryl-1-ethanone and pyrazolo[4,3-c]quinoline-4-one as novel selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 445-448.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.052] [PMID: 14698178]
[11]
Chudasama, D.D.; Patel, M.S.; Parekh, J.N.; Patel, H.C.; Rajput, C.V.; Chikhaliya, N.P.; Ram, K.R. Ultrasound-promoted convenient and ionic liquid [BMIM]BF4 assisted green synthesis of diversely functionalized pyrazolo quinoline core via one-pot multicomponent reaction, DFT study and pharmacological evaluation. Mol. Divers., 2023, 27(3), 1409-1425.
[http://dx.doi.org/10.1007/s11030-022-10498-2] [PMID: 35915391]
[12]
Gaurav, A.; Gautam, V.; Singh, R. An overview on synthetic methodologies and biological activities of pyrazoloquinolines. Mini Rev. Med. Chem., 2010, 10(13), 1194-1210.
[http://dx.doi.org/10.2174/13895575110091194] [PMID: 20854254]
[13]
Tomassoli, I.; Herlem, G.; Picaud, F.; Benchekroun, M.; Bautista-Aguilera, O.M.; Luzet, V.; Jimeno, M-L.; Gharbi, T.; Refouvelet, B.; Ismaili, L. Synthesis, regioselectivity, and DFT analysis of new antioxidant pyrazolo[4,3-c]quinoline-3,4-diones. Monatsh. Chem., 2016, 147(6), 1069-1079.
[http://dx.doi.org/10.1007/s00706-016-1660-7]
[14]
He, Z.; Milburn, G.H.W.; Baldwin, K.J.; Smith, D.A.; Danel, A.; Tomasik, P. The efficient blue photoluminescence of pyrazolo-[3,4-b]-quinoline derivatives and the energy transfer in polymer matrices. J. Lumin., 2000, 86(1), 1-14.
[http://dx.doi.org/10.1016/S0022-2313(99)00203-3]
[15]
He, Z.; Milburn, G.H.W.; Danel, A.; Puchala, A.; Tomasik, P.; Rasala, D. Blue electroluminescence of novel pyrazoloquinoline and bispyrazolopyridine derivatives in doped polymer matrices. J. Mater. Chem., 1997, 7(12), 2323-2325.
[http://dx.doi.org/10.1039/a706561b]
[16]
Danel, A.; He, Z.; Milburn, G.H.W.; Tomasik, P. Electroluminescence from novel pyrazole-based polymer systems. J. Mater. Chem., 1999, 9(2), 339-342.
[http://dx.doi.org/10.1039/a808784i]
[17]
Elmansy, M.F.; Borik, R.M.; Khidre, R.E. Synthetic approaches towards taxol; from Holton to Chida. Curr. Org. Chem., 2023, 27(5), 444-459.
[http://dx.doi.org/10.2174/1385272827666230512114730]
[18]
Khidre, R.E.; Mostafa, M.S.; Mukhrish, Y.E.; Salem, M.A.; Behalo, M.S. Synthetic methods of 1h-pyrazolo[1,2-b]phthalazine derivatives. Curr. Org. Chem., 2023, 26(22), 2055-2069.
[http://dx.doi.org/10.2174/1385272827666230124145625]
[19]
Khidre, R.E.; Radini, I.M.A.; Ameen, T.A.; Abdelgawad, A.A.M.; Triazoloquinolines, I. Synthetic methods and pharmacological properties of [1,2,3] triazoloquinoline derivatives. Curr. Org. Chem., 2021, 25(8), 876-893.
[http://dx.doi.org/10.2174/1385272825666210202122645]
[20]
Khidre, R.E.; Ameen, T.A.; Salem, M.A.I. Tetrazoloquinolines: Synthesis, reactions, and applications. Curr. Org. Chem., 2020, 24(4), 439-464.
[http://dx.doi.org/10.2174/1385272824666200217095341]
[21]
Khidre, R.E.; Radini, I.A.M.; Ibrahim, D.A. Synthetic approaches of pyrazolyl quinolines. Mini Rev. Org. Chem., 2019, 16(4), 353-360.
[http://dx.doi.org/10.2174/1570193X15666180419142511]
[22]
Khidre, R.E.; Salem, M.A.; Ameen, T.A.; Abdelgawad, A.A.M.; Triazoloquinolines, I.I.; Triazoloquinolines, II Synthesis, reactions, and pharmacological properties of [1,2,4]triazoloquinoline and 1,2,4-triazoloisoquinoline derivatives. Polycycl. Aromat. Compd., 2023, 43(1), 13-53.
[http://dx.doi.org/10.1080/10406638.2021.2008457]
[23]
Khidre, R.E.; Radini, I.A.M.; Mostafa, M.S.; Ameen, T.A. Synthetic applications of 2-diazo-1,3-indanedione. Indian J. Heterocycl. Chem., 2019, 29, 167-179.
[24]
Guo, Y.Q.; Wu, Y.; Wang, R.; Song, H.; Liu, Y.; Wang, Q. Photoredox/hydrogen atom transfer cocatalyzed C-H difluoroallylation of amides, ethers, and alkyl aldehydes. Org. Lett., 2021, 23(6), 2353-2358.
[http://dx.doi.org/10.1021/acs.orglett.1c00546] [PMID: 33691413]
[25]
Faisca Phillips, A.M.; Pombeiro, A.J.L. Recent developments in transition metal‐catalyzed cross‐dehydrogenative coupling reactions of ethers and thioethers. ChemCatChem, 2018, 10(16), 3354-3383.
[http://dx.doi.org/10.1002/cctc.201800582]
[26]
Mane, K.D.; Kamble, R.B.; Suryavanshi, G. A visible light mediated, metal and oxidant free highly efficient cross dehydrogenative coupling (CDC) reaction between quinoxalin-2(1H)-ones and ethers. New J. Chem., 2019, 43(19), 7403-7408.
[http://dx.doi.org/10.1039/C9NJ00075E]
[27]
Zhou, L.; Tang, S.; Qi, X.; Lin, C.; Liu, K.; Liu, C.; Lan, Y.; Lei, A. Transition-metal-assisted radical/radical cross-coupling: A new strategy to the oxidative C(sp3)-H/N-H cross-coupling. Org. Lett., 2014, 16(12), 3404-3407.
[http://dx.doi.org/10.1021/ol501485f] [PMID: 24921665]
[28]
Singh, M.; Yadav, L.D.S.; Singh, R.K.P. Direct radical sulfonylation at α-C(sp3)-H of THF with sodium sulfinates in aqueous medium. Tetrahedron Lett., 2019, 60(11), 810-813.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.021]
[29]
Barve, B.D.; Wu, Y.C.; El-Shazly, M.; Korinek, M.; Cheng, Y.B.; Wang, J.J.; Chang, F.R. Copper-catalyzed selective C-O bond formation by oxidative α-C(sp3)_H/O_H coupling between ethers and salicylaldehydes. Tetrahedron, 2015, 71(15), 2290-2297.
[http://dx.doi.org/10.1016/j.tet.2015.02.035]
[30]
Mu, Y.; Jiang, R.; Hong, Y.; Hou, J.; Yang, Z.; Tang, D. Acid-catalyzed synthesis of pyrazolo[4,3-c]quinolines from (1H-pyrazol-5-yl)anilines and ethers via the cleavage of C–O bond. Tetrahedron, 2022, 125, 133040.
[http://dx.doi.org/10.1016/j.tet.2022.133040]
[31]
Xie, C.; Feng, L.; Li, W.; Ma, X.; Ma, X.; Liu, Y.; Ma, C. Efficient synthesis of pyrrolo[1,2-a]quinoxalines catalyzed by a Brønsted acid through cleavage of C–C bonds. Org. Biomol. Chem., 2016, 14(36), 8529-8535.
[http://dx.doi.org/10.1039/C6OB01401A] [PMID: 27541576]
[32]
Mayo, M.S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones. Org. Lett., 2014, 16(3), 764-767.
[http://dx.doi.org/10.1021/ol403475v] [PMID: 24410080]
[33]
Chakraborty, A.; Majumdar, S.; Maiti, D.K. Selective exploitation of acetoacetate carbonyl groups using imidazolium based ionic liquids: synthesis of 3-oxo-amides and substituted benzimidazoles. Tetrahedron Lett., 2016, 57(30), 3298-3302.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.048]
[34]
Mayo, M.S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Synthesis of benzoxazoles from 2-aminophenols and β-diketones using a combined catalyst of Brønsted acid and copper iodide. J. Org. Chem., 2014, 79(13), 6310-6314.
[http://dx.doi.org/10.1021/jo500604x] [PMID: 24893749]
[35]
Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S.F. Metal-and oxidant-free synthesis of quinazolinones from β-ketoesters with o-aminobenzamides via phosphorous acid-catalyzed cyclocondensation and selective C–C bond cleavage. J. Org. Chem., 2015, 80(19), 9392-9400.
[http://dx.doi.org/10.1021/acs.joc.5b00937] [PMID: 26339716]
[36]
Nan, J.; Chen, P.; Zhang, Y.; Yin, Y.; Wang, B.; Ma, Y. Metal-free synthesis of 2-substituted quinolines via high chemoselective domino condensation/aza-prins cyclization/retro-aldol between 2-alkenylanilines with β-ketoesters. J. Org. Chem., 2020, 85(21), 14042-14054.
[http://dx.doi.org/10.1021/acs.joc.0c02063] [PMID: 33108195]
[37]
Jiang, R.; Mu, Y.; Zhang, W.; Hong, Y.; Iqbal, Z.; Hou, J.; Yang, Z.; Tang, D. Acid-promoted synthesis of pyrazolo[4,3-c]quinoline derivatives by employing pyrazole-arylamines and β-keto esters via cleavage of C–C bonds. Synth. Commun., 2022, 52(18), 1796-1804.
[http://dx.doi.org/10.1080/00397911.2022.2114372]
[38]
Mu, Y.; Iqbal, Z.; Jiang, R.; Hou, J.; Yang, Z.; Li, H.; Tang, D. Synthesis of fused pyrazolo[4,3‐c]quinolines through KI‐promoted cyclization of pyrazole‐arylamines and benzyl bromide. ChemistrySelect, 2022, 7(10), e202104337.
[http://dx.doi.org/10.1002/slct.202104337]
[39]
Tang, D.; Mu, Y.; Iqbal, Z.; He, L.; Jiang, R.; Hou, J.; Yang, Z.; Yang, M. Construction of substituted pyrazolo[4,3‐c]quinolines via [5+1] cyclization of pyrazole‐arylamines with alcohols/amines in one pot. J. Heterocycl. Chem., 2022, 59(5), 952-957.
[http://dx.doi.org/10.1002/jhet.4420]
[40]
Chaudhary, C.L.; Ko, S.; Lee, C.; Kim, Y.; Jung, C.; Hyun, S.; Kwon, Y.; Kang, J.S.; Jung, J.K.; Lee, H. Design, synthesis, and cytotoxicity and topoisomerase I/IIα inhibition activity of pyrazolo[4,3-f]quinoline derivatives. Pharmaceuticals, 2022, 15(4), 399.
[http://dx.doi.org/10.3390/ph15040399] [PMID: 35455396]
[41]
Pokladko-Kowar, M.; Gondek, E.; Danel, A.; Uchacz, T.; Szlachcic, P.; Wojtasik, K.; Karasiński, P. Trifluoromethyl substituted derivatives of pyrazoles as materials for photovoltaic and electroluminescent applications. Crystals, 2022, 12(3), 434.
[http://dx.doi.org/10.3390/cryst12030434]
[42]
Grabka, D.; Kolbus, A.; Danel, A.; Kucharek, M.; Szary, K. Stationary and time-resolved spectra analysis of pyrazoloquinoline derivatives with pyridyl moiety. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 492-498.
[http://dx.doi.org/10.1016/j.saa.2017.12.066] [PMID: 29291578]
[43]
Uchacz, T.; Szlachcic, P.; Danel, A.; Kukułka, M.; Srebro-Hooper, M.; Stopa, G.; Stadnicka, K.M. Photophysical properties of 1-pyridine-3-phenylpyrazoloquinoline and molecular logic gate implementation. Dyes Pigments, 2019, 166, 490-501.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.031]
[44]
Teleb, M.A.M.; Hassaneen, H.M.; Abdelhamid, I.A.; Saleh, F.M. 5-Aminopyrazole-4-carbonitriles as precursors to novel 4-aminotetrahydropyrazolo[3,4-b]quinolin-5-ones and N-(4-cyanopyrazol-5-yl)pyridine-3-carbonitrile. Synth. Commun., 2021, 51(15), 2357-2364.
[http://dx.doi.org/10.1080/00397911.2021.1936059]
[45]
Chatterjee, T.; Lee, D.S.; Cho, E.J. Extended study of visible-light-induced photocatalytic [4 + 2] benzannulation: Synthesis of polycyclic (hetero)aromatics. J. Org. Chem., 2017, 82(8), 4369-4378.
[http://dx.doi.org/10.1021/acs.joc.7b00413] [PMID: 28332390]
[46]
Liu, T.; Ji, Y.G.; Wu, L. tert-Butyl nitrite-mediated radical cyclization of tetrazole amines and alkynes toward tetrazolo[1,5-a]quinolines. Org. Biomol. Chem., 2019, 17(10), 2619-2623.
[http://dx.doi.org/10.1039/C9OB00169G] [PMID: 30766975]
[47]
Dai, P.; Luo, K.; Yu, X.; Yang, W.C.; Wu, L.; Zhang, W.H. Tert ‐butyl nitrite mediated expeditious methylsulfoxidation of tetrazole‐amines with DMSO: Metal‐free synthesis of antifungal active methylsulfinyl‐1H‐tetrazole derivatives. Adv. Synth. Catal., 2018, 360(3), 468-473.
[http://dx.doi.org/10.1002/adsc.201701364]
[48]
Barak, D.S.; Dahatonde, D.J.; Batra, S. Metal‐ and photoredox‐catalyst free unified approach for the synthesis of azole‐fused quinolines via tert ‐butyl nitrite‐mediated regioselective annulation. Asian J. Org. Chem., 2022, 11(4), e202200057.
[http://dx.doi.org/10.1002/ajoc.202200057]
[49]
Zhang, W.T.; Niu, F.X.; Yue, R.X.; Zhang, Y.; Ma, C.; Sun, J.; Rong, L. A convenient and efficient process for the synthesis of 9‐aryl‐6, 9‐DIHYDRO‐1H‐pyrazolo[3,4‐f] quinoline‐8‐carbonitrile and 1‐aryl‐1,4‐dihydrobenzo [f]quinoline‐2‐carbonitrile derivatives. J. Heterocycl. Chem., 2022, 59(3), 543-554.
[http://dx.doi.org/10.1002/jhet.4400]
[50]
Martín-Acosta, P.; Amesty, Á.; Guerra-Rodríguez, M.; Guerra, B.; Fernández-Pérez, L.; Estévez-Braun, A. Modular synthesis and antiproliferative activity of new dihydro-1H-pyrazolo[1,3-b]pyridine embelin derivatives. Pharmaceuticals, 2021, 14(10), 1026.
[http://dx.doi.org/10.3390/ph14101026] [PMID: 34681250]
[51]
Devi, L.; Nagaraju, K.; Maddila, S.; Jonnalagadda, S.B. A green, efficient protocol for the catalyst-free synthesis of tetrahydro-1H-pyrazolo-[3,4-b]-quinolin-5(4H)-ones supported by ultrasonicirradiation. Chem. Data Collect, 2020, 30, 100566.
[http://dx.doi.org/10.1016/j.cdc.2020.100566]
[52]
Gangu, K.K.; Jvsk, V.K. T, S.G.; Maddila, S.; Jonnalagadda, S.B. Preparation and characterisation of new Ti/Fluorapatite/MWCNTs ternary nanocomposite and its catalytic activity in the synthesis of pyrazolo[3,4-b]quinoline moieties. Mater. Today Commun., 2021, 27, 102206.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102206]
[53]
Yakovenko, G.G.; Yagodkina-Yakovenko, M.S.; Suykov, S.Y.; Vovk, M.V. A Beckmann rearrangement initiated by trifluoromethanesulfonic anhydride in the synthesis of compounds containing a new pyrazolo[3′,4′:5,6]pyrido[3,2-b]azepine heterocyclic system. Chem. Heterocycl. Compd., 2021, 57(2), 199-206.
[http://dx.doi.org/10.1007/s10593-021-02893-8]
[54]
Yadav, P.; Awasthi, A.; Gokulnath, S.; Tiwari, D.K. DMSO as a methine source in TFA-mediated one-pot tandem regioselective synthesis of 3-substituted-1-aryl-1H-pyrazolo-[3,4-b]quinolines from anilines and pyrazolones. J. Org. Chem., 2021, 86(3), 2658-2666.
[http://dx.doi.org/10.1021/acs.joc.0c02696] [PMID: 33423469]
[55]
Lewińska, G.; Khachatryan, K.; Danel, K.S.; Danel, Z.; Sanetra, J.; Marszałek, K.W. Investigations of the optical and thermal properties of the pyrazoloquinoline derivatives and their application for OLED design. Polymers (Basel), 2020, 12(11), 2707.
[http://dx.doi.org/10.3390/polym12112707] [PMID: 33207751]
[56]
Zahedifar, M.; Shojaei, R.; Sheibani, H. Convenient regioselective reaction in presence of H3PW12O40: Synthesis and characterization of pyrazolo[3,4-b]quinoline-3,5-diones. Res. Chem. Intermed., 2018, 44(2), 873-882.
[http://dx.doi.org/10.1007/s11164-017-3141-y]
[57]
Sharma, M.G.; Vala, R.M.; Patel, H.M. Pyridine-2-carboxylic acid as an effectual catalyst for rapid multi-component synthesis of pyrazolo[3,4-b]quinolinones. RSC Advances, 2020, 10(58), 35499-35504.
[http://dx.doi.org/10.1039/D0RA06738E] [PMID: 35515671]
[58]
Zahedifar, M.; Pouramiri, B.; Razavi, R. Triethanolamine lactate-supported nanomagnetic cellulose: A green and efficient catalyst for the synthesis of pyrazolo[3,4-b]quinolines and theoretical study. Res. Chem. Intermed., 2020, 46(5), 2749-2765.
[http://dx.doi.org/10.1007/s11164-020-04117-8]
[59]
Robert Khumalo, M.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4-b]-quinolines under green conditions. RSC Advances, 2019, 9(53), 30768-30772.
[http://dx.doi.org/10.1039/C9RA04604F] [PMID: 35529349]
[60]
Khalafy, J.; Majidi, A.F.; Poursattar, M.A.; Sarchami, V. One‐pot, three‐component synthesis of polyfunctionalized benzo[H]pyrazolo[3,4‐B][1,6]naphthyridine and benzo[G]pyrazolo[3,4‐B]quinoline derivatives in the presence of silver nanoparticles (AGNPS). J. Heterocycl. Chem., 2020, 57(11), 3961-3969.
[http://dx.doi.org/10.1002/jhet.4105]
[61]
Marjani, A.P.; Khalafy, J.; Akbarzadeh, S. Synthesis of pyrazolopyridine and pyrazoloquinoline derivatives by one-pot, three-component reactions of arylglyoxals, 3-methyl-1-aryl-1H-pyrazol-5-amines and cyclic 1,3-dicarbonyl compounds in the presence of tetrapropylammonium bromide. Green Process. Synth., 2019, 8(1), 533-541.
[http://dx.doi.org/10.1515/gps-2019-0022]
[62]
Patel, D.M.; Patel, H.J.; Padrón, J.M.; Patel, H.M. A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro[pyrazolo[4,3-f]quinoline]-8,5′-pyrimidines and tetrahydro-pyrazolo[4,3-f]pyrimido[4,5-b]quinolines via selective multiple C–C bond formation under metal-free conditions. RSC Advances, 2020, 10(33), 19600-19609.
[http://dx.doi.org/10.1039/D0RA02990D] [PMID: 35515429]
[63]
Zhang, W.H.; Chen, M.N.; Hao, Y.; Jiang, X.; Zhou, X.L.; Zhang, Z.H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines]. J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[64]
Zhu, G.; Gao, L.; Yu, Q.; Qin, Y.; Xi, J.; Rong, L. An efficient synthesis of 1′,7′,8′,9′-tetrahydrospiro[indoline-3,4′-pyrazolo[3,4-b]quinoline]-2,5‘(6’H)-dione derivatives in aqueous medium. J. Heterocycl. Chem., 2018, 55(4), 871-878.
[http://dx.doi.org/10.1002/jhet.3111]
[65]
Manickam, S.; Balijapalli, U.; Sawminathan, S.; Samuelrajamani, P.; Kamaraj, S.; Shanmugam, V.; Ramalingam, S.; Iyer, S.K. One‐pot synthesis and photophysical studies of styryl‐based benzo[f]pyrazolo[3,4‐b]quinoline and Indeno[2,1‐b]pyrazolo[4,3‐e]pyridines. Eur. J. Org. Chem., 2018, 2018(45), 6204-6216.
[http://dx.doi.org/10.1002/ejoc.201801015]
[66]
Manickam, S.; Balijapalli, U.; Sathiyanarayanan, K.I. SnCl2-catalyzed synthesis of dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline and dihydroindeno[2,1-b]pyrazolo[4,3-e]pyridine with high fluorescence and their photophysical properties. New J. Chem., 2018, 42(2), 860-871.
[http://dx.doi.org/10.1039/C7NJ03654J]
[67]
Polo, E.; Ferrer-Pertuz, K.; Trilleras, J.; Quiroga, J.; Gutiérrez, M. Microwave-assisted one-pot synthesis in water of carbonylpyrazolo[3,4-b]pyridine derivatives catalyzed by InCl3 and sonochemical assisted condensation with aldehydes to obtain new chalcone derivatives containing the pyrazolopyridinic moiety. RSC Advances, 2017, 7(79), 50044-50055.
[http://dx.doi.org/10.1039/C7RA10127A]
[68]
Liu, J.Y.; Chen, J.; Chen, D.M.; Wei, M.; Chen, D.S. An efficient optimization, in situ reduction and cyclization reaction for the synthesis of functionalized pyrazolo[3,4‐f]quinolines derivatives. J. Heterocycl. Chem., 2018, 55(12), 2929-2935.
[http://dx.doi.org/10.1002/jhet.3366]
[69]
Li, H.L.; Chen, J.; Chen, D.S.; Shi, P.; Liu, J.Y. An efficient cascade synthesis of substituted 6,9-dihydro-1H-pyrazolo[3,4-f]quinoline-8-carbonitriles. Heterocycl. Commun., 2018, 24(5), 279-283.
[http://dx.doi.org/10.1515/hc-2018-0131]
[70]
Lewińska, G.; Danel, K.S.; Łukaszewska, I.; Lewiński, G.; Niemiec, W.; Sanetra, J. Ternary organic solar cells doped methoxyphenyl indenopyrazoloquinoline deriva-tives. J. Mater. Sci. Mater. Electron., 2018, 29(20), 17809-17817.
[http://dx.doi.org/10.1007/s10854-018-9890-6]
[71]
Xu, H.; Li, L.; Dai, L.; Mao, K.; Kou, W.; Lin, C.; Rong, L. The efficient in‐situ reduction and cyclization reaction of aromatic aldehyde, 1,3‐cyclopentanedione (tetronic acid), and nitro‐compound under SnCl2•2H2O‐THF medium. Appl. Organomet. Chem., 2018, 32(3), e4194.
[http://dx.doi.org/10.1002/aoc.4194]
[72]
Hegde, H.; Shetty, N.S. Facile one-pot multicomponent synthesis of 1H-pyrazolo[3,4-b]quinolines using L-proline as a catalyst. Chem. Heterocycl. Compd., 2017, 53(8), 883-886.
[http://dx.doi.org/10.1007/s10593-017-2152-3]
[73]
Ghosh, K.; Nishii, Y.; Miura, M. Rhodium-catalyzed annulative coupling using vinylene carbonate as an oxidizing acetylene surrogate. ACS Catal., 2019, 9(12), 11455-11460.
[http://dx.doi.org/10.1021/acscatal.9b04254]
[74]
Ghosh, K.; Nishii, Y.; Miura, M. Oxidative C–H/C–H annulation of imidazopyridines and indazoles through rhodium-catalyzed vinylene transfer. Org. Lett., 2020, 22(9), 3547-3550.
[http://dx.doi.org/10.1021/acs.orglett.0c00975] [PMID: 32282221]
[75]
Mihara, G.; Ghosh, K.; Nishii, Y.; Miura, M. Concise synthesis of isocoumarins through rh-catalyzed direct vinylene annulation: Scope and mechanistic insight. Org. Lett., 2020, 22(14), 5706-5711.
[http://dx.doi.org/10.1021/acs.orglett.0c02112] [PMID: 32638595]
[76]
Li, X.; Huang, T.; Song, Y.; Qi, Y.; Li, L.; Li, Y.; Xiao, Q.; Zhang, Y. Co(III)-catalyzed annulative vinylene transfer via C-H activation: Three-step total synthesis of 8-oxopseudopalmatine and oxopalmatine. Org. Lett., 2020, 22(15), 5925-5930.
[http://dx.doi.org/10.1021/acs.orglett.0c02016] [PMID: 32677835]
[77]
Wang, L.; Shao, Y.; Chen, F.; Qian, P.; Cheng, J. Rhodium-catalyzed directing group-assisted annulation of arene C-H bond with vinylene carbonate toward isocouma-rins. Youji Huaxue, 2022, 42(1), 242-248.
[http://dx.doi.org/10.6023/cjoc202106023]
[78]
Nan, J.; Ma, Q.; Yin, J.; Liang, C.; Tian, L.; Ma, Y. RhIII-Catalyzed formal [5+1]cyclization of 2-pyrrolyl/indolylanilines using vinylene carbonate as a C1 synthon. Org. Chem. Front., 2021, 8(8), 1764-1769.
[http://dx.doi.org/10.1039/D1QO00040C]
[79]
Wang, C.; Fan, X.; Chen, F.; Qian, P.C.; Cheng, J. Vinylene carbonate: Beyond the ethyne surrogate in rhodium-catalyzed annulation with amidines toward 4-methylquinazolines. Chem. Commun., 2021, 57(32), 3929-3932.
[http://dx.doi.org/10.1039/D1CC00882J] [PMID: 33871531]
[80]
Li, W.; Zhang, M.; Yan, J.; Ni, L.; Cao, H.; Liu, X. Transition metal-and oxidant-free [3+2] cyclization of azomethine imines utilizing vinylene carbonate as dual synthons. Org. Chem. Front., 2022, 9(9), 2529-2533.
[http://dx.doi.org/10.1039/D2QO00308B]
[81]
Evtushok, V.E.; Vorob’ev, A.Y. Synthesis of pyrazolo-and [1,2,4]triazolo-[1,5-a]quinolin-9-ols by cycloaddition to 8-hydroxyquinoline N-imide. Chem. Heterocycl. Compd., 2019, 55(3), 229-234.
[http://dx.doi.org/10.1007/s10593-019-02446-0]
[82]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolones and related fused pyridines, Part 5. The synthesis of 2-chloroquinolne-3-carbaldehydes. J. Chem. Soc., Perkin Trans. 1, 1981, 1520-1530.
[http://dx.doi.org/10.1039/p19810001520]
[83]
Hayes, R.; Meth-Cohn, O. A versatile new synthesis of quinolones and realted fused pyridines. Part 10. Routes to quinolines with fused azacycles. Tetrahedron Lett., 1982, 23, 1613-1615.
[http://dx.doi.org/10.1016/S0040-4039(00)87172-5]
[84]
Marson, C.M. Reactions of carbonyl compounds with (monohalo) methyleniminium salts (vilsmeier reagents). Tetrahedron, 1992, 48(18), 3659-3726.
[http://dx.doi.org/10.1016/S0040-4020(01)92263-X]
[85]
Munir, R.; Javid, N. Zia-ur-Rehman, M.; Zaheer, M.; Huma, R.; Roohi, A.; Athar, M.M. Synthesis of novel N-acylhydrazones and their C-N/N-N bond conformational characterization by NMR spectroscopy. Molecules, 2021, 26(16), 4908.
[http://dx.doi.org/10.3390/molecules26164908] [PMID: 34443493]
[86]
Chavan, A.S.; Kharat, A.S.; Bhosle, M.R.; Dhumal, S.T.; Mane, R.A. Water mediated and Baker’s yeast accelerated novel synthetic protocols for tetrahydroben-zo[a]xanthene-11-ones and pyrazolo[3,4-b]quinolines. Synth. Commun., 2021, 51, 1-11.
[http://dx.doi.org/10.1080/00397911.2021.1913606]
[87]
Teixeira, F.C.; Lucas, C.; Curto, M.J.M.; André, V.; Duarte, M.T.; Teixeira, A.P.S. Synthesis of novel pyrazolo[3,4-b]quinolinebisphosphonic acids and an unexpected intramolecular cyclization and phosphonylation reaction. Org. Biomol. Chem., 2021, 19(11), 2533-2545.
[http://dx.doi.org/10.1039/D1OB00025J] [PMID: 33666215]
[88]
Alajmi, S.F.; Youssef, T.E. Simple electrochemical synthesis of pyrazolo[4,3-c]quinoline derivatives. Revista de Chimie, 2021, 72(2), 50-58.
[http://dx.doi.org/10.37358/RC.21.2.8419]
[89]
Ackerman, S.E.; Alonso, M.N.; Dornan, D.; Kudirka, R.; Lee, A.; Safina, B.; Zhou, M.; Engleman, E.G. Preparation of immunoconjugate derivatives for use as HER2 modulators. WO Patent 2020190731, 2020.
[90]
Iorio, M.T.; Vogel, F.D.; Koniuszewski, F.; Scholze, P.; Rehman, S.; Simeone, X.; Schnürch, M.; Mihovilovic, M.D.; Ernst, M. GABAA receptor ligands often interact with binding sites in the transmembrane domain and in the extracellular domain-can the promiscuity code be cracked. Int. J. Mol. Sci., 2020, 21(1), 334.
[http://dx.doi.org/10.3390/ijms21010334] [PMID: 31947863]
[91]
Fathy, U.; Azzam, M.A.; Mahdy, F.; El-Maghraby, S.; Allam, R.M. Synthesis and in vitro anticancer activity of some novel tetrahydroquinoline derivatives bearing pyrazol and hydrazide moiety. J. Heterocycl. Chem., 2020, 57(5), 2108-2120.
[http://dx.doi.org/10.1002/jhet.3930]
[92]
Black, S.L.; O’Connor, P.D.; Boyd, M.; Blaser, A.; Kendall, J.D. Synthesis and 1H, 13C and 15N NMR characterisation of substituted Pyrazolo[4,3-c]quinolines and related compounds. Tetrahedron, 2018, 74(22), 2797-2806.
[http://dx.doi.org/10.1016/j.tet.2018.04.061]
[93]
Knutson, D.E.; Kodali, R.; Divović, B.; Treven, M.; Stephen, M.R.; Zahn, N.M.; Dobričić, V.; Huber, A.T.; Meirelles, M.A.; Verma, R.S.; Wimmer, L.; Witzigmann, C.; Arnold, L.A.; Chiou, L.C.; Ernst, M.; Mihovilovic, M.D.; Savić, M.M.; Sieghart, W.; Cook, J.M. Design and synthesis of novel deuterated ligands functionally selective for the γ-aminobutyric acid type A receptor (GABAAR) α6 subtype with improved metabolic stability and enhanced bioavailability. J. Med. Chem., 2018, 61(6), 2422-2446.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01664] [PMID: 29481759]
[94]
Cheng, K.W.; Tseng, C.H.; Yang, C.N.; Tzeng, C.C.; Cheng, T.C.; Leu, Y.L.; Chuang, Y.C.; Wang, J.Y.; Lu, Y.C.; Chen, Y.L.; Cheng, T.L. Specific inhibition of bacterial β-glucuronidase by pyrazolo[4,3-c]quinoline derivatives via a pH-dependent manner to suppress chemotherapy-induced intestinal toxicity. J. Med. Chem., 2017, 60(22), 9222-9238.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00963] [PMID: 29120626]
[95]
G, J.D.; Poornachandra, Y.; Ratnakar, R.K.; Naresh, K.R.; Ravikumar, N.; Krishna, S.D.; Ranjithreddy, P.; Shravan, K.G.; Nanubolu, J.B.; Ganesh, K.C.; Narsaiah, B. Synthesis of novel pyrazolo[3,4-b]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and CoMFA analysis. Eur. J. Med. Chem., 2017, 130, 223-239.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.052] [PMID: 28254697]
[96]
Zhou, Q.; Yu, H.Y.; Zhou, Y.; Wei, J.R.; Wang, L. Cu(II)-Mediated aerobic oxidative synthesis of sulfonated chromeno[4,3-c]pyrazol-4(2H)-ones. Org. Biomol. Chem., 2022, 20(28), 5575-5581.
[http://dx.doi.org/10.1039/D2OB00639A] [PMID: 35792135]
[97]
Zhang, C.; Dong, S.; Zheng, Y.; He, C.; Chen, J.; Zhen, J.; Qiu, L.; Xu, X. Synthesis of spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles via divergent, thermally induced tandem cyclization/migration of alkyne-tethered diazo compounds. Org. Biomol. Chem., 2018, 16(5), 688-692.
[http://dx.doi.org/10.1039/C7OB02802D] [PMID: 29239450]
[98]
Shahbazi-Alavi, H.; Alemi-Tameh, F.; Safaei-Ghomi, J. Synthesis of spiro-oxindoles catalyzed by nano-Co3S4. Monatsh. Chem., 2018, 149(11), 2031-2036.
[http://dx.doi.org/10.1007/s00706-018-2246-3]
[99]
Alemi, T.F.; Safaei-Ghomi, J. Synthesis of spiro[pyrazoloquinoline-oxindoles] and spiro[chromenopyrazolo-oxindoles] promoted by guanidine-functionalized magnetic Fe3O4 nanoparticles. J. Indian Chem. Soc., 2018, 15(7), 1633-1637.
[http://dx.doi.org/10.1007/s13738-018-1361-8]
[100]
Hosseinjani-Pirdehi, H.; Rad-Moghadam, K.; Youseftabar-Miri, L. A fourcomponent synthesis of novel spiro[pyrazoloquinoline-oxindoles] under solvent-free conditions. Tetrahedron, 2014, 70(9), 1780-1785.
[http://dx.doi.org/10.1016/j.tet.2014.01.025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy