Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Treatment of Reactive Orange 16 Dye-Bearing Wastewater by Electro-Fenton Process with Stainless-Steel Electrodes: Statistical Optimization and Operational Analysis

Author(s): Imran Ahmad* and Debolina Basu

Volume 21, Issue 7, 2024

Published on: 31 January, 2024

Page: [630 - 644] Pages: 15

DOI: 10.2174/0115701786294340240129071221

Price: $65

Abstract

In the current work, the Electro-Fenton (EF) based Reactive Orange 16 (RO16) dye treatment was studied and compared with central composite (CC) and Taguchi design (TD) statistical optimization tools. Color removal (RC) and COD decay (RCOD) were chosen responses for the effect of pH (A), electrolysis time (B), initial dye concentration (C), and current density (D). The facecentred CC design and L16 orthogonal array were used in the experimental procedures. At optimal conditions, the coefficient of determination (R2) values of 0.99 for CC and 0.97 for TD suggest statistical significance and good model agreement. The results of the ANOVA and Prob. > F values supported the model’s successful experimental data fitting. Taguchi method was found as an appropriate methodology for parameter percentage contributions with fewer experimental runs. Moreover, the S/N ratio charts proved to be a successful CC design replacement. The current density and pH were found to be the most important factors for the EF process. A higher biodegradability (BOD5/COD) and minimum iron concentration (0.45 mg/L) in the effluent sludge demonstrated good environmental disposal suitability. In the last, the effect of various inhibitors/scavengers (SO4 −2, PO4 −3, EDTA, etc.) on the EF process performance was also carried out.

Keywords: Central composite design, Taguchi design method, optimization, biodegradability, scavengers effects, electro-fenton.

Graphical Abstract
[1]
Chandanshive, V.; Kadam, S.; Rane, N.; Jeon, B.H.; Jadhav, J.; Govindwar, S. Chemosphere, 2020, 252, 126513.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126513] [PMID: 32203784]
[2]
Almroth, B.C.; Cartine, J.; Jönander, C.; Karlsson, M.; Langlois, J.; Lindström, M.; Lundin, J.; Melander, N.; Pesqueda, A.; Rahmqvist, I. Renaux. J. Ecotoxicol. Environ. Saf., 2021, 207, 111523.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111523] [PMID: 33120279]
[3]
Ali, S.S.; Al-Tohamy, R. Sun. J. Sci. Total Environ., 2022, 806(Pt 3), 150665.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150665] [PMID: 34597540]
[4]
Tounsadi, H.; Metarfi, Y.; Taleb, M.; El Rhazi, K. Rais. Z. Ecotoxicol. Environ. Saf., 2020, 197, 110594.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110594] [PMID: 32335392]
[5]
Jin, X.; Wu, C.; Tian, X.; Wang, P.; Zhou, Y. Zuo. J. Environ. Sci. Ecotechnol., 2021, 7, 100110.
[http://dx.doi.org/10.1016/j.ese.2021.100110] [PMID: 36160694]
[6]
Manikandan, S.; Saraswathi, R. Environ. Eng. Res., 2023, 28(4), 220231.
[http://dx.doi.org/10.4491/eer.2022.231]
[7]
Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. Cleaner Engineering and Technology, 2021, 4, 100209.
[http://dx.doi.org/10.1016/j.clet.2021.100209]
[8]
Ahmad, I.; Basu, D. Chemical Product and Process Modeling, 2022.
[http://dx.doi.org/10.1515/cppm-2022-0045]
[9]
Hutagalung, S.S.; Muchlis, I.; Khotimah, K. InIOP conference series: Materials science and engineering. Mater. Sci. Eng., 2020, 722, 012032.
[http://dx.doi.org/10.1088/1757-899X/722/1/012032]
[10]
Gautam, P.; Kumar, S.; Lokhandwala, S. J. Clean. Prod., 2019, 237(237), 117639.
[http://dx.doi.org/10.1016/j.jclepro.2019.117639]
[11]
Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Water, 2019, 12(1), 102.
[http://dx.doi.org/10.3390/w12010102]
[12]
Nguyen, D.D.D.; Phan Quang, H.H.; Nguyen, X.H.; Nguyen, T.P. RSC Advances, 2021, 11(44), 27443-27452.
[http://dx.doi.org/10.1039/D1RA04049A] [PMID: 35480678]
[13]
Lv, J.; Wang, W.; Zhao, Q.; Wang, K. Environ. Eng. Res., 2023, 28(4), 220204.
[http://dx.doi.org/10.4491/eer.2022.204]
[14]
Ahmad, I.; Basu, D. J. Environ. Prot. (Irvine Calif.), 2022, 42(13), 1582-1588.
[15]
Görmez, F.; Görmez, Ö.; Yabalak, E.; Gözmen, B. Appl. Sci., 2020, 2, 1-11.
[http://dx.doi.org/10.1007/s42452-020-1986-y]
[16]
Tayeb, A.M.; Tony, M.A.; Mansour, S.A. Appl. Water Sci., 2018, 8(5), 138.
[http://dx.doi.org/10.1007/s13201-018-0783-x]
[17]
Sohrabi, M.R.; Khavaran, A.; Shariati, S.; Shariati, S. Arab. J. Chem., 2017, 10, S3523-S3531.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.019]
[18]
Asgari, G.; Feradmal, J.; Poormohammadi, A.; Sadrnourmohamadi, M.; Akbari, S. Desalination Water Treat., 2016, 57(56), 27331-27338.
[http://dx.doi.org/10.1080/19443994.2016.1170635]
[19]
Nainggolan, E.A.; Banout, J.; Urbanova, K. Foods, 2023, 12(11), 2101.
[http://dx.doi.org/10.3390/foods12112101] [PMID: 37297347]
[20]
Dwiastuti, R.; Suhendra, P.A.; Yuliani, S.H.; Riswanto, F.D. J. Appl. Pharm. Sci., 2022, 12(8), 48-56.
[http://dx.doi.org/10.7324/JAPS.2022.120806]
[21]
El-Sesy, M.E.; Ibrahim, S.S. Water Sci. Technol., 2021, 83(12), 2931-2946.
[http://dx.doi.org/10.2166/wst.2021.190] [PMID: 34185690]
[22]
Pundir, R.; Chary, G.H.V.C.; Dastidar, M.G. Water Resour. Ind., 2018, 20, 83-92.
[http://dx.doi.org/10.1016/j.wri.2016.05.001]
[23]
Titu, A.M.; Sandu, A.V.; Pop, A.B.; Titu, S.; Ciungu, T.C. InIOP conference series: materials science and engineering, 2018, (374), 012054.
[http://dx.doi.org/10.1088/1757-899X/374/1/012054]
[24]
Tee, W.T.; Loh, N.Y.L.; Hiew, B.Y.Z.; Chiu, W.S.; Khiew, P.S.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Chem. Eng. Res. Des., 2023, 195, 132-150.
[http://dx.doi.org/10.1016/j.cherd.2023.05.021]
[25]
Mecheri, R.; Zobeidi, A.; Atia, S.; Neghmouche Nacer, S.; Salih, A.A.M.; Benaissa, M.; Ghernaout, D.; Arni, S.A.; Ghareba, S.; Elboughdiri, N. Materials, 2023, 16(11), 4082.
[http://dx.doi.org/10.3390/ma16114082] [PMID: 37297216]
[26]
Kuleyin, A.; Gök, A.; Akbal, F. J. Environ. Chem. Eng., 2021, 9(1), 104782.
[http://dx.doi.org/10.1016/j.jece.2020.104782]
[27]
Teymori, M.; Khorsandi, H.; Aghapour, A.A.; Jafari, S.J.; Maleki, R. Appl. Water Sci., 2020, 10(1), 39.
[http://dx.doi.org/10.1007/s13201-019-1123-5]
[28]
Padmanaban, V.C.; Selvaraju, N.; Vasudevan, V.N.; Achary, A. React. Kinet. Mech. Catal., 2018, 125(1), 433-447.
[http://dx.doi.org/10.1007/s11144-018-1410-4]
[29]
Wu, J.; Gao, H.; Yao, S.; Chen, L.; Gao, Y.; Zhang, H. Separ. Purif. Tech., 2015, 147, 179-185.
[http://dx.doi.org/10.1016/j.seppur.2015.04.022]
[30]
Alagesan, J.; Jaisankar, M.; Muthuramalingam, S.; Mousset, E.; Chellam, P.V. Chemosphere, 2021, 262, 128381.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128381] [PMID: 33182108]
[31]
Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Desalination, 2017, 404, 1-21.
[http://dx.doi.org/10.1016/j.desal.2016.10.011]
[32]
Huda, N.; Raman, A.A.A.; Bello, M.M.; Ramesh, S. J. Environ. Manage., 2017, 204(Pt 1), 75-81.
[http://dx.doi.org/10.1016/j.jenvman.2017.08.028] [PMID: 28865309]
[33]
Mohajeri, S.; Hamidi, A.A.; Isa, M.H.; Zahed, M.A. Pollution, 2019, 5(1), 199-209.
[http://dx.doi.org/10.22059/poll.2018.249210.364]
[34]
Shamsuzzaman, M.; Hossain, I.; Saha, T.; Roy, A.; Das, D.; Ahmed, M.T.; Podder, S.K. In: In Advanced Technology in Textiles; Fibre to Apparel, 2023, pp. 279-299.
[http://dx.doi.org/10.1007/978-981-99-2142-3_10]
[35]
Drinking Water Standards and Health Advisories Tables; US-EPA, 2018.
[36]
Asgari, E.; Aghanaghad, M.; Nourmoradi, H.; Hashemzadeh, B.; Aali, R. Desalination Water Treat., 2020, 200, 217-223.
[http://dx.doi.org/10.5004/dwt.2020.26132]
[37]
Ding, R.; Wang, Y.; Chen, X.; Gao, Y.; Yang, M. Water Sci. Technol., 2019, 79(9), 1790-1797.
[http://dx.doi.org/10.2166/wst.2019.179] [PMID: 31241484]
[38]
López-Vinent, N.; Cruz-Alcalde, A.; Giménez, J.; Esplugas, S. Sci. Total Environ., 2021, 786, 147416.
[http://dx.doi.org/10.1016/j.scitotenv.2021.147416] [PMID: 33964782]
[39]
Kishimoto, N.; Kitamura, T.; Kato, M.; Otsu, H. J. Water Environ. Technol., 2013, 11(1), 21-32.
[http://dx.doi.org/10.2965/jwet.2013.21]
[40]
Jafari, S.J.; Moussavi, G.; Hossaini, H. Desalination Water Treat., 2016, 57(8), 3782-3790.
[http://dx.doi.org/10.1080/19443994.2014.987171]
[41]
American Public Health Association. Standard Methods for the Examination of Water and Wastewater; Washington, DC, 2005.
[42]
Ahmad, I. Advances in Environmental Technology, 2022, 8(4)
[http://dx.doi.org/10.22104/AET.2022.5547.1502]
[43]
Thomas, M.; Barbusiński, K.; Kliś, S.; Szpyrka, E.; Chyc, M. Fibres Text. East. Eur., 2018, 26(3), 104-109.
[http://dx.doi.org/10.5604/01.3001.0011.7313]
[44]
Moradnia, M.; Dindarlo, K.; Ali, J.H. Eng. Manag. J., 2016, 3(3), 137-142.
[http://dx.doi.org/10.15171/EHEM.2016.12]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy