Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Efflux-mediated Multidrug Resistance in Critical Gram-negative Bacteria and Natural Efflux Pump Inhibitors

Author(s): Praveena Nanjan* and Vanitha Bose

Volume 16, Issue 3, 2024

Published on: 29 January, 2024

Page: [349 - 368] Pages: 20

DOI: 10.2174/0125899775271214240112071830

Price: $65

Open Access Journals Promotions 2
Abstract

Multidrug Resistance mechanisms in microorganisms confer the slackness of the existing drugs, leading to added difficulty in treating infections. As a consequence, efficient novel drugs and innovative therapies to treat MDR infections are necessarily required. One of the primary contributors to the emergence of multidrug resistance in gram-negative bacteria has been identified as the efflux pumps. These transporter efflux pumps reduce the intracellular concentration of antibiotics and aid bacterial survival in suboptimal low antibiotic concentration environments that may cause treatment failure. The reversal of this resistance via inhibition of the efflux mechanism is a promising method for increasing the effectiveness of antibiotics against multidrug-resistant pathogens. Such EPI, in combination with antibiotics, can make it easier to reintroduce traditional antibiotics into clinical practice. This review mostly examines efflux-mediated multidrug resistance in critical gram-negative bacterial pathogens and EPI of plant origin that have been reported over previous decades.

Keywords: Multidrug-resistance, critical gram-negative bacteria, efflux pumps, combination therapies, natural efflux pump inhibitors, novel drugs.

Graphical Abstract
[1]
Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: Structure, function and regulation. Nat Rev Microbiol 2018; 16(9): 523-39.
[http://dx.doi.org/10.1038/s41579-018-0048-6] [PMID: 30002505]
[2]
WHO publishes list of bacteria for which new antibiotics are urgently needed. GENEVA: European Centre for Disease Prevention and Control 2017.
[3]
Pagès JM, Amaral L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta Proteins Proteomics 2009; 1794(5): 826-33.
[http://dx.doi.org/10.1016/j.bbapap.2008.12.011] [PMID: 19150515]
[4]
Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve It. Molecules 2020; 25(6): 1340.
[http://dx.doi.org/10.3390/molecules25061340]
[5]
Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009; 78(1): 119-46.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[6]
Lomovskaya O, Lee A, Hoshino K, et al. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43(6): 1340-6.
[http://dx.doi.org/10.1128/AAC.43.6.1340] [PMID: 10348749]
[7]
Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 2014; 453(2): 254-67.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[8]
Kumar S, Varela MF. Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13(4): 4484-95.
[http://dx.doi.org/10.3390/ijms13044484] [PMID: 22605991]
[9]
Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 1999; 181(4): 1203-10.
[http://dx.doi.org/10.1128/JB.181.4.1203-1210.1999] [PMID: 9973347]
[10]
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: Molecular mechanism and inhibition. Front Microbiol 2015; 6: 377.
[http://dx.doi.org/10.3389/fmicb.2015.00377]
[11]
Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009; 69(12): 1555-623.
[http://dx.doi.org/10.2165/11317030-000000000-00000] [PMID: 19678712]
[12]
Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 2018; 9: 2990.
[http://dx.doi.org/10.3389/fmicb.2018.02990]
[13]
Ohene-Agyei T, Mowla R, Rahman T, Venter H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen 2014; 3(6): 885-96.
[http://dx.doi.org/10.1002/mbo3.212] [PMID: 25224951]
[14]
Askoura M, Mottawea W, Abujamel T, Taher I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med 2011; 6
[http://dx.doi.org/10.3402/ljm.v6i0.5870]
[15]
Laetitia M. Antibacterial potential and mechanism of action of botanicals and phytochemicals from Stachytarpheta cayennensis (Verbenaceae) against Gram-negative multidrug-resistant phenotypes expressing efflux pumps. Invest Med Chem Pharmacol 2020.
[16]
Saier MH Jr, Paulsen IT. Phylogeny of multidrug transporters. Semin Cell Dev Biol 2001; 12(3): 205-13.
[http://dx.doi.org/10.1006/scdb.2000.0246] [PMID: 11428913]
[17]
Khare T, Anand U, Dey A. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front Pharmacol 2021; 12: 720726.
[http://dx.doi.org/10.3389/fphar.2021.720726]
[18]
Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007; 128(6): 1037-50.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[19]
Pathania R, Sharma A, Gupta VK. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res 2019; 149(2): 129-45.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[20]
Blanco P, Hernando-Amado S, Reales-Calderon J, et al. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 2016; 4(1): 14.
[http://dx.doi.org/10.3390/microorganisms4010014] [PMID: 27681908]
[21]
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 2016; 7: 1483.
[http://dx.doi.org/10.3389/fmicb.2016.01483]
[22]
Piddock LJV. Multidrug-resistance efflux pumps? not just for resistance. Nat Rev Microbiol 2006; 4(8): 629-36.
[http://dx.doi.org/10.1038/nrmicro1464] [PMID: 16845433]
[23]
Martinez JL, Sánchez MB, Martínez-Solano L, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33(2): 430-49.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00157.x]
[24]
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19(2): 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[25]
Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9(10): 1165-77.
[http://dx.doi.org/10.2217/fmb.14.66] [PMID: 25405886]
[26]
Ebbensgaard AE, Løbner-Olesen A, Frimodt-Møller J. The role of efflux pumps in the transition from low-level to clinical antibiotic resistance. Antibiotics 2020; 9(12): 855.
[http://dx.doi.org/10.3390/antibiotics9120855] [PMID: 33266054]
[27]
Giuliodori AM, Gualerzi CO, Soto S, Vila J, Tavío MM. Review on bacterial stress topics. Ann N Y Acad Sci 2007; 1113(1): 95-104.
[http://dx.doi.org/10.1196/annals.1391.008] [PMID: 17483204]
[28]
Dawan J, Ahn J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms 2022; 10(7): 1385.
[http://dx.doi.org/10.3390/microorganisms10071385] [PMID: 35889104]
[29]
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28(2): 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14] [PMID: 25788514]
[30]
Durães F, Pinto M, Sousa E. Medicinal chemistry updates on bacterial efflux pump modulators. Curr Med Chem 2019; 25(42): 6030-69.
[http://dx.doi.org/10.2174/0929867325666180209142612] [PMID: 29424299]
[31]
Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: Exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 2001; 45(2): 428-32.
[http://dx.doi.org/10.1128/AAC.45.2.428-432.2001] [PMID: 11158736]
[32]
Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51(1): 9-11.
[http://dx.doi.org/10.1093/jac/dkg050] [PMID: 12493781]
[33]
Rafiei E, Shahini SAM, Zamanad B, Gholipour A. The frequency of efflux pump genes expression in Acinetobacter baumannii isolates from pulmonary secretions. AMB Express 2022; 12(1): 103.
[http://dx.doi.org/10.1186/s13568-022-01444-4]
[34]
Martins M, Viveiros M, Couto I, et al. Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo 2011; 25(2): 171-8.
[PMID: 21471531]
[35]
Lin YT, Huang YW, Chen SJ, Chang CW, Yang TC. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother 2015; 59(7): 4067-73.
[http://dx.doi.org/10.1128/AAC.00372-15] [PMID: 25918140]
[36]
Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48(5): 1797-802.
[http://dx.doi.org/10.1128/AAC.48.5.1797-1802.2004] [PMID: 15105137]
[37]
Taneja N, Mishra A, Kumar A, Verma G, Sharma M. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region. Indian J Med Res 2015; 141(1): 81-9.
[http://dx.doi.org/10.4103/0971-5916.154508] [PMID: 25857499]
[38]
Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44(5): 377-86.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001]
[39]
Ghosh A, Roymahapatra G, Paul D, Mandal SM. Theoretical analysis of bacterial efflux pumps inhibitors: Strategies in-search of competent molecules and develop next. Comput Biol Chem 2020; 87: 107275.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107275] [PMID: 32438117]
[40]
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6: 660.
[http://dx.doi.org/10.3389/fmicb.2015.00660] [PMID: 26217310]
[41]
Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 2017; 22(3): 468.
[http://dx.doi.org/10.3390/molecules22030468] [PMID: 28294992]
[42]
Zheleznova EE, Markham P, Edgar R, Bibi E, Neyfakh AA, Brennan RG. A structure-based mechanism for drug binding by multidrug transporters. Trends Biochem Sci 2000; 25(2): 39-43.
[http://dx.doi.org/10.1016/S0968-0004(99)01514-5] [PMID: 10664577]
[43]
Chitsaz M, Brown MH. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61(1): 127-39.
[http://dx.doi.org/10.1042/EBC20160064] [PMID: 28258236]
[44]
Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta Proteins Proteomics 2009; 1794(5): 769-81.
[http://dx.doi.org/10.1016/j.bbapap.2008.10.004] [PMID: 19026770]
[45]
Colclough AL, Alav I, Whittle EE, et al. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15(2): 143-57.
[http://dx.doi.org/10.2217/fmb-2019-0235] [PMID: 32073314]
[46]
Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 2002; 92: 65S-71S.
[http://dx.doi.org/10.1046/j.1365-2672.92.5s1.4.x] [PMID: 12000614]
[47]
Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2020; 10(4): 277-90.
[http://dx.doi.org/10.1016/j.jpha.2019.11.002] [PMID: 32923005]
[48]
Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2005; 87(12): 1137-47.
[http://dx.doi.org/10.1016/j.biochi.2005.04.012] [PMID: 15951096]
[49]
Gupta RP, Kueppers P, Schmitt L, Ernst R. The multidrug transporter Pdr5: A molecular diode? Biol Chem 2011; 392(1-2): 53-60.
[http://dx.doi.org/10.1515/bc.2011.011] [PMID: 21194365]
[50]
Fitzpatrick AWP, Llabrés S, Neuberger A, et al. Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2017; 2(7): 17070.
[http://dx.doi.org/10.1038/nmicrobiol.2017.70] [PMID: 28504659]
[51]
Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014; 43: 93-117.
[http://dx.doi.org/10.1146/annurev-biophys-051013-022855]
[52]
Huang L, Wu C, Gao H, et al. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview. Antibiotics 2022; 11(4): 520.
[http://dx.doi.org/10.3390/antibiotics11040520] [PMID: 35453271]
[53]
Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 2004; 10(1): 12-26.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00763.x] [PMID: 14706082]
[54]
Eicher T, Cha H, Seeger MA, et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci 2012; 109(15): 5687-92.
[http://dx.doi.org/10.1073/pnas.1114944109] [PMID: 22451937]
[55]
Du D, Wang Z, James NR, et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 2014; 509(7501): 512-5.
[http://dx.doi.org/10.1038/nature13205] [PMID: 24747401]
[56]
Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362(19): 1804-13.
[http://dx.doi.org/10.1056/NEJMra0904124] [PMID: 20463340]
[57]
Maurya A, Dwivedi GR, Darokar MP, Srivastava SK. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem Biol Drug Des 2013; 81(4): 484-90.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[58]
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: An update on therapeutic options. Front Microbiol 2019; 10: 80.
[http://dx.doi.org/10.3389/fmicb.2019.00080] [PMID: 30761114]
[59]
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7: 1-18.
[http://dx.doi.org/10.7573/dic.212527] [PMID: 29872449]
[60]
Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Clin Infect Dis 1983; 5(2): 279-313.
[http://dx.doi.org/10.1093/clinids/5.2.279] [PMID: 6405475]
[61]
Islamieh AI. Efflux pump inhibitors derived from natural sources as novel antibacterial agents against pseudomonas aeruginosa: A review. Int J Med Rev 2018; 5(3): 94-105.
[http://dx.doi.org/10.29252/IJMR-050303]
[62]
Exner M, Bhattacharya S, Christiansen B, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control 2017; 12: Doc05.
[http://dx.doi.org/10.3205/dgkh000290] [PMID: 28451516]
[63]
Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001; 3(2): 255-64.
[PMID: 11321581]
[64]
Priyabrata Mohanty, Mohanty P. Bacterial efflux pumps involved in multidrug resistance and their inhibitors: Rejuvinating the antimicrobial chemotherapy. Recent Patents Anti-Infect Drug Disc 2012; 7(1): 73-89.
[http://dx.doi.org/10.2174/157489112799829710] [PMID: 22353004]
[65]
Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 2014; 58(12): 7250-7.
[http://dx.doi.org/10.1128/AAC.03728-14] [PMID: 25246403]
[66]
Verma P, Tiwari M, Tiwari V. Effluxc pumps in multidrug-resistant Acinetobater baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microb Pathog 2021; 152: 104766.
[http://dx.doi.org/10.1016/j.micpath.2021.104766] [PMID: 33545327]
[67]
Wieczorek P, Sacha P, Hauschild T, Zórawski M, Krawczyk M, Tryniszewska E. Multidrug resistant Acinetobacter baumannii-the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol 2008; 46(3): 257-67.
[http://dx.doi.org/10.2478/v10042-008-0056-x] [PMID: 19056528]
[68]
Xu CF, Bilya SR, Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect 2019; 30: 100549.
[http://dx.doi.org/10.1016/j.nmni.2019.100549] [PMID: 31193498]
[69]
Abdi SN, Ghotaslou R, Ganbarov K, et al. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 2020; 13: 423-34.
[http://dx.doi.org/10.2147/IDR.S228089] [PMID: 32104014]
[70]
Oliveira J, Reygaert WC. Gram-Negative Bacteria. In: StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[71]
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2018; 169(7-8): 425-31.
[http://dx.doi.org/10.1016/j.resmic.2017.10.005] [PMID: 29128373]
[72]
Piddock LJV, Garvey MI, Rahman MM, Gibbons S. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother 2010; 65(6): 1215-23.
[http://dx.doi.org/10.1093/jac/dkq079] [PMID: 20304975]
[73]
Rao M. Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens. J Antimicrob Agents 2018; 4(1)
[74]
Kumar R, Pooja Patial SJ. A review on efflux pump inhibitors of gram-positive and gram-negative bacteria from plant sources. Int J Curr Microbiol Appl Sci 2016; 5(6): 837-55.
[http://dx.doi.org/10.20546/ijcmas.2016.506.092]
[75]
Choudhury D, Talukdar A, Chetia P, Bhattacharjee A, Choudhury M. Screening of natural products and derivatives for the identification of RND efflux pump inhibitors. Comb Chem High Throughput Screen 2016; 19(9): 705-13.
[http://dx.doi.org/10.2174/1386207319666160720101502] [PMID: 27450181]
[76]
Samreen, Qais FA, Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J Biomol Struct Dyn 2023; 41(6): 2189-201.
[http://dx.doi.org/10.1080/07391102.2022.2029564] [PMID: 35067192]
[77]
Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 2014; 9(7): e101840.
[http://dx.doi.org/10.1371/journal.pone.0101840] [PMID: 25025665]
[78]
Noumedem JAK, Mihasan M, Kuiate JR, et al. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complement Altern Med 2013; 13(1): 190.
[http://dx.doi.org/10.1186/1472-6882-13-190] [PMID: 23885762]
[79]
Siriyong T, Srimanote P, Chusri S, et al. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement Altern Med 2017; 17(1): 405.
[http://dx.doi.org/10.1186/s12906-017-1913-y] [PMID: 28806947]
[80]
Seukep JA, Sandjo LP, Ngadjui BT, Kuete V. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med 2016; 16(1): 193.
[http://dx.doi.org/10.1186/s12906-016-1173-2] [PMID: 27386848]
[81]
Wahlig TA, Bixler BJ, Valdés-López O, et al. Salmonella enterica serovar Typhimurium ATCC 14028S is tolerant to plant defenses triggered by the flagellin receptor FLS2. FEMS Microbiol Lett 2019; 366(4): fny296.
[http://dx.doi.org/10.1093/femsle/fny296] [PMID: 30601977]
[82]
Dana Isabelle AS, Ryne James PG, Ramil Joseph PP, et al. Potential inhibitory properties of selected plant secondary metabolites from local plant families in the Philippines against AcrAB-TolC drug efflux pump system of E coli: An In-silico analysis. JPP 2022; 11(2): 24-32.
[83]
Maisuria VB, Hosseinidoust Z, Tufenkji N. Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. Appl Environ Microbiol 2015; 81(11): 3782-92.
[http://dx.doi.org/10.1128/AEM.00239-15] [PMID: 25819960]
[84]
Sundaramoorthy NS, Mohan HM, Subramaniam S, et al. Ursolic acid inhibits colistin efflux and curtails colistin resistant Enterobacteriaceae. AMB Express 2019; 9(1): 27.
[http://dx.doi.org/10.1186/s13568-019-0750-4] [PMID: 30778773]
[85]
Negi N, Prakash P, Gupta ML, Mohapatra TM. Possible role of curcumin as ection an efflux pump inhibitor in multi drug resistant clinical isolates of pseudomonas aeruginosa. J Clin Diagn Res 2014; 8(10): DC04-7.
[http://dx.doi.org/10.7860/JCDR/2014/8329.4965] [PMID: 25478340]
[86]
Garvey MI, Rahman MM, Gibbons S, Piddock LJV. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int J Antimicrob Agents 2011; 37(2): 145-51.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.027] [PMID: 21194895]
[87]
Dwivedi GR, Tyagi R, Sanchita , et al. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J Biomol Struct Dyn 2018; 36(16): 4270-84.
[http://dx.doi.org/10.1080/07391102.2017.1413424] [PMID: 29210342]
[88]
Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K. Trans-cinnamaldehyde and eugenol increase acinetobacter baumannii sensitivity to beta-lactam antibiotics. Front Microbiol 2018; 9: 1011.
[http://dx.doi.org/10.3389/fmicb.2018.01011] [PMID: 29875743]
[89]
Lorenzi V, Muselli A, Bernardini AF, et al. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob Agents Chemother 2009; 53(5): 2209-11.
[http://dx.doi.org/10.1128/AAC.00919-08] [PMID: 19258278]
[90]
Bohnert JA, Szymaniak-Vits M, Schuster S, Kern WV. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J Antimicrob Chemother 2011; 66(9): 2057-60.
[http://dx.doi.org/10.1093/jac/dkr258] [PMID: 21700628]
[91]
Lu WJ, Hsu PH, Chang CJ, et al. Identified seaweed compound diphenylmethane serves as an efflux pump inhibitor in drug-resistant Escherichia coli. Antibiotics 2021; 10(11): 1378.
[http://dx.doi.org/10.3390/antibiotics10111378] [PMID: 34827316]
[92]
Chusri S, Villanueva I, Voravuthikunchai SP, Davies J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J Antimicrob Chemother 2009; 64(6): 1203-11.
[http://dx.doi.org/10.1093/jac/dkp381] [PMID: 19861335]
[93]
Lee S, Razqan GSA, Kwon DH. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Phytomedicine 2017; 24: 49-55.
[http://dx.doi.org/10.1016/j.phymed.2016.11.007] [PMID: 28160861]
[94]
Kanagaratnam R, Sheikh R, Alharbi F, Kwon DH. An efflux pump (MexAB-OprM) of Pseudomonas aeruginosa is associated with antibacterial activity of Epigallocatechin-3-gallate (EGCG). Phytomedicine 2017; 36: 194-200.
[http://dx.doi.org/10.1016/j.phymed.2017.10.010] [PMID: 29157815]
[95]
Fleeman RM, Debevec G, Antonen K, et al. Identification of a novel polyamine scaffold with potent efflux pump inhibition activity toward multi-drug resistant bacterial pathogens. Front Microbiol 2018; 9: 1301.
[http://dx.doi.org/10.3389/fmicb.2018.01301] [PMID: 29963035]
[96]
Dwivedi GR, Gupta S, Maurya A, et al. Synergy potential of indole alkaloids and its derivative against drug‐resistant escherichia coli. Chem Biol Drug Des 2015; 86(6): 1471-81.
[http://dx.doi.org/10.1111/cbdd.12613] [PMID: 26132412]
[97]
Khare T, Mahalunkar S, Shriram V, Gosavi S, Kumar V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ Res 2021; 199: 111321.
[http://dx.doi.org/10.1016/j.envres.2021.111321] [PMID: 33989619]
[98]
Miladi H, Zmantar T, Chaabouni Y, et al. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 2016; 99: 95-100.
[http://dx.doi.org/10.1016/j.micpath.2016.08.008] [PMID: 27521228]
[99]
Aghayan SS, Kalalian MH, Fazli M, et al. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in pseudomonas aeruginosa isolated from burn infections. Avicenna J Med Biotechnol 2017; 9(1): 2-7.
[PMID: 28090273]
[100]
Mangiaterra G, Laudadio E, Cometti M, et al. Inhibitors of multidrug efflux pumps of Pseudomonas aeruginosa from natural sources: An in silico high-throughput virtual screening and in vitro validation. Med Chem Res 2017; 26(2): 414-30.
[http://dx.doi.org/10.1007/s00044-016-1761-1]
[101]
Lu WJ, Huang YJ, Lin HJ, et al. Phenolic compound ethyl 3,4-dihydroxybenzoate retards drug efflux and potentiates antibiotic activity. Antibiotics 2022; 11(4): 497.
[http://dx.doi.org/10.3390/antibiotics11040497] [PMID: 35453250]
[102]
Bankan N, Koka F, Vijayaraghavan R, Basireddy SR, Jayaraman S. Overexpression of the adeb efflux pump gene in tigecycline-resistant acinetobacter baumannii clinical isolates and its inhibition by (+)usnic acid as an adjuvant. Antibiotics 2021; 10(9): 1037.
[http://dx.doi.org/10.3390/antibiotics10091037] [PMID: 34572620]
[103]
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33: 76-91.
[http://dx.doi.org/10.1016/j.sbi.2015.07.015] [PMID: 26282926]
[104]
Dias KJSDO, Miranda GM, Bessa JR, et al. Terpenes as bacterial efflux pump inhibitors: A systematic review. Front Pharmacol 2022; 13: 953982.
[http://dx.doi.org/10.3389/fphar.2022.953982] [PMID: 36313340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy