Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

A Novel Oncogenic Role of Disulfidptosis-related Gene SLC7A11 in Anti-tumor Immunotherapy Response to Human Cancers

Author(s): Borui Xu, Jiahua Liang, Liangmin Fu, Jinhuan Wei* and Juan Lin*

Volume 24, Issue 8, 2024

Published on: 31 January, 2024

Page: [846 - 866] Pages: 21

DOI: 10.2174/0115680096277818231229105732

Price: $65

conference banner
Abstract

Background: The protein Solute Carrier Family 7 Member 11 (SLC7A11) plays a pivotal role in cellular redox homeostasis by suppressing disulfidptosis, which restricts tumor growth. Yet, its relevance in prognosis, immunity, and cancer treatment efficacy is not well understood.

Methods: We conducted a comprehensive analysis of the expression of SLC7A11 across 33 cancer types, employing datasets from public databases. Methods, such as Cox regression and survival analyses assessed its prognostic significance, while functional enrichment explored the biological processes tied to SLC7A11. The association between SLC7A11 expression, immune cell infiltration, and immune-related gene expression was also scrutinized.

Results: Notably, SLC7A11 expression was more pronounced in cancerous compared to normal samples and correlated with higher tumor grades. Increased SLC7A11 expression was linked to poor outcomes, particularly in liver hepatocellular carcinoma (LIHC). This protein's expression also showcased significant relationships with diverse molecular and immune subtypes.

Additionally, a prognostic nomogram was devised, integrating SLC7A11 expression and clinical variables. High SLC7A11 levels corresponded with cell growth and senescence pathways in various cancers and with lipid and cholesterol metabolism in LIHC. Furthermore, potential therapeutic compounds for LIHC with high SLC7A11 were identified. Real-time PCR (qPCR) and Western blot were conducted to explore the expression of SLC7A11 in tumor tissues and cancer cell lines.

Conclusion: In summation, this study emphasizes the prognostic and immunological importance of SLC7A11, spotlighting its potential as a therapeutic target in LIHC.

Keywords: Solute carrier family 7 member 11, pan-cancer, prognostic biomarker, tumor microenvironment, hepatocellular carcinoma, cancer therapy.

Graphical Abstract
[1]
Zheng, P.; Zhou, C.; Ding, Y.; Duan, S. Disulfidptosis: A new target for metabolic cancer therapy. J. Exp. Clin. Cancer Res., 2023, 42(1), 103.
[http://dx.doi.org/10.1186/s13046-023-02675-4] [PMID: 37101248]
[2]
Liu, X.; Nie, L.; Zhang, Y.; Yan, Y.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G.; Mao, C.; Wu, S.; Zhuang, L.; Poyurovsky, M.V.; James You, M.; Hart, T.; Billadeau, D.D.; Chen, J.; Gan, B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol., 2023, 25(3), 404-414.
[http://dx.doi.org/10.1038/s41556-023-01091-2] [PMID: 36747082]
[3]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[4]
Wang, W.; Zou, W. Amino acids and their transporters in T cell immunity and cancer therapy. Mol. Cell, 2020, 80(3), 384-395.
[http://dx.doi.org/10.1016/j.molcel.2020.09.006] [PMID: 32997964]
[5]
Chen, Q.; Zheng, W.; Guan, J.; Liu, H.; Dan, Y.; Zhu, L.; Song, Y.; Zhou, Y.; Zhao, X.; Zhang, Y.; Bai, Y.; Pan, Y.; Zhang, J.; Shao, C. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ., 2023, 30(1), 137-151.
[http://dx.doi.org/10.1038/s41418-022-01051-7] [PMID: 35995846]
[6]
Luo, Y.; Xiang, W.; Liu, Z.; Yao, L.; Tang, L.; Tan, W.; Ye, P.; Deng, J.; Xiao, J. Functional role of the SLC7A11-AS1/xCT axis in the development of gastric cancer cisplatin-resistance by a GSH-dependent mechanism. Free Radic Biol Med, 2022, 184, 53-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.026]
[7]
Xie, J.; Zheng, S.; Zou, Y.; Tang, Y.; Tian, W.; Wong, C. W.; Wu, S.; Ou, X.; Zhao, W.; Cai, M.; Xie, X. Turning up a new pattern: Identification of cancer-associated fibroblast-related clusters in TNBC. Front Immunol, 2022, 13, 1022147.
[http://dx.doi.org/10.3389/fimmu.2022.1022147]
[8]
Afroze, N.; Pramodh, S.; Shafarin, J.; Bajbouj, K.; Hamad, M.; Sundaram, M.K.; Haque, S.; Hussain, A. Fisetin deters cell proliferation, induces apoptosis, alleviates oxidative stress and inflammation in human cancer cells, hela. Int. J. Mol. Sci., 2022, 23(3), 1707.
[http://dx.doi.org/10.3390/ijms23031707] [PMID: 35163629]
[9]
Xue, Y.; Jiang, X.; Wang, J.; Zong, Y.; Yuan, Z.; Miao, S.; Mao, X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark. Res., 2023, 11(1), 2.
[http://dx.doi.org/10.1186/s40364-022-00433-w] [PMID: 36600313]
[10]
Fawzy, M.A.; Maher, S.A.; El-Rehany, M.A.; Welson, N.N.; Albezrah, N.K.A.; Batiha, G.E.S.; Fathy, M. Vincamine modulates the effect of pantoprazole in renal ischemia/reperfusion injury by attenuating mapk and apoptosis signaling pathways. Molecules, 2022, 27(4), 1383.
[http://dx.doi.org/10.3390/molecules27041383] [PMID: 35209172]
[11]
Hsu, F.T.; Liu, Y.C.; Tsai, C.L.; Yueh, P.F.; Chang, C.H.; Lan, K.L. Preclinical evaluation of recombinant human il15 protein fused with albumin binding domain on anti-PD-L1 immunotherapy efficiency and anti-tumor immunity in colon cancer and melanoma. Cancers, 2021, 13(8), 1789.
[http://dx.doi.org/10.3390/cancers13081789] [PMID: 33918641]
[12]
Zou, Y.; Xie, J.; Zheng, S.; Liu, W.; Tang, Y.; Tian, W.; Deng, X.; Wu, L.; Zhang, Y.; Wong, C. W.; Tan, D.; Liu, Q.; Xie, X. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg, 2022, 107, 106936.
[http://dx.doi.org/10.1016/j.ijsu.2022.106936]
[13]
Hamza, A.A.; Mohamed, M.G.; Lashin, F.M.; Amin, A. Dandelion prevents liver fibrosis, inflammatory response, and oxidative stress in rats. J. Basic Appl. Zool., 2020, 81(1), 43.
[http://dx.doi.org/10.1186/s41936-020-00177-9]
[14]
Abdalla, Y.; Abdalla, A.; Hamza, A. A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front Pharmacol, 2021, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500]
[15]
Abdu, S.; Juaid, N.; Amin, A.; Moulay, M.; Miled, N. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches. Molecules, 2022, 27(22), 8082.
[http://dx.doi.org/10.3390/molecules27228082] [PMID: 36432184]
[16]
Tan, X.P.; He, Y.; Yang, J.; Wei, X.; Fan, Y.L.; Zhang, G.G.; Zhu, Y.D.; Li, Z.Q.; Liao, H.X.; Qin, D.J.; Guan, X.Y.; Li, B. Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct. Target. Ther., 2023, 8(1), 14.
[http://dx.doi.org/10.1038/s41392-022-01248-9] [PMID: 36617552]
[17]
Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; Li, X. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv., 2021, 28(1), 2187-2197.
[http://dx.doi.org/10.1080/10717544.2021.1977422] [PMID: 34662244]
[18]
Fu, W.; Chaiboonchoe, A.; Khraiwesh, B.; Sultana, M.; Jaiswal, A.; Jijakli, K.; Nelson, D.R.; Al-Hrout, A.; Baig, B.; Amin, A.; Salehi-Ashtiani, K. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. Sci. Adv., 2017, 3(9), e1603096.
[http://dx.doi.org/10.1126/sciadv.1603096] [PMID: 28879232]
[19]
Stolfi, C.; Pallone, F.; Monteleone, G. Molecular targets of TRAIL-sensitizing agents in colorectal cancer. Int. J. Mol. Sci., 2012, 13(7), 7886-7901.
[http://dx.doi.org/10.3390/ijms13077886] [PMID: 22942679]
[20]
Wu, H.; Qian, D.; Bai, X.; Sun, S. Targeted pyroptosis is a potential therapeutic strategy for cancer. J Oncol, 2022, 2022, 2515525.
[http://dx.doi.org/10.1155/2022/2515525]
[21]
Wang, J.; Wang, Y.; Steffani, M.; Stöß, C.; Ankerst, D.; Friess, H.; Hüser, N.; Hartmann, D. Novel risk classification based on pyroptosis-related genes defines immune microenvironment and pharmaceutical landscape for hepatocellular carcinoma. Cancers, 2022, 14(2), 447.
[http://dx.doi.org/10.3390/cancers14020447] [PMID: 35053610]
[22]
Yang, S.; Wang, D.; Zhong, S.; Chen, W.; Wang, F.; Zhang, J.; Xu, W.; Xu, D.; Zhang, Q.; Li, J.; Zhang, H.; Hou, J.; Mao, L.; Tang, J. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis., 2021, 12(5), 420.
[http://dx.doi.org/10.1038/s41419-021-03680-1] [PMID: 33911067]
[23]
Fleming, A.M.; Zhou, J.; Wallace, S.S.; Burrows, C.J. A role for the fifth g-track in g-quadruplex forming oncogene promoter sequences during oxidative stress: do these “spare tires” have an evolved function? ACS Cent. Sci., 2015, 1(5), 226-233.
[http://dx.doi.org/10.1021/acscentsci.5b00202] [PMID: 26405692]
[24]
Oreskovic, E.; Wheeler, E.C.; Mengwasser, K.E.; Fujimura, E.; Martin, T.D.; Tothova, Z.; Elledge, S.J. Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1. Proc. Natl. Acad. Sci. USA, 2022, 119(7), e2120540119.
[http://dx.doi.org/10.1073/pnas.2120540119] [PMID: 35149558]
[25]
Wanka, G.; Schmoeckel, E.; Mayr, D.; Fuerst, S.; Kuhn, C.; Mahner, S.; Knabl, J.; Karsten, M.M.; Dannecker, C.; Heidegger, H.H.; Vattai, A.; Jeschke, U.; Jueckstock, J. LDOC1 as negative prognostic marker for vulvar cancer patients. Int. J. Mol. Sci., 2020, 21(23), 9287.
[http://dx.doi.org/10.3390/ijms21239287] [PMID: 33291445]
[26]
Zhang, L.; Qin, Q.; Xu, C.; Zhang, N.; Zhao, T. Identification of immune cell function in breast cancer by integrating multiple single-cell data. Front Immunol, 2022, 13, 1058239.
[http://dx.doi.org/10.3389/fimmu.2022.1058239]
[27]
Telli, M.L.; Nagata, H.; Wapnir, I.; Acharya, C.R.; Zablotsky, K.; Fox, B.A.; Bifulco, C.B.; Jensen, S.M.; Ballesteros-Merino, C.; Le, M.H.; Pierce, R.H.; Browning, E.; Hermiz, R.; Svenson, L.; Bannavong, D.; Jaffe, K.; Sell, J.; Foerter, K.M.; Canton, D.A.; Twitty, C.G.; Osada, T.; Lyerly, H.K.; Crosby, E.J. Intratumoral plasmid IL12 expands CD8+ T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to anti–PD-1 therapy. Clin. Cancer Res., 2021, 27(9), 2481-2493.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3944] [PMID: 33593880]
[28]
Hakimi, A.A.; Attalla, K.; DiNatale, R.G.; Ostrovnaya, I.; Flynn, J.; Blum, K.A.; Ged, Y.; Hoen, D.; Kendall, S.M.; Reznik, E.; Bowman, A.; Hwee, J.; Fong, C.J.; Kuo, F.; Voss, M.H.; Chan, T.A.; Motzer, R.J. A pan-cancer analysis of PBAF complex mutations and their association with immunotherapy response. Nat. Commun., 2020, 11(1), 4168.
[http://dx.doi.org/10.1038/s41467-020-17965-0] [PMID: 32820162]
[29]
Hader, M.; Streit, S.; Rosin, A.; Gerdes, T.; Wadepohl, M.; Bekeschus, S.; Fietkau, R.; Frey, B.; Schlücker, E.; Gekle, S.; Gaipl, U.S. In vitro examinations of cell death induction and the immune phenotype of cancer cells following radiative-based hyperthermia with 915 mhz in combination with radiotherapy. Cells, 2021, 10(6), 1436.
[http://dx.doi.org/10.3390/cells10061436] [PMID: 34201238]
[30]
Dai, C.; Geng, R.; Wang, C.; Wong, A.; Qing, M.; Hu, J.; Sun, Y.; Lo, A.W.I.; Li, J. Concordance of immune checkpoints within tumor immune contexture and their prognostic significance in gastric cancer. Mol. Oncol., 2016, 10(10), 1551-1558.
[http://dx.doi.org/10.1016/j.molonc.2016.09.004] [PMID: 27720576]
[31]
Liu, R.; Li, T.; Zhang, G.; Jia, Y.; Liu, J.; Pan, L.; Li, Y.; Jia, C. Pancancer analysis revealed the value of RAC2 in immunotherapy and cancer stem cell. Stem Cells Int, 2023, 2023, 8485726.
[http://dx.doi.org/10.1155/2023/8485726]
[32]
Vadakekolathu, J.; Minden, M.D.; Hood, T.; Church, S.E.; Reeder, S.; Altmann, H.; Sullivan, A.H.; Viboch, E.J.; Patel, T.; Ibrahimova, N.; Warren, S.E.; Arruda, A.; Liang, Y.; Smith, T.H.; Foulds, G.A.; Bailey, M.D.; Gowen-MacDonald, J.; Muth, J.; Schmitz, M.; Cesano, A.; Pockley, A.G.; Valk, P.J.M.; Löwenberg, B.; Bornhäuser, M.; Tasian, S.K.; Rettig, M.P.; Davidson-Moncada, J.K.; DiPersio, J.F.; Rutella, S. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med., 2020, 12(546), eaaz0463.
[http://dx.doi.org/10.1126/scitranslmed.aaz0463] [PMID: 32493790]
[33]
Zhang, S.; Xia, K.; Chang, Y.; Wei, Y.; Xiong, Y.; Tang, F.; Peng, J.; Ouyang, Y. LRP2 and DOCK8 are potential antigens for mrna vaccine development in immunologically ‘cold’ KIRC Tumours. Vaccines (Basel), 2023, 11(2), 396.
[http://dx.doi.org/10.3390/vaccines11020396] [PMID: 36851274]
[34]
Hyung, D.; Baek, M. J.; Lee, J.; Cho, J.; Kim, H. S.; Park, C.; Cho, S. Y. Protein-gene expression nexus: Comprehensive characterization of human cancer cell lines with proteogenomic analysis Comput Struct Biotechnol J, 2021, 19, 4759-4769.
[http://dx.doi.org/10.1016/j.csbj.2021.08.022]
[35]
Ge, Y.; Wang, H.; Ren, J.; Liu, W.; Chen, L.; Chen, H.; Ye, J.; Dai, E.; Ma, C.; Ju, S.; Guo, Z.S.; Liu, Z.; Bartlett, D.L. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J. Immunother. Cancer, 2020, 8(1), e000710.
[http://dx.doi.org/10.1136/jitc-2020-000710] [PMID: 32209602]
[36]
Bulat, F.; Hesse, F.; Hu, D.E.; Ros, S.; Willminton-Holmes, C.; Xie, B.; Attili, B.; Soloviev, D.; Aigbirhio, F.; Leeper, F.J.; Brindle, K.M.; Neves, A.A. 18F-C2Am: A targeted imaging agent for detecting tumor cell death in vivo using positron emission tomography. EJNMMI Res., 2020, 10(1), 151.
[http://dx.doi.org/10.1186/s13550-020-00738-7] [PMID: 33296043]
[37]
Zou, Y.; Zheng, S.; Xie, X.; Ye, F.; Hu, X.; Tian, Z.; Yan, S.M.; Yang, L.; Kong, Y.; Tang, Y.; Tian, W.; Xie, J.; Deng, X.; Zeng, Y.; Chen, Z.S.; Tang, H.; Xie, X. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat. Commun., 2022, 13(1), 2672.
[http://dx.doi.org/10.1038/s41467-022-30217-7] [PMID: 35562334]
[38]
Hamza, A. A.; Heeba, G. H.; Hassanin, S. O.; Elwy, H. M.; Bekhit, A. A.; Amin, A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed Pharmacother, 2023, 165(115148)
[http://dx.doi.org/10.1016/j.biopha.2023.115148]
[39]
Awad, B.; Hamza, A.A.; Al-Maktoum, A.; Al-Salam, S.; Amin, A. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma. Cancers, 2023, 15(16), 4063.
[http://dx.doi.org/10.3390/cancers15164063] [PMID: 37627094]
[40]
Lozon, L.; Saleh, E.; Menon, V.; Ramadan, W. S.; Amin, A.; El-Awady, R. Effect of safranal on the response of cancer cells to topoisomerase I inhibitors: Does sequence matter? Front Pharmacol, 2022, 13, 938471.
[http://dx.doi.org/10.3389/fphar.2022.938471]
[41]
Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular mechanisms behind safranal’s toxicity to HepG2 cells from dual omics. Antioxidants, 2022, 11(6), 1125.
[http://dx.doi.org/10.3390/antiox11061125] [PMID: 35740022]
[42]
Attia, A.A.; Sorour, J.M.; Mohamed, N.A.; Mansour, T.T.; Al-Eisa, R.A.; El-Shenawy, N.S. Biochemical, histological, and ultrastructural studies of the protective role of vitamin e on cyclophosphamide-induced cardiotoxicity in male rats. Biomedicines, 2023, 11(2), 390.
[http://dx.doi.org/10.3390/biomedicines11020390] [PMID: 36830928]
[43]
Lu, Y.; Chan, Y.T.; Tan, H.Y.; Zhang, C.; Guo, W.; Xu, Y.; Sharma, R.; Chen, Z.S.; Zheng, Y.C.; Wang, N.; Feng, Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2022, 41(1), 3.
[http://dx.doi.org/10.1186/s13046-021-02208-x] [PMID: 34980204]
[44]
Cheng, L.Z.; Huang, D.L.; Liao, M.; Li, K.M.; Wu, Z.Q.; Cheng, Y.X. Structural optimization and improving antitumor potential of moreollic acid from gamboge. Molecules, 2022, 27(2), 482.
[http://dx.doi.org/10.3390/molecules27020482] [PMID: 35056797]
[45]
Zhu, C.; Guan, X.; Zhang, X.; Luan, X.; Song, Z.; Cheng, X.; Zhang, W.; Qin, J.J. Targeting KRAS mutant cancers: From druggable therapy to drug resistance. Mol. Cancer, 2022, 21(1), 159.
[http://dx.doi.org/10.1186/s12943-022-01629-2] [PMID: 35922812]
[46]
Duarte, D.; Falcão, S.I.; El Mehdi, I.; Vilas-Boas, M.; Vale, N. Honeybee venom synergistically enhances the cytotoxic effect of cns drugs in ht-29 colon and mcf-7 breast cancer cell lines. Pharmaceutics, 2022, 14(3), 511.
[http://dx.doi.org/10.3390/pharmaceutics14030511] [PMID: 35335887]
[47]
Othman, E.M.; Habib, H.A.; Zahran, M.E.; Amin, A.; Heeba, G.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 pathways. Int. J. Mol. Sci., 2023, 24(16), 12651.
[http://dx.doi.org/10.3390/ijms241612651] [PMID: 37628836]
[48]
Abdu, S.; Juaid, N.; Amin, A.; Moulay, M.; Miled, N. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In vivo & in vitro insights. Antioxidants, 2022, 11(9), 1645.
[http://dx.doi.org/10.3390/antiox11091645] [PMID: 36139719]
[49]
Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261.
[http://dx.doi.org/10.1126/science.abf0529] [PMID: 35298263]
[50]
Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; Dai, Y.; Hang, C.; Liu, X.; Yan, C. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy, 2021, 17(11), 3592-3606.
[http://dx.doi.org/10.1080/15548627.2021.1885203] [PMID: 33629929]
[51]
Chen, P.; Li, X.; Zhang, R.; Liu, S.; Xiang, Y.; Zhang, M.; Chen, X.; Pan, T.; Yan, L.; Feng, J.; Duan, T.; Wang, D.; Chen, B.; Jin, T.; Wang, W.; Chen, L.; Huang, X.; Zhang, W.; Sun, Y.; Li, G.; Kong, L.; Chen, X.; Li, Y.; Yang, Z.; Zhang, Q.; Zhuo, L.; Sui, X.; Xie, T. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics, 2020, 10(11), 5107-5119.
[http://dx.doi.org/10.7150/thno.44705] [PMID: 32308771]
[52]
Li, Y.; Yang, W.; Zheng, Y.; Dai, W.; Ji, J.; Wu, L.; Cheng, Z.; Zhang, J.; Li, J.; Xu, X.; Wu, J.; Yang, M.; Feng, J.; Guo, C. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J. Exp. Clin. Cancer Res., 2023, 42(1), 6.
[http://dx.doi.org/10.1186/s13046-022-02567-z] [PMID: 36604718]
[53]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[54]
Abdel-Latif, R.; Heeba, G. H.; Hassanin, S. O.; Waz, S.; Amin, A. TLRs-JNK/ NF-kappaB pathway underlies the protective effect of the sulfide salt against liver toxicity. Front Pharmacol, 2022, 13, 850066.
[http://dx.doi.org/10.3389/fphar.2022.850066]
[55]
Anwar, M.M.; Sah, R.; Shrestha, S.; Ozaki, A.; Roy, N.; Fathah, Z.; Rodriguez-Morales, A.J. Disengaging the COVID-19 clutch as a discerning eye over the inflammatory circuit during SARS-CoV-2 infection. Inflammation, 2022, 45(5), 1875-1894.
[http://dx.doi.org/10.1007/s10753-022-01674-5] [PMID: 35639261]
[56]
Liu, R.; Liu, L.; Bian, Y.; Zhang, S.; Wang, Y.; Chen, H.; Jiang, X.; Li, G.; Chen, Q.; Xue, C.; Li, M.; Liu, L.; Liu, X.; Ma, S. The dual regulation effects of ESR1/NEDD4L on SLC7A11 in breast cancer under ionizing radiation. Front Cell Dev Biol, 2021, 9, 772380.
[http://dx.doi.org/10.3389/fcell.2021.772380]
[57]
Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47.
[http://dx.doi.org/10.1186/s12943-022-01530-y] [PMID: 35151318]
[58]
Zhang, Z.; Qin, S.; Chen, Y.; Zhou, L.; Yang, M.; Tang, Y.; Zuo, J.; Zhang, J.; Mizokami, A.; Nice, E.C.; Chen, H.N.; Huang, C.; Wei, X. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol. Med., 2022, 14(2), e14903.
[http://dx.doi.org/10.15252/emmm.202114903] [PMID: 35023619]
[59]
Modak, M.; Mattes, A.K.; Reiss, D.; Skronska-Wasek, W.; Langlois, R.; Sabarth, N.; Konopitzky, R.; Ramirez, F.; Lehr, K.; Mayr, T.; Kind, D.; Viollet, C.; Swee, L.K.; Petschenka, J.; El Kasmi, K.C.; Noessner, E.; Kitt, K.; Pflanz, S. CD206+ tumor-associated macrophages cross-present tumor antigen and drive antitumor immunity. JCI Insight, 2022, 7(11), e155022.
[http://dx.doi.org/10.1172/jci.insight.155022] [PMID: 35503656]
[60]
Zhu, Z.P.; Lin, L.R.; Lv, T.D.; Xu, C.R.; Cai, T.Y.; Lin, J. High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncol. Rep., 2020, 44(5), 2056-2066.
[http://dx.doi.org/10.3892/or.2020.7736] [PMID: 33000227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy