Review Article

Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders

Author(s): Pranay Wal, Namra Aziz*, Chetan Pratap Singh, Azhar Rasheed, Lalit Kumar Tyagi, Ankur Agrawal and Ankita Wal

Volume 24, Issue 5, 2024

Published on: 26 January, 2024

Page: [356 - 376] Pages: 21

DOI: 10.2174/0115665232268840231222035423

Price: $65

conference banner
Abstract

Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.

Keywords: Gene, vectors, non-viral vector, gene therapy, gene editing technology, cardiovascular disorder.

Graphical Abstract
[1]
Lopez E, Ballard BD, Jan A. Cardiovascular disease. StatPearls. Treasure Island, FL: StatPearls Publishing 2023. https:// www.ncbi.nlm.nih.gov/books/NBK535419/ Updated 2023 Aug 7 Internet
[2]
World health statistics 2023: Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World health organization; 2023. licence. 2023. Available from: https://www.who.int/publications/i/item/9789240074323
[4]
Liew LC, Ho BX, Soh BS. Mending a broken heart: Current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11(1): 138.
[http://dx.doi.org/10.1186/s13287-020-01648-0] [PMID: 32216837]
[5]
Khakoo AY, Yurgin NR, Eisenberg PR, Fonarow GC. Overcoming barriers to development of novel therapies for cardiovascular disease: Insights from the oncology drug development experience. JACC Basic Transl Sci 2019; 4(2): 269-74.
[http://dx.doi.org/10.1016/j.jacbts.2019.01.011] [PMID: 31061928]
[6]
Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein 2017; 15(3): 369-75.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[7]
Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J Clin Invest 2013; 123(1): 53-61.
[http://dx.doi.org/10.1172/JCI62837] [PMID: 23281410]
[8]
Nóbrega C, Mendonça L, Matos CA. A handbook of gene and cell therapy. Basel, Switzerland: Springer 2020.
[http://dx.doi.org/10.1007/978-3-030-41333-0]
[9]
Ahmed A, Saadi H. Gene therapy approaches. Qubahan Academic Journal 2021; 1(1): 52-6.
[http://dx.doi.org/10.48161/qaj.v1n1a35]
[10]
Ormond KE, Mortlock DP, Scholes DT, et al. Human germline genome editing. Am J Hum Genet 2017; 101(2): 167-76.
[http://dx.doi.org/10.1016/j.ajhg.2017.06.012] [PMID: 28777929]
[11]
Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med 2019; 25(6): 890-7.
[http://dx.doi.org/10.1038/s41591-019-0473-8] [PMID: 31160821]
[12]
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci 2021; 22(17): 9206.
[http://dx.doi.org/10.3390/ijms22179206]
[13]
Deng Y, Wang CC, Choy KW, et al. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538(2): 217-27.
[http://dx.doi.org/10.1016/j.gene.2013.12.019] [PMID: 24406620]
[14]
Sibley CR, Seow Y, Wood MJA. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 2010; 18(3): 466-76.
[http://dx.doi.org/10.1038/mt.2009.306] [PMID: 20087319]
[15]
Navarro SA, Carrillo E, Griñán-Lisón C, et al. Cancer suicide gene therapy: A patent review. Expert Opin Ther Pat 2016; 26(9): 1095-104.
[http://dx.doi.org/10.1080/13543776.2016.1211640] [PMID: 27424657]
[16]
Your Genome. Available from: https://www.yourgenome.org/facts/what-is-gene-therapy/ (Accessed Nov 15, 2023).
[17]
Petrich J, Marchese D, Jenkins C, Storey M, Blind J. Gene replacement therapy: A primer for the health-system pharmacist. J Pharm Pract 2020; 33(6): 846-55.
[http://dx.doi.org/10.1177/0897190019854962] [PMID: 31248331]
[18]
Wang D, Gao G. State-of-the-art human gene therapy: Part II. Gene therapy strategies and clinical applications. Discov Med 2014; 18(98): 151-61.
[PMID: 25227756]
[19]
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front Cardiovasc Med 2021; 8: 760140.
[http://dx.doi.org/10.3389/fcvm.2021.760140] [PMID: 34805315]
[20]
Musunuru K. Moving toward genome-editing therapies for cardiovascular diseases. J Clin Invest 2022; 132(1): e148555.
[http://dx.doi.org/10.1172/JCI148555] [PMID: 34981785]
[21]
Khan SH. Genome-editing technologies: Concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019; 16: 326-34.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027] [PMID: 30965277]
[22]
Chadwick AC, Musunuru K. Genome editing for the study of cardiovascular diseases. Curr Cardiol Rep 2017; 19(3): 22.
[http://dx.doi.org/10.1007/s11886-017-0830-5] [PMID: 28220462]
[23]
Germini D, Tsfasman T, Zakharova VV, Sjakste N, Lipinski M, Vassetzky Y. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol 2018; 36(2): 147-59.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.008] [PMID: 29157536]
[24]
Gaj T, Sirk SJ, Shui S, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol 2016; 8(12): a023754.
[http://dx.doi.org/10.1101/cshperspect.a023754] [PMID: 27908936]
[25]
Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24(3): 430-46.
[http://dx.doi.org/10.1038/mt.2016.10] [PMID: 26755333]
[26]
Khalil AM. The genome editing revolution: Review. J Genet Eng Biotechnol 2020; 18(1): 68.
[http://dx.doi.org/10.1186/s43141-020-00078-y] [PMID: 33123803]
[27]
Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16(5): 595-608.
[http://dx.doi.org/10.1517/14712598.2016.1158808] [PMID: 26914853]
[28]
Rahim J, Gulzar S, Zahid R, Rahim KA. A systematic review on the comparison of molecular gene editing tools. Int J Innov Sci Res Tech 2021; 6: 1-8.
[29]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[30]
Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol 2016; 428(5): 963-89.
[http://dx.doi.org/10.1016/j.jmb.2015.10.014] [PMID: 26506267]
[31]
Bogdanove AJ, Voytas DF. TAL effectors: Customizable proteins for DNA targeting. Science 2011; 333(6051): 1843-6.
[http://dx.doi.org/10.1126/science.1204094] [PMID: 21960622]
[32]
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu Rev Phytopathol 2010; 48(1): 419-36.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081936] [PMID: 19400638]
[33]
Kim MS, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells 2017; 40(8): 533-41.
[http://dx.doi.org/10.14348/molcells.2017.0139] [PMID: 28835021]
[34]
Bultmann S, Morbitzer R, Schmidt CS, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 2012; 40(12): 5368-77.
[http://dx.doi.org/10.1093/nar/gks199] [PMID: 22387464]
[35]
Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013; 41(5): e63.
[http://dx.doi.org/10.1093/nar/gks1446] [PMID: 23275534]
[36]
Li T, Huang S, Jiang WZ, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2011; 39(1): 359-72.
[http://dx.doi.org/10.1093/nar/gkq704] [PMID: 20699274]
[37]
Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14(1): 49-55.
[http://dx.doi.org/10.1038/nrm3486] [PMID: 23169466]
[38]
Walker HE, Rizzo M, Fras Z, Jug B, Banach M, Penson PE. CRISPR gene editing in lipid disorders and atherosclerosis: Mechanisms and opportunities. Metabolites 2021; 11(12): 857.
[http://dx.doi.org/10.3390/metabo11120857] [PMID: 34940615]
[39]
Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599: 1-18.
[http://dx.doi.org/10.1016/j.gene.2016.11.008] [PMID: 27836667]
[40]
Amitai G, Sorek R. CRISPR–Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol 2016; 14(2): 67-76.
[http://dx.doi.org/10.1038/nrmicro.2015.14] [PMID: 26751509]
[41]
Nguyen Q, Lim KRQ, Yokota T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int J Mol Sci 2020; 21(3): 733.
[http://dx.doi.org/10.3390/ijms21030733] [PMID: 31979133]
[42]
Roshanravan N, Tutunchi H, Najafipour F, Dastouri M, Ghaffari S, Jebeli A. A glance at the application of CRISPR/Cas9 gene-editing technology in cardiovascular diseases. J Cardiovasc Thorac Res 2022; 14(2): 77-83.
[http://dx.doi.org/10.34172/jcvtr.2022.14] [PMID: 35935390]
[43]
Khouzam JPS, Tivakaran VS. CRISPR-Cas9 applications in cardiovascular disease. Curr Probl Cardiol 2021; 46(3): 100652.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100652] [PMID: 32828559]
[44]
Mani I. Genome editing in cardiovascular diseases. Prog Mol Biol Transl Sci 2021; 181: 289-308.
[http://dx.doi.org/10.1016/bs.pmbts.2021.01.021] [PMID: 34127197]
[45]
Vermersch E, Jouve C, Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res 2020; 116(5): 894-907.
[http://dx.doi.org/10.1093/cvr/cvz250] [PMID: 31584620]
[46]
Chakraborty S. A glance at genome editing with CRISPR Cas9 technology. Springer Nature 2019.
[47]
Musunuru K. The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol 2017; 2(8): 914-9.
[http://dx.doi.org/10.1001/jamacardio.2017.1713] [PMID: 28614576]
[48]
Ganipineni VDP, Gutlapalli SD, Danda S, et al. Clustered regularly interspaced short palindromic repeats (CRISPR) in cardiovascular disease: A comprehensive clinical review on dilated cardiomyopathy. Cureus 2023; 15(3): e35774.
[http://dx.doi.org/10.7759/cureus.35774] [PMID: 37025725]
[49]
Alhakamy NA, Curiel DT, Berkland CJ. The era of gene therapy: From preclinical development to clinical application. Drug Discov Today 2021; 26(7): 1602-19.
[http://dx.doi.org/10.1016/j.drudis.2021.03.021] [PMID: 33781953]
[50]
Akram F, Sahreen S, Aamir F, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol 2023; 65(2): 227-42.
[http://dx.doi.org/10.1007/s12033-022-00501-4] [PMID: 35474409]
[51]
Mak MCE, Gurung R, Foo RSY. Applications of genome editing technologies in CAD research and therapy with a focus on atherosclerosis. Int J Mol Sci 2023; 24(18): 14057.
[http://dx.doi.org/10.3390/ijms241814057] [PMID: 37762360]
[52]
Tamura R, Toda M. Historic overview of genetic engineering technologies for human gene therapy. Neurol Med Chir 2020; 60(10): 483-91.
[http://dx.doi.org/10.2176/nmc.ra.2020-0049] [PMID: 32908085]
[53]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[54]
Strong A, Musunuru K. Genome editing in cardiovascular diseases. Nat Rev Cardiol 2017; 14(1): 11-20.
[http://dx.doi.org/10.1038/nrcardio.2016.139] [PMID: 27609628]
[55]
Mussolino C, Alzubi J, Fine EJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014; 42(10): 6762-73.
[http://dx.doi.org/10.1093/nar/gku305] [PMID: 24792154]
[56]
Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, Magistretti P, Montserrat N, Belmonte JC. At the heart of genome editing and cardiovascular diseases. Circ Res 2018; 123(2): 221-3.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312676] [PMID: 29976689]
[57]
Karakikes I, Termglinchan V, Cepeda DA, et al. A comprehensive TALEN-based knockout library for generating human-induced pluripotent stem cell–based models for cardiovascular diseases. Circ Res 2017; 120(10): 1561-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309948] [PMID: 28246128]
[58]
Rezaei H, khadempar S, Farahani N, et al. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends Cardiovasc Med 2020; 30(2): 93-101.
[http://dx.doi.org/10.1016/j.tcm.2019.03.005] [PMID: 30935726]
[59]
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10(1): 12.
[http://dx.doi.org/10.1186/s40779-023-00447-x] [PMID: 36895064]
[60]
Lee CM, Cradick TJ, Fine EJ, Bao G. Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol Ther 2016; 24(3): 475-87.
[http://dx.doi.org/10.1038/mt.2016.1] [PMID: 26750397]
[61]
Musunuru K. Genome editing. J Am Coll Cardiol 2017; 70(22): 2808-21.
[http://dx.doi.org/10.1016/j.jacc.2017.10.002] [PMID: 29191331]
[62]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[63]
Laakkonen JP, Ylä-Herttuala S. Recent advancements in cardiovascular gene therapy and vascular biology. Hum Gene Ther 2015; 26(8): 518-24.
[http://dx.doi.org/10.1089/hum.2015.095] [PMID: 26192706]
[64]
Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications. Hum Gene Ther 2013; 24(11): 914-27.
[http://dx.doi.org/10.1089/hum.2013.2517] [PMID: 24164239]
[65]
Katz MG, Fargnoli AS, Kendle AP, Bridges CR. Gene therapy in cardiovascular disease. In: Pathophysiology and Pharmacotherapy of Cardiovascular Disease 2015; pp. 265-87.
[66]
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7(1): e10258.
[http://dx.doi.org/10.1002/btm2.10258] [PMID: 35079633]
[67]
Weber T, Zangi L, Hajjar RJ. Gene therapy for cardiovascular diseases. In: Stem cell and gene therapy for cardiovascular disease. Academic Press 2016; pp. 377-87.
[68]
Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 2014; 18(97): 67-77.
[PMID: 25091489]
[69]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[70]
Reyes-Juárez JL, Zarain-Herzberg A. Gene therapy in cardiovascular disease. Gene Therapy Applications. InTech 2011; pp. 95-126.
[71]
Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017; 8(2): 65.
[http://dx.doi.org/10.3390/genes8020065] [PMID: 28208635]
[72]
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene therapy for regenerative medicine. Pharmaceutics 2023; 15(3): 856.
[http://dx.doi.org/10.3390/pharmaceutics15030856] [PMID: 36986717]
[73]
Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res 2011; 91(4): 565-76.
[http://dx.doi.org/10.1093/cvr/cvr197] [PMID: 21742674]
[74]
Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 2015; 108(1): 4-20.
[http://dx.doi.org/10.1093/cvr/cvv205] [PMID: 26239654]
[75]
Hurley A, Lagor WR. Treating cardiovascular disease with liver genome engineering. Curr Atheroscler Rep 2022; 24(2): 75-84.
[http://dx.doi.org/10.1007/s11883-022-00986-z] [PMID: 35230602]
[76]
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022; 23(5): 265-80.
[http://dx.doi.org/10.1038/s41576-021-00439-4] [PMID: 34983972]
[77]
Katzmann JL, Cupido AJ, Laufs U. Gene therapy targeting PCSK9. Metabolites 2022; 12(1): 70.
[http://dx.doi.org/10.3390/metabo12010070] [PMID: 35050192]
[78]
Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol 2023; 81(1): 10-8.
[http://dx.doi.org/10.1016/j.jjcc.2022.02.009] [PMID: 35210166]
[79]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[80]
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: A comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25(1): 7-18.
[http://dx.doi.org/10.1177/1535676019899502] [PMID: 36033383]
[81]
Lähteenvuo J, Ylä-Herttuala S. Advances and challenges in cardiovascular gene therapy. Hum Gene Ther 2017; 28(11): 1024-32.
[http://dx.doi.org/10.1089/hum.2017.129] [PMID: 28810808]
[82]
Chen C, Seeger T, Termglinchan V, Karakikes I. Recent advances in cardiac gene therapy strategies targeting advanced heart failure. Contin Cardiol Educ 2017; 3(4): 163-9.
[http://dx.doi.org/10.1002/cce2.68]
[83]
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: A clinical and industry perspective. J Mol Med 2022; 100(6): 875-901.
[http://dx.doi.org/10.1007/s00109-022-02208-0] [PMID: 35606652]
[84]
Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4(2): 43-63.
[http://dx.doi.org/10.1016/j.gendis.2017.04.001] [PMID: 28944281]
[85]
Matsunaga W, Gotoh A. Adenovirus as a vector and oncolytic virus. Curr Issues Mol Biol 2023; 45(6): 4826-40.
[http://dx.doi.org/10.3390/cimb45060307] [PMID: 37367056]
[86]
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. Mol Ther Nucleic Acids 2023; 34: 102027.
[http://dx.doi.org/10.1016/j.omtn.2023.09.004] [PMID: 37808925]
[87]
Alonso-Padilla J, Papp T, Kaján GL, et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5–based constructs. Mol Ther 2016; 24(1): 6-16.
[http://dx.doi.org/10.1038/mt.2015.194] [PMID: 26478249]
[88]
Singh S, Kumar R, Agrawal B. Adenoviral vector-based vaccines and gene therapies: Current status and future prospects. Adenoviruses 2019; 4: 53-91.
[http://dx.doi.org/10.5772/intechopen.79697]
[89]
Lundstrom K. Viral vectors in gene therapy: Where do we stand in 2023? Viruses 2023; 15(3): 698.
[http://dx.doi.org/10.3390/v15030698] [PMID: 36992407]
[90]
Syyam A, Nawaz A, Ijaz A, et al. Adenovirus vector system: Construction, history and therapeutic applications. Biotechniques 2022; 73(6): 297-305.
[http://dx.doi.org/10.2144/btn-2022-0051] [PMID: 36475496]
[91]
Balakrishnan B, Jayandharan G. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 2014; 14(2): 86-100.
[http://dx.doi.org/10.2174/1566523214666140302193709] [PMID: 24588706]
[92]
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1(1): 427-51.
[http://dx.doi.org/10.1146/annurev-virology-031413-085355] [PMID: 26958729]
[93]
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24(11): 906-13.
[http://dx.doi.org/10.1089/hum.2013.2515] [PMID: 24164238]
[94]
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114(11): 1827-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302331] [PMID: 24855205]
[95]
Chen H. Adeno-associated virus vectors for human gene therapy. World J Med Genet 2015; 5(3): 28-45.
[http://dx.doi.org/10.5496/wjmg.v5.i3.28]
[96]
Zhang H, Zhan Q, Huang B, Wang Y, Wang X. AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front Cardiovasc Med 2022; 9: 952755.
[http://dx.doi.org/10.3389/fcvm.2022.952755] [PMID: 36061546]
[97]
Mancini D, Farr MJ. Gene therapy for heart failure: An investigational treatment that is coming of age. Rev Esp Cardiol 2010; 63(2): 137-40.
[http://dx.doi.org/10.1016/S0300-8932(10)70030-0] [PMID: 20109411]
[98]
Zinn E, Vandenberghe LH. Adeno-associated virus: Fit to serve. Curr Opin Virol 2014; 8: 90-7.
[http://dx.doi.org/10.1016/j.coviro.2014.07.008] [PMID: 25128609]
[99]
Gorabi AM, Hajighasemi S, Tafti HA, et al. Gene therapy in cardiovascular diseases: A review of recent updates. J Cell Biochem 2018; 119(12): 9645-54.
[http://dx.doi.org/10.1002/jcb.27303] [PMID: 30129172]
[100]
Hayward A. Origin of the retroviruses: When, where, and how? Curr Opin Virol 2017; 25: 23-7.
[http://dx.doi.org/10.1016/j.coviro.2017.06.006] [PMID: 28672160]
[101]
Yi Y, Noh M, Lee K. Current advances in retroviral gene therapy. Curr Gene Ther 2011; 11(3): 218-28.
[http://dx.doi.org/10.2174/156652311795684740] [PMID: 21453283]
[102]
Advani U, Bansal A, Prakash R, Agarwal S. Gene therapy and its applications. J Med Evid 2023; 4(1): 46-56.
[http://dx.doi.org/10.4103/JME.JME_65_21]
[103]
Matuskova M, Durinikova E. Retroviral vectors in gene therapy. Adv Mol Retrovirol 2016.
[104]
Gopinath C, Nathar TJ, Nelson EJ. Retroviral vectors in gene therapy. Gene and Cell Therapy: Biology and Applications 2018; 3-28.
[105]
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral vector-based gene therapy. Int J Mol Sci 2023; 24(9): 7736.
[http://dx.doi.org/10.3390/ijms24097736] [PMID: 37175441]
[106]
Cavalieri V, Baiamonte E, Lo Iacono M. Non-primate lentiviral vectors and their applications in gene therapy for ocular disorders. Viruses 2018; 10(6): 316.
[http://dx.doi.org/10.3390/v10060316] [PMID: 29890733]
[107]
Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. BioEssays 2013; 35(9): 794-803.
[http://dx.doi.org/10.1002/bies.201300049] [PMID: 23864388]
[108]
Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510(7504): 235-40.
[http://dx.doi.org/10.1038/nature13420] [PMID: 24870228]
[109]
Mamcarz E, Zhou S, Lockey T, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med 2019; 380(16): 1525-34.
[http://dx.doi.org/10.1056/NEJMoa1815408] [PMID: 30995372]
[110]
Nayak S, Herzog RW. Progress and prospects: Immune responses to viral vectors. Gene Ther 2010; 17(3): 295-304.
[http://dx.doi.org/10.1038/gt.2009.148] [PMID: 19907498]
[111]
Papayannakos C, Daniel R. Understanding lentiviral vector chromatin targeting: Working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2013; 20(6): 581-8.
[http://dx.doi.org/10.1038/gt.2012.88] [PMID: 23171920]
[112]
Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J 2010; 4: 123-56.
[PMID: 20835362]
[113]
Miyagawa Y, Marino P, Verlengia G, et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci 2015; 112(13): E1632-41.
[http://dx.doi.org/10.1073/pnas.1423556112] [PMID: 25775541]
[114]
Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[115]
Khan KH. Gene transfer technologies and their applications: Roles in human diseases. Asian J Exp Biol Sci 2010; 1(2): 208-18.
[116]
Horii T, Arai Y, Yamazaki M, et al. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 2014; 4(1): 4513.
[http://dx.doi.org/10.1038/srep04513] [PMID: 24675426]
[117]
Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet 2015; 89: 49-88.
[http://dx.doi.org/10.1016/bs.adgen.2014.10.003] [PMID: 25620008]
[118]
Potter H, Heller R. Transfection by electroporation. Curr Protoc Immunol 2017; 117(1): 15.1-, 9.
[http://dx.doi.org/10.1002/cpim.24] [PMID: 28369680]
[119]
Ayuni EL, Gazdhar A, Giraud MN, et al. In vivo electroporation mediated gene delivery to the beating heart. PLoS One 2010; 5(12): e14467.
[http://dx.doi.org/10.1371/journal.pone.0014467] [PMID: 21209934]
[120]
Gascón AR, del Pozo-Rodríguez A, Solinís MÁ. Non-viral delivery systems in gene therapy. In Gene therapy-tools and potential applications. IntechOpen 2013.
[121]
Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol 2012; 303(6): H629-38.
[http://dx.doi.org/10.1152/ajpheart.00126.2012] [PMID: 22821991]
[122]
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183: 2055-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.192] [PMID: 34087309]
[123]
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3(4): 39-44.
[http://dx.doi.org/10.5662/wjm.v3.i4.39] [PMID: 25237622]
[124]
Castle J, Feinstein SB. Drug and gene delivery using sonoporation for cardiovascular disease. Therapeutic Ultrasound 2016; pp. 331-8.
[http://dx.doi.org/10.1007/978-3-319-22536-4_18]
[125]
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason Sonochem 2020; 67: 105096.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105096] [PMID: 32278246]
[126]
Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: Recent advances and ongoing challenges. Ther Deliv 2012; 3(10): 1199-215.
[http://dx.doi.org/10.4155/tde.12.100] [PMID: 23116012]
[127]
Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10(5): 573-92.
[http://dx.doi.org/10.1517/17425247.2013.772578] [PMID: 23448121]
[128]
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16(6): 815-26.
[http://dx.doi.org/10.1517/14712598.2016.1169268] [PMID: 27063021]
[129]
Estelrich J, Escribano E, Queralt J, Busquets M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 2015; 16(12): 8070-101.
[http://dx.doi.org/10.3390/ijms16048070] [PMID: 25867479]
[130]
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomaterials research 2019; 23: 1-7.
[http://dx.doi.org/10.1186/s40824-019-0156-z]
[131]
Crespo-Barreda A, Encabo-Berzosa MM, González-Pastor R, et al. Viral and nonviral vectors for in vivo and ex vivo gene therapies. Translating Regenerative Medicine to the Clinic 2016; pp. 155-77.
[http://dx.doi.org/10.1016/B978-0-12-800548-4.00011-5]
[132]
Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: Achievements and therapeutic potential. Curr Gene Ther 2012; 12(2): 116-26.
[http://dx.doi.org/10.2174/156652312800099616] [PMID: 22348552]
[133]
Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical methods of gene delivery. Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders 2017; pp. 113-35.
[134]
Di Mauro V, Iafisco M, Salvarani N, et al. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine 2016; 11(8): 891-906.
[http://dx.doi.org/10.2217/nnm.16.26] [PMID: 26979495]
[135]
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, et al. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front Bioeng Biotechnol 2021; 9: 701031.
[http://dx.doi.org/10.3389/fbioe.2021.701031] [PMID: 34354988]
[136]
Hirata M, Wittayarat M, Namula Z, et al. Lipofection-mediated introduction of CRISPR/Cas9 system into porcine oocytes and embryos. Animals 2021; 11(2): 578.
[http://dx.doi.org/10.3390/ani11020578] [PMID: 33672168]
[137]
Mathiyalagan P, Sahoo S. Exosomes-based gene therapy for microRNA delivery. Cardiac gene therapy: Methods and protocols 2017; 139-52.
[138]
Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 2016; 575(2): 377-84.
[http://dx.doi.org/10.1016/j.gene.2015.08.067] [PMID: 26341056]
[139]
Baek G, Choi H, Kim Y, Lee HC, Choi C. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 2019; 8(9): 880-6.
[http://dx.doi.org/10.1002/sctm.18-0226] [PMID: 31045328]
[140]
Bu T, Li Z, Hou Y, et al. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics 2021; 11(20): 9988-10000.
[http://dx.doi.org/10.7150/thno.64229] [PMID: 34815799]
[141]
Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): e99263.
[http://dx.doi.org/10.1172/jci.insight.99263] [PMID: 29669940]
[142]
Guo D, Xu Y, Ding J, et al. Roles and clinical applications of exosomes in cardiovascular disease. BioMed Res Int 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/5424281] [PMID: 32596327]
[143]
Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2011; 50(5): 766-76.
[http://dx.doi.org/10.1016/j.yjmcc.2010.09.003] [PMID: 20837022]
[144]
Ishikawa K, Tilemann L, Fish K, Hajjar RJ. Gene delivery methods in cardiac gene therapy. J Gene Med 2011; 13(10): 566-72.
[http://dx.doi.org/10.1002/jgm.1609] [PMID: 21954037]
[145]
Vekstein AM, Wendell DC, DeLuca S, et al. Targeted delivery for cardiac regeneration: comparison of intra-coronary infusion and intra-myocardial injection in porcine hearts. Front Cardiovasc Med 2022; 9: 833335.
[http://dx.doi.org/10.3389/fcvm.2022.833335] [PMID: 35224061]
[146]
Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: Dream or vision? Eur Heart J 2017; 38(18): ehw547.
[http://dx.doi.org/10.1093/eurheartj/ehw547] [PMID: 28073865]
[147]
Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res 2012; 110(5): 777-93.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.252981] [PMID: 22383712]
[148]
Dib N, Khawaja H, Varner S, McCarthy M, Campbell A. Cell therapy for cardiovascular disease: A comparison of methods of delivery. J Cardiovasc Transl Res 2011; 4(2): 177-81.
[http://dx.doi.org/10.1007/s12265-010-9253-z] [PMID: 21181320]
[149]
Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res 2020; 126(10): 1394-414.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315855] [PMID: 32379579]
[150]
Korpela H, Järveläinen N, Siimes S, et al. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290(3): 567-82.
[http://dx.doi.org/10.1111/joim.13308] [PMID: 34033164]
[151]
Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2013; 2(4): e000119.
[http://dx.doi.org/10.1161/JAHA.113.000119] [PMID: 23963752]
[152]
Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery technologies for cardiac applications. Gene Ther 2012; 19(6): 659-69.
[http://dx.doi.org/10.1038/gt.2012.11] [PMID: 22418063]
[153]
Garcia FC, Bazan V, Zado ES, Ren JF, Marchlinski FE. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 2009; 120(5): 366-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.834903] [PMID: 19620503]
[154]
Ladage D, Turnbull IC, Ishikawa K, et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Ther 2011; 18(10): 979-85.
[http://dx.doi.org/10.1038/gt.2011.52] [PMID: 21512506]
[155]
Ishikawa K, Weber T, Hajjar RJ. Human cardiac gene therapy. Circ Res 2018; 123(5): 601-13.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311587] [PMID: 30355138]
[156]
Han S, Hwang C. Pericardial approach for cardiac therapies: Old practice with new ideas. Korean Circ J 2010; 40(10): 479-88.
[http://dx.doi.org/10.4070/kcj.2010.40.10.479] [PMID: 21088750]
[157]
de Pedro MÁ, Pulido M, Marinaro F, et al. Intrapericardial administration of secretomes from menstrual blood-derived mesenchymal stromal cells: effects on immune-related genes in a porcine model of myocardial infarction. Biomedicines 2022; 10(5): 1117.
[http://dx.doi.org/10.3390/biomedicines10051117] [PMID: 35625854]
[158]
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS Open 2022; 10: 185-94.
[http://dx.doi.org/10.1016/j.xjon.2022.04.043] [PMID: 36004211]
[159]
Tuma J, Fernández-Viña R, Carrasco A, et al. Safety and feasibility of percutaneous retrograde coronary sinus delivery of autologous bone marrow mononuclear cell transplantation in patients with chronic refractory angina. J Transl Med 2011; 9(1): 183.
[http://dx.doi.org/10.1186/1479-5876-9-183] [PMID: 22029669]
[160]
Hulot JS, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: Promise postponed. Eur Heart J 2016; 37(21): 1651-8.
[http://dx.doi.org/10.1093/eurheartj/ehw019] [PMID: 26922809]
[161]
Safri Z. Management of coronary artery disease. In IOP Conference Series: Earth and Environmental Science. IOP Publishing 2018; 125: p. 012125.
[162]
Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: Past, present, and future. Mol Ther 2017; 25(5): 1095-106.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.027] [PMID: 28389321]
[163]
Zachary I, Morgan RD. Therapeutic angiogenesis for cardiovascular disease: Biological context, challenges, prospects. Heart 2011; 97(3): 181-9.
[http://dx.doi.org/10.1136/hrt.2009.180414] [PMID: 20884790]
[164]
Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther 2014; 14(2): 183-95.
[http://dx.doi.org/10.1517/14712598.2014.866085] [PMID: 24328708]
[165]
Ylä-Herttuala S. Cardiovascular gene therapy with vascular endothelial growth factors. Gene 2013; 525(2): 217-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.051] [PMID: 23608170]
[167]
Migliara G, Baccolini V, Rosso A, et al. Familial hypercholesterolemia: A systematic review of guidelines on genetic testing and patient management. Front Public Health 2017; 5: 252.
[http://dx.doi.org/10.3389/fpubh.2017.00252] [PMID: 28993804]
[168]
Fu Q, Hu L, Shen T, Yang R, Jiang L. Recent advances in gene therapy for familial hypercholesterolemia: An update review. J Clin Med 2022; 11(22): 6773.
[http://dx.doi.org/10.3390/jcm11226773] [PMID: 36431249]
[169]
Gold ME, Nanna MG, Doerfler SM, et al. Prevalence, treatment, and control of severe hyperlipidemia. Am J Prevent Cardiol 2020; 3: 100079.
[http://dx.doi.org/10.1016/j.ajpc.2020.100079] [PMID: 34327462]
[170]
Huff MW, Assini JM, Hegele RA. Gene therapy for hypercholesterolemia: Sweet dreams and flying machines. Circ Res 2014; 115(6): 542-5.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.304800] [PMID: 25170090]
[171]
Tadin-Strapps M, Peterson LB, Cumiskey AM, et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J Lipid Res 2011; 52(6): 1084-97.
[http://dx.doi.org/10.1194/jlr.M012872] [PMID: 21398511]
[172]
Gaudet D, Stroes ES, Méthot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther 2016; 27(11): 916-25.
[http://dx.doi.org/10.1089/hum.2015.158] [PMID: 27412455]
[174]
Eckhouse SR, Jones JA, Spinale FG. Gene targeting in ischemic heart disease and failure: Translational and clinical studies. Biochem Pharmacol 2013; 85(1): 1-11.
[http://dx.doi.org/10.1016/j.bcp.2012.08.018] [PMID: 22935384]
[175]
Swedberg K. Heart failure subtypes: Pathophysiology and definitions. Diabetes Res Clin Pract 2021; 175: 108815.
[http://dx.doi.org/10.1016/j.diabres.2021.108815] [PMID: 33862057]
[177]
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: A report from the american heart association. circulation 2014; 129(3): 28-92.
[178]
Bezzerides VJ, Prondzynski M, Carrier L, Pu WT. Gene therapy for inherited arrhythmias. Cardiovasc Res 2020; 116(9): 1635-50.
[http://dx.doi.org/10.1093/cvr/cvaa107] [PMID: 32321160]
[179]
Bongianino R, Priori SG. Gene therapy to treat cardiac arrhythmias. Nat Rev Cardiol 2015; 12(9): 531-46.
[http://dx.doi.org/10.1038/nrcardio.2015.61] [PMID: 25917154]
[181]
Musunuru K. How genome editing could be used in the treatment of cardiovascular diseases. Per Med 2018; 15(2): 67-9.
[http://dx.doi.org/10.2217/pme-2017-0078] [PMID: 29714123]
[182]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[183]
Merkle T, Merz S, Reautschnig P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133-8.
[http://dx.doi.org/10.1038/s41587-019-0013-6] [PMID: 30692694]
[184]
Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548(7668): 413-9.
[http://dx.doi.org/10.1038/nature23305] [PMID: 28783728]
[185]
Friedmann T. Genetic therapies, human genetic enhancement, and … eugenics? Gene Ther 2019; 26(9): 351-3.
[http://dx.doi.org/10.1038/s41434-019-0088-1] [PMID: 31273325]
[186]
National academies of sciences, engineering, and medicine. Human Genome Editing: Science Ethics, and Governance. National Academies Press 2017.
[187]
German DM, Mitalipov S, Mishra A, Kaul S. Therapeutic genome editing in cardiovascular diseases. JACC Basic Transl Sci 2019; 4(1): 122-31.
[http://dx.doi.org/10.1016/j.jacbts.2018.11.004] [PMID: 30847427]
[188]
Evans JH. Setting ethical limits on human gene editing after the fall of the somatic/germline barrier. Proc Natl Acad Sci 2021; 118(22): e2004837117.
[http://dx.doi.org/10.1073/pnas.2004837117] [PMID: 34050016]
[189]
Rossant J. Gene editing in human development: Ethical concerns and practical applications. Development 2018; 145(16): dev150888.
[http://dx.doi.org/10.1242/dev.150888] [PMID: 30045910]
[190]
Gumer JM. The wisdom of germline editing: An ethical analysis of the use of CRISPR-Cas9 to edit human embryos. New Bioeth 2019; 25(2): 137-52.
[http://dx.doi.org/10.1080/20502877.2019.1606151] [PMID: 31130112]
[191]
Ansah EO. Ethical challenges and controversies in the practice and advancement of gene therapy. Adv Cell Gene Ther 2022; 2022: 1-5.
[http://dx.doi.org/10.1155/2022/1015996]
[192]
Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev 2021; 168: 147-57.
[http://dx.doi.org/10.1016/j.addr.2020.02.003] [PMID: 32092381]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy