Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

QbD Assisted Optimization of Microwave-assisted Synthesis of Polyacrylamide Grafted Tragacanth: Characterization and Instrumental Analysis

Author(s): Mahesh Namballa*, Anilkumar Adimulapu and Rajesh E Jesudasan

Volume 11, Issue 1, 2024

Published on: 26 January, 2024

Page: [16 - 29] Pages: 14

DOI: 10.2174/0122133356284914231231103738

Price: $65

Abstract

Background: Polysaccharides have recently attracted a lot of attention in the designing of drug delivery systems due to their wide availability, lack of toxicity, and numerous ways that their nature, structure, and functionality can be altered.

Methods: Microwave-assisted synthesis of graft copolymer of tragacanth (TRA) is done with polyacrylamide (PAM) by free radical polymerization using ceric ammonium nitrate (CAN) as initiator. Grafting polymer concentration, CAN concentration, and exposure time were selected as independent variables, and their effect is studied for Grafting Efficiency (GE) and Intrinsic viscosity (IV) using Box- Behnken optimization design.

Results: A quadratic model was suggested by the software for further statistical evaluation. On the basis of the desirability approach, optimized parameters for microwave-assisted synthesis were demonstrated, and further grafted TRA (Gr-TRA) was synthesized. Gr-TRA was studied for various characterization and elemental analysis. Gr-TRA showed the highest swelling index and least weight loss during the chemical resistance test. Further instrumental analyses like FTIR, XRD, and elemental analysis confirmed the formation of Gr-TRA.

Conclusion: Based on all of the above findings, the synthesis of PAM-grafted TRA has been optimized and could be used as a new pharmaceutical excipient in designing different dosage forms.

Keywords: Tragacanth, microwave assisted synthesis, grafting, optimization, polyacrylamide, (PAM)-based flocculants.

Graphical Abstract
[1]
Sinnwell, S.; Ritter, H. Recent advances in microwave-assisted polymer synthesis. Aust. J. Chem., 2007, 60(10), 729-743.
[http://dx.doi.org/10.1071/CH07219]
[2]
Singh, V.; Kumar, P.; Sanghi, R. Use of microwave irradiation in the grafting modification of the polysaccharides - A review. Prog. Polym. Sci., 2012, 37(2), 340-364.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.07.005]
[3]
Jha, S.; Malviya, R.; Fuloria, S.; Sundram, S.; Subramaniyan, V.; Sekar, M.; Sharma, P.K.; Chakravarthi, S.; Wu, Y.S.; Mishra, N.; Meenakshi, D.U.; Bhalla, V.; Djearamane, S.; Fuloria, N.K. Characterization of microwave-controlled polyacrylamide graft copolymer of tamarind seed polysaccharide. Polymers, 2022, 14(5), 1037.
[http://dx.doi.org/10.3390/polym14051037] [PMID: 35267860]
[4]
Aldawsari, H.M.; Naveen, N.R.; Alhakamy, N.A.; Goudanavar, P.S.; Rao, G.S.N.K.; Budha, R.R.; Nair, A.B.; Badr-Eldin, S.M. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization. Drug Deliv., 2022, 29(1), 2258-2268.
[http://dx.doi.org/10.1080/10717544.2022.2094500] [PMID: 35838522]
[5]
Gowthami, B.; Krishna, S.V.G.; Rao, D.S. Formulation of Tablets in Capsule system: Statistical optimization for chronotherapeutic drug delivery of propranolol hydrochloride. J. Drug Deliv. Sci. Technol., 2021, 63, 102398.
[http://dx.doi.org/10.1016/j.jddst.2021.102398]
[6]
Sanghi, R.; Bhatttacharya, B.; Singh, V. Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions. Green Chem., 2002, 4(3), 252-254.
[http://dx.doi.org/10.1039/b200067a]
[7]
Sanghi, R.; Bhattacharya, B. Comparative evaluation of natural polyelectrolytes psyllium and chitosan as coagulant aids for decolourization of dye solutions. Water Qual. Res. J. Canada, 2005, 40(1), 97-101.
[http://dx.doi.org/10.2166/wqrj.2005.009]
[8]
Wang, W.; Wang, A. Preparation, swelling and water-retention properties of crosslinked superabsorbent hydrogels based on guar gum. Adv. Mater. Res., 2010, 96, 177-182.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.96.177]
[9]
Desbrières, J.; Petit, C.; Reynaud, S. Microwave-assisted modifications of polysaccharides. Pure Appl. Chem., 2014, 86(11), 1695-1706.
[http://dx.doi.org/10.1515/pac-2014-0711]
[10]
Englert, C.; Schwenke, A.M.; Hoeppener, S.; Weber, C.; Schubert, U.S. Microwave-assisted polymer modifications. Adv. Polym. Sci., 2016, 274, 209-240.
[http://dx.doi.org/10.1007/12_2015_347]
[11]
Boppana, R.; Kulkarni, R.V.; Mohan, G.K.; Mutalik, S.; Aminabhavi, T.M. In vitro and in vivo assessment of novel pH-sensitive interpenetrating polymer networks of a graft copolymer for gastro-protective delivery of ketoprofen. RSC Advances, 2016, 6(69), 64344-64356.
[http://dx.doi.org/10.1039/C6RA04218J]
[12]
Singh, B.; Kumar, S. Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization. Nucl. Instrum. Methods Phys. Res. B, 2008, 266(15), 3417-3430.
[http://dx.doi.org/10.1016/j.nimb.2008.04.022]
[13]
Maji, B.; Maiti, S. Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment. Carbohydr. Polym., 2021, 251, 117095.
[http://dx.doi.org/10.1016/j.carbpol.2020.117095] [PMID: 33142633]
[14]
Niknia, N.; Kadkhodaee, R.; Eshtiaghi, M.N. Gum tragacanth-polyvinyl alcohol aerogel for oral delivery of silymarin. Int. J. Biol. Macromol., 2020, 157, 151-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.202] [PMID: 32344081]
[15]
Tavakoli, P.; Shadizadeh, S.R.; Hayati, F.; Fattahi, M. Effects of synthesized nanoparticles and Henna-Tragacanth solutions on oil/water interfacial tension: Nanofluids stability considerations. Petroleum, 2020, 6(3), 293-303.
[http://dx.doi.org/10.1016/j.petlm.2020.03.001]
[16]
dos Santos, M.A.; Grenha, A. Polysaccharide nanoparticles for protein and peptide delivery: Exploring less-known materials.In: Advances in Protein Chemistry and Structural Biology; Elsevier, 2015.
[17]
Mallakpour, S.; Tabesh, F. Application of gum polysaccharide nanocomposites in the removal of industrial organic and inorganic pollutants.In: Handbook of Polymer Nanocomposites for Industrial Applications; Elsevier, 2021, pp. 503-528.
[http://dx.doi.org/10.1016/B978-0-12-821497-8.00018-6]
[18]
Sahraei, R.; Ghaemy, M. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr. Polym., 2017, 157, 823-833.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.059] [PMID: 27987996]
[19]
Thakur, V.K.; Thakur, M.K. Handbook of Polymers for Pharmaceutical Technologies; Elsevier, 2015, p. 2.
[20]
Bhosale, R.; Gangadharappa, H.V.; Moin, A.; Gowda, D.V.; Osmani, R. Grafting technique with special emphasis on natural gums: Applications and perspectives in drug delivery. Nat. Prod. J., 2015, 5(2), 124-139.
[http://dx.doi.org/10.2174/221031550502150702142228]
[21]
Guan, Y.H.; Bourton, E.C.; Hewitson, P.; Sutherland, I.A.; Fisher, D. The importance of column design for protein separation using aqueous two-phase systems on J-type countercurrent chromatography. Separ. Purif. Tech., 2009, 65(1), 79-85.
[http://dx.doi.org/10.1016/j.seppur.2008.07.016]
[22]
Chauhan, G.S.; Bhatt, S.S.; Kaur, I.; Singha, A.S.; Kaith, B.S. Evaluation of optimum grafting parameters and the effect of ceric ion initiated grafting of methyl methacrylate on to jute fibre on the kinetics of thermal degradation and swelling behaviour. Polym. Degrad. Stabil., 2000, 69(3), 261-265.
[http://dx.doi.org/10.1016/S0141-3910(00)00063-X]
[23]
Rudzinski, W.E.; Dave, A.M.; Vaishnav, U.H.; Kumbar, S.G.; Kulkarni, A.R.; Aminabhavi, T.M. Hydrogels as controlled release devices in agriculture. Des. Monomers Polym., 2002, 5(1), 39-65.
[http://dx.doi.org/10.1163/156855502760151580]
[24]
Kumar, P.; Ganure, A.L.; Subudhi, B.B.; Shukla, S. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium. Drug Deliv. Transl. Res., 2015, 5(3), 243-256.
[http://dx.doi.org/10.1007/s13346-015-0221-7 ] [PMID: 25787732]
[25]
Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J., 2017, 11(1), 109-126.
[http://dx.doi.org/10.2174/1874104501711010109 ] [PMID: 29151987]
[26]
Basavarajappa, G.M.; Priyanka, K.M.; Goudanavar, P.; Narasimha, L.G.; Naveen, N.R.; Gowthami, B.; Fattepur, S.; Shiroorkar, P.N.; Nagaraja, S.; Telsang, M.; Jasthi, V.C.; Sreenivasalu, P.K.P. A spotlight on application of microwave-assisted modifications of plant derived polymers in designing novel drug delivery systems. Des. Monomers Polym., 2023, 26(1), 106-116.
[http://dx.doi.org/10.1080/15685551.2023.2194176 ] [PMID: 37008384]
[27]
Bajpai, S.K.; Chand, N.; Agrawal, A. Microwave-assisted synthesis of carboxymethyl psyllium and its development as semi-interpenetrating network with poly(acrylamide) for gastric delivery. J. Bioact. Compat. Polym., 2015, 30(3), 241-257.
[http://dx.doi.org/10.1177/0883911515569917]
[28]
Sen, G.; Singh, R.P.; Pal, S. Microwave-initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and characterization. J. Appl. Polym. Sci., 2010, 115(1), 63-71.
[http://dx.doi.org/10.1002/app.30596]
[29]
van Nostrum, C.F.; Veldhuis, T.F.J.; Bos, G.W.; Hennink, W.E. Tuning the Degradation Rate of Poly(2-hydroxypropyl methacrylamide)- g raft -oligo(lactic acid) Stereocomplex Hydrogels. Macromolecules, 2004, 37(6), 2113-2118.
[http://dx.doi.org/10.1021/ma035534+]
[30]
Qian, F.; Cui, F.; Ding, J.; Tang, C.; Yin, C. Chitosan graft copolymer nanoparticles for oral protein drug delivery: Preparation and characterization. Biomacromolecules, 2006, 7(10), 2722-2727.
[http://dx.doi.org/10.1021/bm060065f ] [PMID: 17025345]
[31]
Yuan, W.; Yuan, J.; Zhang, F.; Xie, X. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(ε-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization. Biomacromolecules, 2007, 8(4), 1101-1108.
[http://dx.doi.org/10.1021/bm0610018] [PMID: 17326679]
[32]
Nayak, B.R.; Singh, R.P. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation. Eur. Polym. J., 2001, 37(8), 1655-1666.
[http://dx.doi.org/10.1016/S0014-3057(01)00035-0]
[33]
Karmakar, G.P.; Singh, R.P. Flocculation studies using amylose-grafted polyacrylamide. Colloids Surf. A Physicochem. Eng. Asp., 1998, 133(1-2), 119-124.
[http://dx.doi.org/10.1016/S0927-7757(97)00129-5]
[34]
Monirul Islam, M.; Hemmanahalli Ramesh, V.; Durga Bhavani, P.; Goudanavar, P.S.; Naveen, N.R.; Ramesh, B.; Fattepur, S.; Narayanappa Shiroorkar, P.; Habeebuddin, M.; Meravanige, G.; Telsang, M.; Sreeharsha, N. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv., 2022, 29(1), 3370-3383.
[http://dx.doi.org/10.1080/10717544.2022.2144963 ] [PMID: 36404771]
[35]
Hosny, K.M.; Naveen, N.R.; Kurakula, M.; Sindi, A.M.; Sabei, F.Y.; Fatease, A.; Al; Jali, A.M.; Alharbi, W.S.; Mushtaq, R.Y.; Felemban, M. Design and development of neomycin sulfate gel loaded with solid lipid nanoparticles for buccal mucosal wound healing. Gels, 2022, 8, 385.
[http://dx.doi.org/10.3390/gels8060385]
[36]
Sreeharsha, N.; Naveen, N.R.; Anitha, P.; Goudanavar, P.S.; Ramkanth, S.; Fattepur, S.; Telsang, M.; Habeebuddin, M.; Answer, M.K. Development of nanocrystal compressed minitablets for chronotherapeutic drug delivery. Pharmaceuticals, 2022, 15, 311.
[http://dx.doi.org/10.3390/ph15030311]
[37]
Begum, A.; Sindhu, K.; Giri, K.; Umera, F.; Gauthami, G.; Kumar, J.V.; Naveen, N.; Rao, K.N.V.; Ali, S.S.; Sri, K. Pharmacognostical and physio-chemical evaluation of indian asparagus officinalis linn family lamiaceae. Int. J. Pharmacogn. Phytochem. Res., 2017, 9, 327-336.
[38]
Mallamma, T.; Bharathi, D.R.; Lakshmi, R.G.; Vyjayanthimala, T.; Nagasubbareddy, J.; Naveen, R. Etoposide-loaded nanoparticles made from poly-e-caprolactone (PCL): formulation, characterization, in vitro drug release for controlled drug delivery system. Int. J. Biopharm, 2014, 5, 5-12.
[39]
Nayak, A.K.; Bera, H.; Hasnain, M.S.; Pal, D. Synthesis and characterization of graft copolymers of plant polysaccharides.In: Biopolymer Grafting; Elsevier, 2018.
[http://dx.doi.org/10.1016/B978-0-323-48104-5.00001-9]
[40]
Azmeera, V.; Adhikary, P.; Krishnamoorthi, S. Synthesis and characterization of graft copolymer of dextran and 2-acrylamido-2-methylpropane sulphonic acid. Int. J. Carbohydr. Chem., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/209085]
[41]
Dodi, G.; Hritcu, D.; Popa, M.I. Carboxymethylation of guar gum: Synthesis and characterization. Cellulose Chem. Technol., 2011, 45(3-4), 171-176.
[42]
Bal, T.; Swain, S. Microwave assisted synthesis of polyacrylamide grafted polymeric blend of fenugreek seed mucilage-Polyvinyl alcohol (FSM-PVA-g-PAM) and its characterizations as tissue engineered scaffold and as a drug delivery device. Daru, 2020, 28(1), 33-44.
[http://dx.doi.org/10.1007/s40199-019-00237-8 ] [PMID: 30712231]
[43]
Graulus, G.J.; Mignon, A.; Van Vlierberghe, S.; Declercq, H.; Fehér, K.; Cornelissen, M.; Martins, J.C.; Dubruel, P. Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. Eur. Polym. J., 2015, 72, 494-506.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.06.033]
[44]
Naveen, N.R.; Nagaraja, T.S.; Bharathi, D.R.; Reddy, J.N.S. Formulation design and in vitro evaluation for stomach specific drug delivery system of anti retroviral drug–acyclovir. Int. J. Pharm. Life Sci., 2013, 4, 2506-2510.
[45]
Naveen, N.R. Design and characterization of sustained release matrix tablets of glimepiride by using synthetic and natural polymers. Int. J. drug Discov. Herb. Res., 2013, 3, 573-578.
[46]
Meena, R.; Prasad, K.; Mehta, G.; Siddhanta, A.K. Synthesis of the copolymer hydrogel κ‐carrageenan‐ graft ‐PAAm: Evaluation of its absorbent and adhesive properties. J. Appl. Polym. Sci., 2006, 102(6), 5144-5152.
[http://dx.doi.org/10.1002/app.24703]
[47]
Sen, G.; Ghosh, S.; Jha, U.; Pal, S. RETRACTED: Hydrolyzed polyacrylamide grafted carboxymethylstarch (Hyd. CMS-g-PAM): An efficient flocculant for the treatment of textile industry wastewater. Chem. Eng. J., 2011, 171(2), 495-501.
[http://dx.doi.org/10.1016/j.cej.2011.04.016]
[48]
Alhakamy, N.A.; Naveen, N.R.; Gorityala, S.; Kurakula, M.; Hosny, K.M.; Safhi, A.Y.; Bukhary, D.M.; Bukhary, H.A.; Sabei, F.Y.; Mushtaq, R.Y. Development of novel S-protective thiolated-based mucoadhesive tablets for repaglinide: Pharmacokinetic study. Polymers, 2022, 14(17), 3529.
[http://dx.doi.org/10.3390/polym14173529]
[49]
Naveen, N.R.; Gopinath, C.; Rao, D.S. Design expert supported mathematical optimization of repaglinide gastroretentive floating tablets: In vitro and in vivo evaluation. Fut. J. Pharmaceut. Sci., 2017, 3(2), 140-147.
[http://dx.doi.org/10.1016/j.fjps.2017.05.003]
[50]
Rizg, W.Y.; Naveen, N.R.; Kurakula, M.; Safhi, A.Y.; Murshid, S.S.; Mushtaq, R.Y.; Abualsunun, W.A.; Alharbi, M.; Bakhaidar, R.B.; Almehmady, A.M.; Salawi, A.; Al Fatease, A.; Hosny, K.M. Augmentation of antidiabetic activity of glibenclamide microspheres using s-protected okra powered by QbD: Scintigraphy and in vivo studies. Pharmaceuticals, 2022, 15(4), 491.
[http://dx.doi.org/10.3390/ph15040491 ] [PMID: 35455488]
[51]
Sreeharsha, N.; Prasanthi, S.; Mahalakshmi, S.V.V.N.S.; Goudanavar, P.S.; Naveen, N.R.; Gowthami, B.; Fattepur, S.; Meravanige, G.; Asdaq, S.M.B.; Anwer, M.K. Enhancement of anti-tumoral properties of paclitaxel nano-crystals by conjugation of folic acid to pluronic F127: Formulation optimization, in vitro and in vivo study. Molecules, 2022, 27(22), 7914.
[http://dx.doi.org/10.3390/molecules27227914]
[52]
Alaithan, S.; Naveen, N.R.; Goudanavar, P.S.; Bhavani, P.D.; Ramesh, B.; Koppuravuri, N.P.; Fattepur, S.; Sreeharsha, N.; Nair, A.B.; Aldhubiab, B.E. Development of novel unfolding film system of itopride hydrochloride using box-behnken design-a gastro retentive approach. Pharmaceuticals, 2022, 15(8), 981.
[http://dx.doi.org/10.3390/ph15080981]
[53]
Lele, V.; Kumari, M.S. Synthesis and characterization of graft copolymer of sago starch- g- poly (acrylamide) using potassium persulphate initiator. J. Sci. Res., 2021, 65(2), 92-96.
[http://dx.doi.org/10.37398/JSR.2021.650218]
[54]
Pati, M.K.; Nayak, P.; Pati, M.K.; Nayak, P. Grafting vinyl monomers onto chitosan:IV:Graft copolymerized of acrylicacid onto chitosan using ceric ammonium nitrate as the initiator- characterization and antimicrobial activities. Mater. Sci. Appl., 2011, 2(12), 1741-1748.
[http://dx.doi.org/10.4236/msa.2011.212232]
[55]
Raghavendra Naveen, N.; Anitha, P.; Gowthami, B.; Goudanavar, P.; Fattepur, S. QbD assisted formulation design and optimization of thiol pectin based Polyethyleneglycol and Montmorillonite(PEG/MMT) nanocomposite films of neomycin sulphate for wound healing. J. Drug Deliv. Sci. Technol., 2023, 82, 104348.
[http://dx.doi.org/10.1016/j.jddst.2023.104348]
[56]
Hortal, L.; Pérez-Fernández, C.; de la Fuente, J.L.; Valles, P.; Mateo-Martí, E.; Ruiz-Bermejo, M. A dual perspective on the microwave-assisted synthesis of HCN polymers towards the chemical evolution and design of functional materials. Sci. Rep., 2020, 10(1), 22350.
[http://dx.doi.org/10.1038/s41598-020-79112-5] [PMID: 33339853]
[57]
Kaur, K.; Jindal, R.; Jindal, D. RSM-CCD optimized microwave-assisted synthesis of chitosan and gelatin-based pH sensitive, inclusion complexes incorporated hydrogels and their use as controlled drug delivery systems. J. Drug Deliv. Sci. Technol., 2018, 48, 161-173.
[http://dx.doi.org/10.1016/j.jddst.2018.09.003]
[58]
Devkar, P.; Nangare, S.; Zawar, L.; Shirsath, N.; Bafna, P.; Jain, P. Design of polyacrylamide grafted sesbania gum-mediated pH-responsive IPN-based microbeads for delivery of diclofenac sodium: In-vitro-in-vivo characterizations. Int. J. Biol. Macromol., 2023, 230, 123360.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123360] [PMID: 36716842]
[59]
Zhang, H.; Guan, G.; Lou, T.; Wang, X. High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid. Int. J. Biol. Macromol., 2023, 231, 123305.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123305 ] [PMID: 36681020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy