Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies

Author(s): Mohaddeseh Bahmani, Saba Mehrtabar, Ali Jafarizadeh, Sevda Zoghi, Fatemah Sadeghpour Heravi, Amin Abbasi, Sarvin Sanaie, Sama Rahnemayan and Hamed Ebrahimzadeh Leylabadlo*

Volume 25, Issue 16, 2024

Published on: 29 January, 2024

Page: [2089 - 2107] Pages: 19

DOI: 10.2174/0113892010281892240116081031

Price: $65

conference banner
Abstract

Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.

Keywords: Gut microbiota, major depressive disorder, neuromediators, microbiome, dysbiosis, novel therapeutic strategies.

Graphical Abstract
[1]
Zhang, Q.; Yun, Y.; An, H.; Zhao, W.; Ma, T.; Wang, Z.; Yang, F. Gut microbiome composition associated with major depressive disorder and sleep quality. Front. Psychiatry, 2021, 12, 645045.
[http://dx.doi.org/10.3389/fpsyt.2021.645045] [PMID: 34093266]
[2]
Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med., 2008, 358(1), 55-68.
[http://dx.doi.org/10.1056/NEJMra073096] [PMID: 18172175]
[3]
Chen, J.; Zheng, P.; Liu, Y.; Zhong, X.; Wang, H.; Guo, Y.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat., 2018, 14, 647-655.
[http://dx.doi.org/10.2147/NDT.S159322] [PMID: 29520144]
[4]
Lopez Molina, M.A.; Jansen, K.; Drews, C.; Pinheiro, R.; Silva, R.; Souza, L. Major depressive disorder symptoms in male and female young adults. Psychol. Health Med., 2014, 19(2), 136-145.
[http://dx.doi.org/10.1080/13548506.2013.793369] [PMID: 23651450]
[5]
Ebrahimzadeh, L.H.; Ghotaslou, R.; Samadi, K.H.; Feizabadi, M.M.; Moaddab, S.Y.; Farajnia, S.; Sheykhsaran, E.; Sanaie, S.; Shanehbandi, D.; Bannazadeh Baghi, H. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(4), 613-627.
[http://dx.doi.org/10.1007/s10096-019-03746-1] [PMID: 31828683]
[6]
Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148(6), 1258-1270.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[7]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar, R.D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[8]
McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; Guest, G.; Mohebbi, M.; Berk, M.; Stupart, D.; Watters, D.; Jacka, F.N. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry, 2022, 27(4), 1920-1935.
[http://dx.doi.org/10.1038/s41380-022-01456-3] [PMID: 35194166]
[9]
Slyepchenko, A.; Maes, M.; Jacka, F.N. Kِhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; Carvalho, A.F. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother. Psychosom., 2017, 86(1), 31-46.
[http://dx.doi.org/10.1159/000448957] [PMID: 27884012]
[10]
Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol., 2020, 13(2), 423-434.
[http://dx.doi.org/10.1111/1751-7915.13479] [PMID: 31448542]
[11]
Zhuang, Z.; Yang, R.; Wang, W.; Qi, L.; Huang, T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation, 2020, 17(1), 288.
[http://dx.doi.org/10.1186/s12974-020-01961-8] [PMID: 33008395]
[12]
Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21.
[http://dx.doi.org/10.1037/a0038550] [PMID: 25643025]
[13]
Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in major depressive disorder. Eur. Neuropsychopharmacol., 2016, 26(3), 397-410.
[http://dx.doi.org/10.1016/j.euroneuro.2015.12.039] [PMID: 26851834]
[14]
Haleem, D.J.; Haider, S. Food restriction decreases serotonin and its synthesis rate in the hypothalamus. Neuroreport, 1996, 7(6), 1153-1156.
[http://dx.doi.org/10.1097/00001756-199604260-00011] [PMID: 8817522]
[15]
Badawy, A.A.B. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol., 2013, 27(10), 878-893.
[http://dx.doi.org/10.1177/0269881113499209] [PMID: 23904410]
[16]
Hou, C.; Jia, F.; Liu, Y.; Li, L. CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res., 2006, 1095(1), 154-158.
[http://dx.doi.org/10.1016/j.brainres.2006.04.026] [PMID: 16713589]
[17]
Albert, P.R.; Le François, B.; Vahid-Ansari, F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: The 5-HT1A receptor gene as a paradigm. J. Psychiatry Neurosci., 2019, 44(3), 164-176.
[http://dx.doi.org/10.1503/jpn.180209] [PMID: 30807072]
[18]
Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain, 2017, 10(1), 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[19]
Stockmeier, C.A.; Shapiro, L.A.; Dilley, G.E.; Kolli, T.N.; Friedman, L.; Rajkowska, G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J. Neurosci., 1998, 18(18), 7394-7401.
[http://dx.doi.org/10.1523/JNEUROSCI.18-18-07394.1998] [PMID: 9736659]
[20]
Ślifirski, G.; Król, M.; Turło, J. 5-HT receptors and the development of new antidepressants. Int. J. Mol. Sci., 2021, 22(16), 9015.
[http://dx.doi.org/10.3390/ijms22169015] [PMID: 34445721]
[21]
Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsych. Dis. Treat., 2011, 7(S1), 9-13.
[22]
Cottingham, C.; Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci. Biobehav. Rev., 2012, 36(10), 2214-2225.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.011] [PMID: 22910678]
[23]
Rivero, G.; Gabilondo, A.M.; García-Sevilla, J.A. La Harpe, R.; Callado, L.F.; Meana, J.J. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: Differential effect of antidepressant treatment. J. Affect. Disord., 2014, 167, 343-350.
[http://dx.doi.org/10.1016/j.jad.2014.06.016] [PMID: 25020269]
[24]
Xu, Y.; Li, F.; Huang, X.; Sun, N.; Zhang, F.; Liu, P.; Yang, H.; Luo, J.; Sun, Y.; Zhang, K. The norepinephrine transporter gene modulates the relationship between urban/rural residency and major depressive disorder in a Chinese population. Psychiatry Res., 2009, 168(3), 213-217.
[http://dx.doi.org/10.1016/j.psychres.2009.03.015] [PMID: 19564048]
[25]
Haenisch, B.; Bilkei-Gorzo, A.; Caron, M.G.; Bönisch, H Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J. Neurochem., 2009, 111(2), 403-416.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06345.x] [PMID: 19694905]
[26]
Vishnuram, P. Study of high dose Vitamin-C in anxity & depression cases. Indian J. Basic Appl. Med. Res., 2020, 101, 374-378.
[27]
Li, Y.; Zhang, B.; Pan, X.; Wang, Y.; Xu, X.; Wang, R.; Liu, Z. Dopamine-mediated major depressive disorder in the neural circuit of ventral tegmental area-nucleus accumbens-medial prefrontal cortex: from biological evidence to computational models. Front. Cell. Neurosci., 2022, 16, 923039.
[http://dx.doi.org/10.3389/fncel.2022.923039] [PMID: 35966208]
[28]
Der-Avakian, A.; Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci., 2012, 35(1), 68-77.
[http://dx.doi.org/10.1016/j.tins.2011.11.005] [PMID: 22177980]
[29]
Belujon, P.; Grace, A.A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol., 2017, 20(12), 1036-1046.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[30]
Pittenger, C.; Duman, R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 2008, 33(1), 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[31]
Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol., 1990, 185(1), 1-10.
[http://dx.doi.org/10.1016/0014-2999(90)90204-J] [PMID: 2171955]
[32]
Chandley, M.J.; Szebeni, A.; Szebeni, K.; Crawford, J.D.; Stockmeier, C.A.; Turecki, G.; Kostrzewa, R.M.; Ordway, G.A. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int. J. Neuropsychopharmacol., 2014, 17(10), 1569-1578.
[http://dx.doi.org/10.1017/S1461145714000662] [PMID: 24925192]
[33]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[34]
Berk, M.; Plein, H.; Ferreira, D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin. Neuropharmacol., 2001, 24(3), 129-132.
[http://dx.doi.org/10.1097/00002826-200105000-00002] [PMID: 11391122]
[35]
Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003, 8(8), 721-737. 715
[http://dx.doi.org/10.1038/sj.mp.4001362] [PMID: 12888801]
[36]
Abdallah, C.G.; Jackowski, A.; Sato, J.R.; Mao, X.; Kang, G.; Cheema, R.; Coplan, J.D.; Mathew, S.J.; Shungu, D.C. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol., 2015, 25(8), 1082-1090.
[http://dx.doi.org/10.1016/j.euroneuro.2015.04.025] [PMID: 25983019]
[37]
Croarkin, P.E.; Levinson, A.J.; Daskalakis, Z.J. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci. Biobehav. Rev., 2011, 35(3), 818-825.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.002] [PMID: 20946914]
[38]
Sanacora, G.; Mason, G.F.; Rothman, D.L.; Hyder, F.; Ciarcia, J.J.; Ostroff, R.B.; Berman, R.M.; Krystal, J.H. Increased cortical GABA concentrations in depressed patients receiving ECT. Am. J. Psychiatry, 2003, 160(3), 577-579.
[http://dx.doi.org/10.1176/appi.ajp.160.3.577] [PMID: 12611844]
[39]
Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.A.; Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 2006, 444(7118), 486-489.
[http://dx.doi.org/10.1038/nature05324] [PMID: 17108970]
[40]
Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070.
[http://dx.doi.org/10.1016/S0140-6736(18)31551-4] [PMID: 30177236]
[41]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[42]
Shea, A.; Walsh, C.; MacMillan, H.; Steiner, M. Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology, 2005, 30(2), 162-178.
[http://dx.doi.org/10.1016/j.psyneuen.2004.07.001] [PMID: 15471614]
[43]
Young, E.A.; Altemus, M.; Lopez, J.F.; Kocsis, J.H.; Schatzberg, A.F.; deBattista, C.; Zubieta, J.K. HPA axis activation in major depression and response to fluoxetine: A pilot study. Psychoneuroendocrinology, 2004, 29(9), 1198-1204.
[http://dx.doi.org/10.1016/j.psyneuen.2004.02.002] [PMID: 15219644]
[44]
Vreeburg, S.A.; Hoogendijk, W.J.G.; van Pelt, J.; DeRijk, R.H.; Verhagen, J.C.M.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W.J.H. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: Results from a large cohort study. Arch. Gen. Psychiatry, 2009, 66(6), 617-626.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.50] [PMID: 19487626]
[45]
Papiol, S.; Arias, B.; Gastó, C.; Gutiérrez, B.; Catalán, R.; Fañanás, L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord., 2007, 104(1-3), 83-90.
[http://dx.doi.org/10.1016/j.jad.2007.02.017] [PMID: 17467808]
[46]
Holsboer-Trachsler, E.; Stohler, R.; Hatzinger, M. Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res., 1991, 38(2), 163-171.
[http://dx.doi.org/10.1016/0165-1781(91)90041-M] [PMID: 1661430]
[47]
Kunugi, H.; Urushibara, T.; Nanko, S. Combined DEX/CRH test among Japanese patients with major depression. J. Psychiatr. Res., 2004, 38(2), 123-128.
[http://dx.doi.org/10.1016/S0022-3956(03)00103-1] [PMID: 14757325]
[48]
Kunugi, H.; Hori, H.; Adachi, N.; Numakawa, T. Interface between hypothalamic‐pituitary‐adrenal axis and brain‐derived neurotrophic factor in depression. Psychiatry Clin. Neurosci., 2010, 64(5), 447-459.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02135.x] [PMID: 20923424]
[49]
Lee, B.H.; Kim, Y.K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig., 2010, 7(4), 231-235.
[http://dx.doi.org/10.4306/pi.2010.7.4.231] [PMID: 21253405]
[50]
Lee, B.H.; Kim, H.; Park, S.H.; Kim, Y.K. Decreased plasma BDNF level in depressive patients. J. Affect. Disord., 2007, 101(1-3), 239-244.
[http://dx.doi.org/10.1016/j.jad.2006.11.005] [PMID: 17173978]
[51]
Gonul, A.S.; Akdeniz, F.; Taneli, F.; Donat, O. Eker, Ç.; Vahip, S. Effect of treatment on serum brain–derived neurotrophic factor levels in depressed patients. Eur. Arch. Psychiatry Clin. Neurosci., 2005, 255(6), 381-386.
[http://dx.doi.org/10.1007/s00406-005-0578-6] [PMID: 15809771]
[52]
Kumamaru, E.; Numakawa, T.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Niyaz, M.; Kudo, M.; Kunugi, H. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol. Endocrinol., 2008, 22(3), 546-558.
[http://dx.doi.org/10.1210/me.2007-0264] [PMID: 18096693]
[53]
Numakawa, T.; Kumamaru, E.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Kunugi, H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-γ signaling for glutamate release via a glutamate transporter. Proc. Natl. Acad. Sci., 2009, 106(2), 647-652.
[http://dx.doi.org/10.1073/pnas.0800888106] [PMID: 19126684]
[54]
Patel, A. Review: The role of inflammation in depression. Psychiatr. Danub., 2013, 25(Suppl. 2), S216-S223.
[PMID: 23995180]
[55]
Krogh, J.; Benros, M.E. Jørgensen, M.B.; Vesterager, L.; Elfving, B.; Nordentoft, M. The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav. Immun., 2014, 35, 70-76.
[http://dx.doi.org/10.1016/j.bbi.2013.08.014] [PMID: 24016864]
[56]
Dantzer, R.; Wollman, E.E.; Yirmiya, R. Cytokines, stress, and depression; Springer, 1999.
[http://dx.doi.org/10.1007/b102345]
[57]
Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun., 2019, 81, 24-40.
[http://dx.doi.org/10.1016/j.bbi.2019.06.015] [PMID: 31195092]
[58]
Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med., 2009, 71(2), 171-186.
[http://dx.doi.org/10.1097/PSY.0b013e3181907c1b] [PMID: 19188531]
[59]
Opel, N.; Cearns, M.; Clark, S.; Toben, C.; Grotegerd, D.; Heindel, W.; Kugel, H.; Teuber, A.; Minnerup, H.; Berger, K.; Dannlowski, U.; Baune, B.T. Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J. Psychiatry Neurosci., 2019, 44(6), 423-431.
[http://dx.doi.org/10.1503/jpn.180208] [PMID: 31304733]
[60]
Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 201-217.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.003] [PMID: 15694227]
[61]
Capuron, L.; Ravaud, A.; Neveu, P.J.; Miller, A.H.; Maes, M.; Dantzer, R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry, 2002, 7(5), 468-473.
[http://dx.doi.org/10.1038/sj.mp.4000995] [PMID: 12082564]
[62]
Doolin, K.; Farrell, C.; Tozzi, L.; Harkin, A.; Frodl, T.; O’Keane, V. Diurnal hypothalamic-pituitary-adrenal axis measures and inflammatory marker correlates in major depressive disorder. Int. J. Mol. Sci., 2017, 18(10), 2226.
[http://dx.doi.org/10.3390/ijms18102226] [PMID: 29064428]
[63]
Malhi, G.S.; Moore, J.; McGuffin, P. The genetics of major depressive disorder. Curr. Psychiatry Rep., 2000, 2(2), 165-169.
[http://dx.doi.org/10.1007/s11920-000-0062-y] [PMID: 11122950]
[64]
Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry, 2006, 163(1), 109-114.
[http://dx.doi.org/10.1176/appi.ajp.163.1.109] [PMID: 16390897]
[65]
Lohoff, F.W. Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep., 2010, 12(6), 539-546.
[http://dx.doi.org/10.1007/s11920-010-0150-6] [PMID: 20848240]
[66]
Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry, 2003, 160(4), 636-645.
[http://dx.doi.org/10.1176/appi.ajp.160.4.636] [PMID: 12668349]
[67]
Hasler, G.; Drevets, W.C.; Manji, H.K.; Charney, D.S. Discovering endophenotypes for major depression. Neuropsychopharmacology, 2004, 29(10), 1765-1781.
[http://dx.doi.org/10.1038/sj.npp.1300506] [PMID: 15213704]
[68]
Frodl, T. Möller, H.J.; Meisenzahl, E. Neuroimaging genetics: New perspectives in research on major depression? Acta Psychiatr. Scand., 2008, 118(5), 363-372.
[http://dx.doi.org/10.1111/j.1600-0447.2008.01225.x] [PMID: 18644006]
[69]
Zhang, J.; Chen, Y.; Zhang, K.; Yang, H.; Sun, Y.; Fang, Y.; Shen, Y.; Xu, Q. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol. Psychiatry, 2010, 68(9), 795-800.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.004] [PMID: 20691428]
[70]
Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR genetic variant and major depressive disorder: A review. Genes, 2020, 11(11), 1260.
[http://dx.doi.org/10.3390/genes11111260] [PMID: 33114535]
[71]
Smythies, L.E.; Smythies, J.R. Microbiota, the immune system, black moods and the brain—melancholia updated. Front. Hum. Neurosci., 2014, 8, 720.
[http://dx.doi.org/10.3389/fnhum.2014.00720] [PMID: 25309394]
[72]
Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.K.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; Kaye, A.D.; Viswanath, O. Current perspectives on gut microbiome dysbiosis and depression. Adv. Ther., 2020, 37(4), 1328-1346.
[http://dx.doi.org/10.1007/s12325-020-01272-7] [PMID: 32130662]
[73]
Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[74]
Jakobsson, H.E.; Jernberg, C.; Andersson, A.F. Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3), e9836.
[http://dx.doi.org/10.1371/journal.pone.0009836] [PMID: 20352091]
[75]
Shen, Y.; Yang, X.; Li, G.; Gao, J.; Liang, Y. The change of gut microbiota in MDD patients under SSRIs treatment. Sci. Rep., 2021, 11(1), 14918.
[http://dx.doi.org/10.1038/s41598-021-94481-1] [PMID: 34290352]
[76]
Zoghi, S.; Sadeghpour, H.F.; Nikniaz, Z.; Shirmohamadi, M.; Moaddab, S.Y.; Ebrahimzadeh, L.H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng. Life Sci., 2023, e2300070.
[http://dx.doi.org/10.1002/elsc.202300070]
[77]
Macedo, D.; Filho, A.J.M.C.; Soares de Sousa, C.N.; Quevedo, J.; Barichello, T. Júnior, H.V.N.; Freitas de Lucena, D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord., 2017, 208, 22-32.
[http://dx.doi.org/10.1016/j.jad.2016.09.012] [PMID: 27744123]
[78]
Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[79]
Zhong, Q.; Chen, J.; Wang, Y.; Shao, W.; Zhou, C.; Xie, P. Differential gut microbiota compositions related with the severity of major depressive disorder. Front. Cell. Infect. Microbiol., 2022, 12, 907239.
[http://dx.doi.org/10.3389/fcimb.2022.907239] [PMID: 35899051]
[80]
Galley, J.D.; Nelson, M.C.; Yu, Z.; Dowd, S.E.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol., 2014, 14(1), 189.
[http://dx.doi.org/10.1186/1471-2180-14-189] [PMID: 25028050]
[81]
Aoki-Yoshida, A.; Aoki, R.; Moriya, N.; Goto, T.; Kubota, Y.; Toyoda, A.; Takayama, Y.; Suzuki, C. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress. J. Proteome Res., 2016, 15(9), 3126-3138.
[http://dx.doi.org/10.1021/acs.jproteome.6b00262] [PMID: 27482843]
[82]
Lai, W.; Deng, W.; Xu, S.; Zhao, J.; Xu, D.; Liu, Y.; Guo, Y.; Wang, M.; He, F.; Ye, S.; Yang, Q.; Liu, T.; Zhang, Y.; Wang, S.; Li, M.; Yang, Y.; Xie, X.; Rong, H. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med., 2021, 51(1), 90-101.
[http://dx.doi.org/10.1017/S0033291719003027] [PMID: 31685046]
[83]
Chen, Y.; Xue, F.; Yu, S.; Li, X.; Liu, L.; Jia, Y.; Yan, W.; Tan, Q.; Wang, H.; Peng, Z. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J. Affect. Disord., 2021, 282, 391-400.
[http://dx.doi.org/10.1016/j.jad.2020.12.143] [PMID: 33421868]
[84]
Zheng, S.; Zhu, Y.; Wu, W.; Zhang, Q.; Wang, Y.; Wang, Z.; Yang, F. A correlation study of intestinal microflora and first‐episode depression in Chinese patients and healthy volunteers. Brain Behav., 2021, 11(8), e02036.
[http://dx.doi.org/10.1002/brb3.2036] [PMID: 33960717]
[85]
Ye, X.; Wang, D.; Zhu, H.; Wang, D.; Li, J.; Tang, Y.; Wu, J. Gut microbiota changes in patients with major depressive disorder treated with vortioxetine. Front. Psychiatry, 2021, 12, 641491.
[http://dx.doi.org/10.3389/fpsyt.2021.641491] [PMID: 34025474]
[86]
Rong, H.; Xie, X.; Zhao, J.; Lai, W.; Wang, M.; Xu, D.; Liu, Y.; Guo, Y.; Xu, S.; Deng, W.; Yang, Q.; Xiao, L.; Zhang, Y.; He, F.; Wang, S.; Liu, T. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res., 2019, 113, 90-99.
[http://dx.doi.org/10.1016/j.jpsychires.2019.03.017] [PMID: 30927646]
[87]
Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun., 2020, 88, 308-324.
[http://dx.doi.org/10.1016/j.bbi.2020.03.026] [PMID: 32229219]
[88]
Chen, J.J.; He, S.; Fang, L.; Wang, B.; Bai, S.J.; Xie, J.; Zhou, C.J.; Wang, W.; Xie, P. Age-specific differential changes on gut microbiota composition in patients with major depressive disorder. Aging, 2020, 12(3), 2764-2776.
[http://dx.doi.org/10.18632/aging.102775] [PMID: 32040443]
[89]
Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for differential diagnosis of major depressive disorder and general anxiety disorder. Front. Psychiatry, 2021, 12, 651536.
[http://dx.doi.org/10.3389/fpsyt.2021.651536] [PMID: 34589003]
[90]
Zheng, P.; Yang, J.; Li, Y.; Wu, J.; Liang, W.; Yin, B.; Tan, X.; Huang, Y.; Chai, T.; Zhang, H.; Duan, J.; Zhou, J.; Sun, Z.; Chen, X.; Marwari, S.; Lai, J.; Huang, T.; Du, Y.; Zhang, P.; Perry, S.W.; Wong, M.L.; Licinio, J.; Hu, S.; Xie, P.; Wang, G. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci., 2020, 7(7), 1902862.
[http://dx.doi.org/10.1002/advs.201902862] [PMID: 32274300]
[91]
Foster, J.A.; Baker, G.B.; Dursun, S.M. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Front. Neurol., 2021, 12, 721126.
[http://dx.doi.org/10.3389/fneur.2021.721126] [PMID: 34650506]
[92]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[93]
Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals, 2018, 11(3), 63.
[http://dx.doi.org/10.3390/ph11030063] [PMID: 29941795]
[94]
Liu, S.; Guo, R.; Liu, F.; Yuan, Q.; Yu, Y.; Ren, F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr. Dis. Treat., 2020, 16, 859-869.
[http://dx.doi.org/10.2147/NDT.S243551] [PMID: 32280227]
[95]
Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our gut microbiome: The evolving inner self. Cell, 2017, 171(7), 1481-1493.
[http://dx.doi.org/10.1016/j.cell.2017.11.024] [PMID: 29245010]
[96]
Lu, J. Herbal formula fo shou san attenuates Alzheimer’s diseaserelated pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid.-based Complem. Altern. Med., 2019, 2019
[97]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[98]
Gritti, D.; Delvecchio, G.; Ferro, A.; Bressi, C.; Brambilla, P. Neuroinflammation in major depressive disorder: A review of PET imaging studies examining the 18-kDa translocator protein. J. Affect. Disord., 2021, 292, 642-651.
[http://dx.doi.org/10.1016/j.jad.2021.06.001] [PMID: 34153835]
[99]
Canli, T. Reconceptualizing major depressive disorder as an infectious disease. Biol. Mood Anxiety Disord., 2014, 4(1), 10.
[http://dx.doi.org/10.1186/2045-5380-4-10] [PMID: 25364500]
[100]
de Castro-Silva, K.M.; Carvalho, A.C.; Cavalcanti, M.T.; Martins, P.S.; França, J.R.; Oquendo, M.; Kritski, A.L.; Sweetland, A. Prevalence of depression among patients with presumptive pulmonary tuberculosis in Rio de Janeiro, Brazil. Br. J. Psychiatry, 2019, 41(4), 316-323.
[http://dx.doi.org/10.1590/1516-4446-2018-0076] [PMID: 30365672]
[101]
Moss, M.E.; Beck, J.D.; Kaplan, B.H.; Offenbacher, S.; Weintraub, J.A.; Koch, G.G.; Genco, R.J.; Machtei, E.E.; Tedesco, L.A. Exploratory case‐control analysis of psychosocial factors and adult periodontitis. J. Periodontol., 1996, 67(10S), 1060-1069.
[http://dx.doi.org/10.1902/jop.1996.67.10s.1060]
[102]
Dachew, B.A.; Scott, J.G.; Alati, R. Gestational urinary tract infections and the risk of antenatal and postnatal depressive and anxiety symptoms: A longitudinal population-based study. J. Psychosom. Res., 2021, 150, 110600.
[http://dx.doi.org/10.1016/j.jpsychores.2021.110600] [PMID: 34547662]
[103]
Rivera Rivera, Y. Vázquez Santiago, F.J.; Albino, E.; Sánchez, M.D.; Rivera-Amill, V. Impact of depression and inflammation on the progression of HIV disease. J. Clin. Cell. Immunol., 2016, 7(3), 423.
[http://dx.doi.org/10.4172/2155-9899.1000423] [PMID: 27478681]
[104]
Zürcher, S.J.; Banzer, C.; Adamus, C.; Lehmann, A.I.; Richter, D.; Kerksieck, P. Post-viral mental health sequelae in infected persons associated with COVID-19 and previous epidemics and pandemics: Systematic review and meta-analysis of prevalence estimates. J. Infect. Public Health, 2022, 15(5), 599-608.
[http://dx.doi.org/10.1016/j.jiph.2022.04.005] [PMID: 35490117]
[105]
Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[106]
Lester, D. Brain parasites and suicide. Psychol. Rep., 2010, 107(2), 424-424.
[http://dx.doi.org/10.2466/12.13.PR0.107.5.424] [PMID: 21117467]
[107]
Pires, M.; Wright, B.; Kaye, P.M. da Conceição, V.; Churchill, R.C. The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PLoS One, 2019, 14(10), e0223313.
[http://dx.doi.org/10.1371/journal.pone.0223313] [PMID: 31622369]
[108]
Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial metabolites of human gut microbiota correlating with depression. Int. J. Mol. Sci., 2020, 21(23), 9234.
[http://dx.doi.org/10.3390/ijms21239234] [PMID: 33287416]
[109]
Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481.
[http://dx.doi.org/10.15698/mic2019.10.693] [PMID: 31646148]
[110]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P. Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[111]
DeCastro, M.; Nankova, B.B.; Shah, P.; Patel, P.; Mally, P.V.; Mishra, R.; La Gamma, E.F. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res., 2005, 142(1), 28-38.
[http://dx.doi.org/10.1016/j.molbrainres.2005.09.002] [PMID: 16219387]
[112]
Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 320-324.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.010] [PMID: 25818247]
[113]
Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740.
[http://dx.doi.org/10.1371/journal.pone.0103740] [PMID: 25170769]
[114]
Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D.; Szkup, M.; Schneider-Matyka, D.; Jurczak, A.; Łoniewski, I.; Kaczmarczyk, M.; Marlicz, W.; Czerwińska-Rogowska, M.; Pełka-Wysiecka, J.; Dec, K.; Stachowska, E. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 2018, 10(12), 1939.
[http://dx.doi.org/10.3390/nu10121939] [PMID: 30544489]
[115]
Ortega, M.A.; Alvarez-Mon, M.A. García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorder-Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50.
[http://dx.doi.org/10.3390/metabo12010050] [PMID: 35050172]
[116]
Tang, C.F.; Wang, C.Y.; Wang, J.H.; Wang, Q.N.; Li, S.J.; Wang, H.O.; Zhou, F.; Li, J.M. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage. Nutrients, 2022, 14(9), 1882.
[http://dx.doi.org/10.3390/nu14091882] [PMID: 35565849]
[117]
Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M. Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil., 2014, 26(8), 1155-1162.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[118]
Wu, M.; Tian, T.; Mao, Q.; Zou, T.; Zhou, C.; Xie, J.; Chen, J. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl. Psychiatry, 2020, 10(1), 350.
[http://dx.doi.org/10.1038/s41398-020-01038-3] [PMID: 33067412]
[119]
Müller, B.; Rasmusson, A.J.; Just, D.; Jayarathna, S.; Moazzami, A.; Novicic, Z.K.; Cunningham, J.L. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom. Med., 2021, 83(7), 693-699.
[http://dx.doi.org/10.1097/PSY.0000000000000965] [PMID: 34267089]
[120]
Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab., 2016, 24(1), 41-50.
[http://dx.doi.org/10.1016/j.cmet.2016.05.005] [PMID: 27320064]
[121]
Peng, Y.F.; Xiang, Y.; Wei, Y.S. The significance of routine biochemical markers in patients with major depressive disorder. Sci. Rep., 2016, 6(1), 34402.
[http://dx.doi.org/10.1038/srep34402] [PMID: 27683078]
[122]
Boston, P.F.; Dursun, S.M.; Reveley, M.A. Cholesterol and mental disorder. Br. J. Psychiatry, 1996, 169(6), 682-689.
[http://dx.doi.org/10.1192/bjp.169.6.682] [PMID: 8968624]
[123]
Mahmoudian Dehkordi, S.; Bhattacharyya, S.; Brydges, C.R.; Jia, W.; Fiehn, O.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety-A role for bile acids. Front. Neurosci., 2022, 16, 937906.
[http://dx.doi.org/10.3389/fnins.2022.937906] [PMID: 35937867]
[124]
Monteiro-Cardoso, V.F. Corlianò, M.; Singaraja, R.R. Bile acids: A communication channel in the gut-brain axis. Neuromolecular Med., 2021, 23(1), 99-117.
[http://dx.doi.org/10.1007/s12017-020-08625-z] [PMID: 33085065]
[125]
Huang, C.; Wang, J.; Hu, W.; Wang, C.; Lu, X.; Tong, L.; Wu, F.; Zhang, W. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett., 2016, 590(18), 3233-3242.
[http://dx.doi.org/10.1002/1873-3468.12373] [PMID: 27545319]
[126]
Kimmel, M.; Jin, W.; Xia, K.; Lun, K.; Azcarate-Peril, A.; Plantinga, A.; Wu, M.; Ataei, S.; Rackers, H.; Carroll, I.; Meltzer-Brody, S.; Fransson, E.; Knickmeyer, R. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition. Behav. Brain Res., 2022, 418, 113635.
[http://dx.doi.org/10.1016/j.bbr.2021.113635] [PMID: 34755640]
[127]
Tung, T.H.; Chen, Y.C.; Lin, Y.T.; Huang, S.Y. N-3 PUFA ameliorates the gut microbiota, bile acid profiles, and neuropsychiatric behaviours in a rat model of geriatric depression. Biomedicines, 2022, 10(7), 1594.
[http://dx.doi.org/10.3390/biomedicines10071594] [PMID: 35884899]
[128]
Li, H.; Zhu, X.; Xu, J.; Li, L.; Kan, W.; Bao, H.; Xu, J.; Wang, W.; Yang, Y.; Chen, P.; Zou, Y.; Feng, Y.; Yang, J.; Du, J.; Wang, G. The FXR mediated anti-depression effect of CDCA underpinned its therapeutic potentiation for MDD. Int. Immunopharmacol., 2023, 115, 109626.
[http://dx.doi.org/10.1016/j.intimp.2022.109626] [PMID: 36584576]
[129]
Chen, W.G.; Zheng, J.X.; Xu, X.; Hu, Y.M.; Ma, Y.M. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation. Psychiatry Res., 2018, 264, 374-379.
[http://dx.doi.org/10.1016/j.psychres.2018.04.025] [PMID: 29677620]
[130]
Lu, X.; Yang, R.R.; Zhang, J.L.; Wang, P.; Gong, Y.; Hu, W.; Wu, Y.; Gao, M.; Huang, C. Tauroursodeoxycholic acid produces antidepressant‐like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido‐nitrosative stress, and endoplasmic reticulum stress. Fundam. Clin. Pharmacol., 2018, 32(4), 363-377.
[http://dx.doi.org/10.1111/fcp.12367] [PMID: 29578616]
[131]
Yanguas-Casás, N.; Barreda-Manso, M.A.; Nieto-Sampedro, M.; Romero-Ramيrez, L. TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti‐inflammatory effects in microglial cells. J. Cell. Physiol., 2017, 232(8), 2231-2245.
[http://dx.doi.org/10.1002/jcp.25742] [PMID: 27987324]
[132]
Hashioka, S.; Inoue, K.; Hayashida, M.; Wake, R.; Oh-Nishi, A.; Miyaoka, T. Implications of systemic inflammation and periodontitis for major depression. Front. Neurosci., 2018, 12, 483.
[http://dx.doi.org/10.3389/fnins.2018.00483] [PMID: 30072865]
[133]
Kéri, S. Szabَ, C.; Kelemen, O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun., 2014, 40, 235-243.
[http://dx.doi.org/10.1016/j.bbi.2014.03.020] [PMID: 24726793]
[134]
Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res., 1996, 711(1-2), 163-174.
[http://dx.doi.org/10.1016/0006-8993(95)01415-2] [PMID: 8680860]
[135]
He, Y.; Li, W.; Wang, Y.; Tian, Y.; Chen, X.; Wu, Z.; Lan, T.; Li, Y.; Bai, M.; Liu, J.; Cheng, K.; Xie, P. Major depression accompanied with inflammation and multiple cytokines alterations: Evidences from clinical patients to macaca fascicularis and LPS-induced depressive mice model. J. Affect. Disord., 2020, 271, 262-271.
[http://dx.doi.org/10.1016/j.jad.2020.03.131] [PMID: 32479325]
[136]
Wu, Y.; Fu, Y.; Rao, C.; Li, W.; Liang, Z.; Zhou, C.; Shen, P.; Cheng, P.; Zeng, L.; Zhu, D.; Zhao, L.; Xie, P. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav. Brain Res., 2016, 308, 115-127.
[http://dx.doi.org/10.1016/j.bbr.2016.04.032] [PMID: 27102340]
[137]
Rahman, S.; Alzarea, S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. Prog. Mol. Biol. Transl. Sci., 2019, 167, 159-178.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.010] [PMID: 31601403]
[138]
Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflammation, 2022, 19(1), 132.
[http://dx.doi.org/10.1186/s12974-022-02492-0] [PMID: 35668399]
[139]
Qiu, T.; Guo, J.; Wang, L.; Shi, L.; Ai, M.; Zhu, X.; Peng, Z.; Kuang, L. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An [18F] DPA-714 PET imaging study. Bosn. J. Basic Med. Sci., 2022, 22(4), 649-659.
[http://dx.doi.org/10.17305/bjbms.2021.6825] [PMID: 35113011]
[140]
Zhang, L.; Zhang, J.; You, Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell. Neurosci., 2018, 12, 306.
[http://dx.doi.org/10.3389/fncel.2018.00306] [PMID: 30459555]
[141]
Maes, M.; Kubera, M.; Leunis, J-C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124.
[PMID: 18283240]
[142]
Cordeiro, R.C.; Chaves Filho, A.J.M.; Gomes, N.S.; Tomaz, V.S.; Medeiros, C.D.; Queiroz, A.I.G.; Maes, M.; Macedo, D.S.; Carvalho, A.F. Leptin prevents lipopolysaccharide-induced depressive-like behaviors in mice: involvement of dopamine receptors. Front. Psychiatry, 2019, 10, 125.
[http://dx.doi.org/10.3389/fpsyt.2019.00125] [PMID: 30949073]
[143]
Cheng, L.; Huang, C.; Chen, Z. Tauroursodeoxycholic acid ameliorates lipopolysaccharide-induced depression like behavior in mice via the inhibition of neuroinflammation and oxido-nitrosative stress. Pharmacology, 2019, 103(1-2), 93-100.
[http://dx.doi.org/10.1159/000494139] [PMID: 30517939]
[144]
Brydges, C.R.; Fiehn, O.; Mayberg, H.S.; Schreiber, H.; Dehkordi, S.M.; Bhattacharyya, S.; Cha, J.; Choi, K.S.; Craighead, W.E.; Krishnan, R.R.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R.; Penninx, B.; Binder, E.; Kastenmüller, G.; Arnold, M.; Nevado-Helgado, A.; Blach, C.; Milaneschi, Y.; Knauer-Arloth, J.; Jansen, R.; Mook-Kanamori, D.; Han, X.; Baillie, R.; Rinaldo, P. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci. Rep., 2021, 11(1), 21011.
[http://dx.doi.org/10.1038/s41598-021-99845-1] [PMID: 34697401]
[145]
Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 2010, 34(4), 426-444.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00204.x] [PMID: 20070374]
[146]
Delgado, I.; Cussotto, S.; Anesi, A.; Dexpert, S.; Aubert, A.; Aouizerate, B.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Mattivi, F.; Capuron, L. Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: A preliminary study. Int. J. Obes., 2022, 46(4), 885-888.
[http://dx.doi.org/10.1038/s41366-021-01049-0] [PMID: 35001078]
[147]
Merchak, A.; Gaultier, A. Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain, Behavior, Immunity - Health, 2020, 9, 100169.
[http://dx.doi.org/10.1016/j.bbih.2020.100169] [PMID: 34589904]
[148]
Chen, Y.; Tian, P.; Wang, Z.; Pan, R.; Shang, K.; Wang, G.; Zhao, J.; Chen, W. Indole acetic acid exerts anti-depressive effects on an animal model of chronic mild stress. Nutrients, 2022, 14(23), 5019.
[http://dx.doi.org/10.3390/nu14235019] [PMID: 36501051]
[149]
Liu, J.C.; Yu, H.; Li, R.; Zhou, C.H.; Shi, Q.Q.; Guo, L.; He, H. A preliminary comparison of plasma tryptophan metabolites and medium-and long-chain fatty acids in adult patients with major depressive disorder and schizophrenia. Medicina, 2023, 59(2), 413.
[http://dx.doi.org/10.3390/medicina59020413] [PMID: 36837614]
[150]
Chen, J.; Zhou, C.; Zheng, P.; Cheng, K.; Wang, H.; Li, J.; Zeng, L.; Xie, P. Differential urinary metabolites related with the severity of major depressive disorder. Behav. Brain Res., 2017, 332, 280-287.
[http://dx.doi.org/10.1016/j.bbr.2017.06.012] [PMID: 28624318]
[151]
Mir, H.D.; Milman, A.; Monnoye, M.; Douard, V.; Philippe, C.; Aubert, A.; Castanon, N.; Vancassel, S.; Guérineau, N.C.; Naudon, L.; Rabot, S. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology, 2020, 119, 104750.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104750] [PMID: 32569990]
[152]
Zhang, X.; Hou, Y.; Li, Y.; Wei, W.; Cai, X.; Shao, H.; Yuan, Y.; Zheng, X. Taxonomic and metabolic signatures of gut microbiota for assessing the severity of depression and anxiety in major depressive disorder patients. Neuroscience, 2022, 496, 179-189.
[http://dx.doi.org/10.1016/j.neuroscience.2022.06.024] [PMID: 35750110]
[153]
Naudon, L.; Philippe, C.; Monnoye, M.; Rhimi, M.; Rabot, S.; Calarge, C. Gut microbiota indole production and depressive-like symptoms: A fecal transplantation study in mice. Biol. Psychiatry, 2019, 85(10), S89-S90.
[http://dx.doi.org/10.1016/j.biopsych.2019.03.230]
[154]
Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V. Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.008] [PMID: 32470357]
[155]
Kaiser, J.C.; Heinrichs, D.E. Branching out: Alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. MBio, 2018, 9(5), e01188-e18.
[http://dx.doi.org/10.1128/mBio.01188-18] [PMID: 30181248]
[156]
Fellendorf, F.T. Branched-chain amino acids are associated with metabolic parameters in bipolar disorder. World J. Biol. Psychiatry, 2019, 20(10), 821-826.
[PMID: 29898625]
[157]
Layman, D.K. Role of leucine in protein metabolism during exercise and recovery. Can. J. Appl. Physiol., 2002, 27(6), 646-662.
[http://dx.doi.org/10.1139/h02-038] [PMID: 12501002]
[158]
Scarnà, A.; Gijsman, H.J.; Mctavish, S.F.B.; Harmer, C.J.; Cowen, P.J.; Goodwin, G.M. Effects of a branched-chain amino acid drink in mania. Br. J. Psychiatry, 2003, 182(3), 210-213.
[http://dx.doi.org/10.1192/bjp.182.3.210] [PMID: 12611783]
[159]
Baranyi, A.; Meinitzer, A.; Stepan, A.; Putz-Bankuti, C.; Breitenecker, R.J.; Stauber, R.; Kapfhammer, H.P. Rothenhäusler, H.B. A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom., 2013, 82(5), 332-340.
[http://dx.doi.org/10.1159/000348587] [PMID: 23942342]
[160]
Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D. Rothenhäusler, H.B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-chain amino acids as new biomarkers of major depression-a novel neurobiology of mood disorder. PLoS One, 2016, 11(8), e0160542.
[http://dx.doi.org/10.1371/journal.pone.0160542] [PMID: 27490818]
[161]
Jernigan, C.S.; Goswami, D.B.; Austin, M.C.; Iyo, A.H.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1774-1779.
[http://dx.doi.org/10.1016/j.pnpbp.2011.05.010] [PMID: 21635931]
[162]
Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: A pilot study. Arch. Phys. Med. Rehabil., 2008, 89(9), 1642-1647.
[http://dx.doi.org/10.1016/j.apmr.2008.02.023] [PMID: 18760149]
[163]
Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress. Nutr. J., 2021, 20(1), 11.
[http://dx.doi.org/10.1186/s12937-021-00670-z] [PMID: 33514378]
[164]
Robles, A.V.; Guarner, F. Linking the gut microbiota to human health. Br. J. Nutr., 2013, 109(S2), S21-S26.
[http://dx.doi.org/10.1017/S0007114512005235] [PMID: 23360877]
[165]
Ebrahimzadeh, L.H.; Sanaie, S.; Sadeghpour, H.F.; Ahmadian, Z.; Ghotaslou, R. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infect. Genet. Evol., 2020, 81, 104268.
[http://dx.doi.org/10.1016/j.meegid.2020.104268] [PMID: 32126303]
[166]
Tian, P.; Zou, R.; Wang, L.; Chen, Y.; Qian, X.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; Wang, G.; Chen, W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J. Adv. Res., 2023, 45, 117-125.
[http://dx.doi.org/10.1016/j.jare.2022.05.003] [PMID: 35618633]
[167]
Goh, K.K.; Liu, Y.W.; Kuo, P.H.; Chung, Y.C.E.; Lu, M.L.; Chen, C.H. Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res., 2019, 282, 112568.
[http://dx.doi.org/10.1016/j.psychres.2019.112568] [PMID: 31563280]
[168]
Yong, S.J.; Tong, T.; Chew, J.; Lim, W.L. Antidepressive mechanisms of probiotics and their therapeutic potential. Front. Neurosci., 2020, 13, 1361.
[http://dx.doi.org/10.3389/fnins.2019.01361] [PMID: 32009871]
[169]
Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19.
[http://dx.doi.org/10.1016/j.jad.2017.11.063] [PMID: 29197739]
[170]
Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[171]
Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18.
[http://dx.doi.org/10.1016/j.euroneuro.2020.03.006] [PMID: 32241688]
[172]
Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 2015, 232(10), 1793-1801.
[http://dx.doi.org/10.1007/s00213-014-3810-0] [PMID: 25449699]
[173]
Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr. Neurosci., 2021, 24(5), 339-353.
[http://dx.doi.org/10.1080/1028415X.2019.1630985] [PMID: 31241002]
[174]
Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, 11(7), 1000.
[http://dx.doi.org/10.3390/biom11071000] [PMID: 34356624]
[175]
Chi, L.; Khan, I.; Lin, Z.; Zhang, J.; Lee, M.Y.S.; Leong, W.; Hsiao, W.L.W.; Zheng, Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine, 2020, 67, 153157.
[http://dx.doi.org/10.1016/j.phymed.2019.153157] [PMID: 31896054]
[176]
Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr., 2019, 38(2), 522-528.
[http://dx.doi.org/10.1016/j.clnu.2018.04.010] [PMID: 29731182]
[177]
Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320.
[http://dx.doi.org/10.1016/j.nut.2015.09.003] [PMID: 26706022]
[178]
Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology, 2019, 100, 213-222.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.010] [PMID: 30388595]
[179]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[180]
Ghorbani, Z.; Nazari, S.; Etesam, F.; Nourimajd, S.; Ahmadpanah, M.; Razeghi Jahromi, S. The effect of synbiotic as an adjuvant therapy to fluoxetine in moderate depression: A randomized multicenter trial. Arch. Neurosci., 2018, 5(2)
[http://dx.doi.org/10.5812/archneurosci.60507]
[181]
Louzada, E.R.; Ribeiro, S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci., 2020, 23(2), 93-100.
[http://dx.doi.org/10.1080/1028415X.2018.1477349] [PMID: 29788823]
[182]
Lalitsuradej, E.; Sirilun, S.; Sittiprapaporn, P.; Sivamaruthi, B.S.; Pintha, K.; Tantipaiboonwong, P.; Khongtan, S.; Fukngoen, P.; Peerajan, S.; Chaiyasut, C. The effects of synbiotics administration on stress-related parameters in thai subjects-a preliminary study. Foods, 2022, 11(5), 759.
[http://dx.doi.org/10.3390/foods11050759] [PMID: 35267392]
[183]
Haghighat, N.; Rajabi, S.; Mohammadshahi, M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: A randomized, double-blinded, clinical trial. Nutr. Neurosci., 2021, 24(6), 490-499.
[http://dx.doi.org/10.1080/1028415X.2019.1646975] [PMID: 31379269]
[184]
Lopez, K.M. Lynchburg. J. Med. Sci., 2022, 4(2), 46.
[185]
Nandwana, V.; Debbarma, S. Fecal microbiota transplantation: A microbiome modulation technique for Alzheimer’s disease. Cureus, 2021, 13(7), e16503.
[http://dx.doi.org/10.7759/cureus.16503] [PMID: 34430117]
[186]
Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755.
[http://dx.doi.org/10.1038/ajg.2012.251] [PMID: 23160295]
[187]
Cooke, N.C.A.; Bala, A.; Allard, J.P.; Hota, S.; Poutanen, S.; Taylor, V.H. The safety and efficacy of fecal microbiota transplantation in a population with bipolar disorder during depressive episodes: Study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud., 2021, 7(1), 142.
[http://dx.doi.org/10.1186/s40814-021-00882-4] [PMID: 34261526]
[188]
de Groot, P.F.; Frissen, M.N.; de Clercq, N.C.; Nieuwdorp, M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes, 2017, 8(3), 253-267.
[http://dx.doi.org/10.1080/19490976.2017.1293224] [PMID: 28609252]
[189]
Zhang, F.; Chen, H.; Zhang, R.; Liu, Y.; Kong, N.; Guo, Y.; Xu, M. 5-Fluorouracil induced dysregulation of the microbiome-gut-brain axis manifesting as depressive like behaviors in rats. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165884.
[http://dx.doi.org/10.1016/j.bbadis.2020.165884] [PMID: 32574836]
[190]
Kurokawa, S.; Kishimoto, T.; Mizuno, S.; Masaoka, T.; Naganuma, M.; Liang, K.; Kitazawa, M.; Nakashima, M.; Shindo, C.; Suda, W.; Hattori, M.; Kanai, T.; Mimura, M. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J. Affect. Disord., 2018, 235, 506-512.
[http://dx.doi.org/10.1016/j.jad.2018.04.038] [PMID: 29684865]
[191]
Zhang, Y.; Huang, R.; Cheng, M.; Wang, L.; Chao, J.; Li, J.; Zheng, P.; Xie, P.; Zhang, Z.; Yao, H. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 2019, 7(1), 116.
[http://dx.doi.org/10.1186/s40168-019-0733-3] [PMID: 31439031]
[192]
Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta, 2020, 503, 90-98.
[http://dx.doi.org/10.1016/j.cca.2019.12.010] [PMID: 31968211]
[193]
Chevalier, G.; Siopi, E.; Guenin-Macé, L.; Pascal, M.; Laval, T.; Rifflet, A.; Boneca, I.G.; Demangel, C.; Colsch, B.; Pruvost, A.; Chu-Van, E.; Messager, A.; Leulier, F.; Lepousez, G.; Eberl, G.; Lledo, P.M. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun., 2020, 11(1), 6363.
[http://dx.doi.org/10.1038/s41467-020-19931-2] [PMID: 33311466]
[194]
Li, Y. Microbiota-gut-brain axis and major depressive disorder: Implications for fecal microbiota transplantation therapy. Trad. Med. Res., 2021, 4(4), 35.
[http://dx.doi.org/10.53388/life2021-0824-338]
[195]
Petrof, E.O.; Khoruts, A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology, 2014, 146(6), 1573-1582.
[http://dx.doi.org/10.1053/j.gastro.2014.01.004] [PMID: 24412527]
[196]
Chinna Meyyappan, A.; Sgarbossa, C.; Vazquez, G.; Bond, D.J.; Müller, D.J.; Milev, R. The safety and efficacy of microbial ecosystem therapeutic-2 in people with major depression: Protocol for a phase 2, double-blind, placebo-controlled study. JMIR Res. Protoc., 2021, 10(9), e31439.
[http://dx.doi.org/10.2196/31439] [PMID: 34550085]
[197]
Meyyappan, A.C.; Forth, E.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depressive disorder and/or generalized anxiety disorder: A Phase 1, Open-label study. JMIR Res. Protoc., 2021, 9(6), e17223.
[198]
Chinna Meyyappan, A.; Forth, E.; Milev, R. Microbial ecosystem therapeutic-2 intervention in people with major depressive disorder and generalized anxiety disorder: Phase 1, Open-Label Study. Interact. J. Med. Res., 2022, 11(1), e32234.
[http://dx.doi.org/10.2196/32234] [PMID: 35060914]
[199]
Inserra, A.; Rogers, G.B.; Licinio, J.; Wong, M.L. The microbiota‐inflammasome hypothesis of major depression. BioEssays, 2018, 40(9), 1800027.
[http://dx.doi.org/10.1002/bies.201800027] [PMID: 30004130]
[200]
Włodarczyk, A.; Cubała, W.J.; Stawicki, M. Ketogenic diet for depression: A potential dietary regimen to maintain euthymia? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 109, 110257.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110257] [PMID: 33497756]
[201]
Aly, J.; Engmann, O. The way to a human’s brain goes through their stomach: dietary factors in major depressive disorder. Front. Neurosci., 2020, 14, 582853.
[http://dx.doi.org/10.3389/fnins.2020.582853] [PMID: 33364919]
[202]
Ernst, C.; Olson, A.K.; Pinel, J.P.; Lam, R.W.; Christie, B.R. Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? J. Psychiatry Neurosci., 2006, 31(2), 84-92.
[PMID: 16575423]
[203]
Dey, S.; Singh, R.H.; Dey, P.K. Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav., 1992, 52(6), 1095-1099.
[http://dx.doi.org/10.1016/0031-9384(92)90465-E] [PMID: 1283013]
[204]
Meeusen, R.; Thorré, K.; Chaouloff, F.; Sarre, S.; De Meirleir, K.; Ebinger, G.; Michotte, Y. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res., 1996, 740(1-2), 245-252.
[http://dx.doi.org/10.1016/S0006-8993(96)00872-4] [PMID: 8973821]
[205]
Wilson, W.M.; Marsden, C.A. In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behav. Pharmacol., 1996, 7(1), 101-104.
[http://dx.doi.org/10.1097/00008877-199601000-00011] [PMID: 11224400]
[206]
Banasr, M.; Hery, M.; Printemps, R.; Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology, 2004, 29(3), 450-460.
[http://dx.doi.org/10.1038/sj.npp.1300320] [PMID: 14872203]
[207]
Schuch, F.B.; Deslandes, A.C.; Stubbs, B.; Gosmann, N.P.; Silva, C.T.B.; Fleck, M.P.A. Neurobiological effects of exercise on major depressive disorder: A systematic review. Neurosci. Biobehav. Rev., 2016, 61, 1-11.
[http://dx.doi.org/10.1016/j.neubiorev.2015.11.012] [PMID: 26657969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy