Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Extensive Computational Studies for the Identification of Potential Therapeutic Candidates Against Breast Cancer

Author(s): Placid Carrasco and Raghuvir R. S. Pissurlenkar*

Volume 2, 2024

Published on: 26 January, 2024

Article ID: e2210299X278016 Pages: 16

DOI: 10.2174/012210299X278016231224170444

open_access

Open Access Journals Promotions 2
Abstract

Introduction: Breast cancer holds the distinction of being the most frequent type of cancer among women when compared to other forms of cancer. Estrogen Receptors (ER) are intracellular transcription factors that are essential for a variety of biological functions that are regulated by estrogen in the body. With its ability to modulate gene expression, Estrogen Receptors exert significant influence over cell growth, development, reproduction, and other important biological functions. Estrogen Receptors are overexpressed in breast cancer events; dysregulation of estrogen signaling pathways caused by this overexpression results in aberrant cell growth and proliferation, which make them the hallmarks of breast cancer.

Methods: A thorough study of different molecular structures and properties was done using extensive computational analyses and simulations in order to identify compounds with the potential to inhibit ER activity. Diverse chemical libraries were subjected to docking against the target ER-α, and molecules with docking scores less than -8.00 kcal/mol were retained.

Results: Further, these virtual hits were evaluated using 3D-QSAR models for predicting activity. ADME/Tox screening was performed to retain compounds with optimal pharmacokinetic profiles. Six compounds with excellent binding potential predicted biological activity and favorable ADME/Tox profiles were chosen. Prolonged molecular dynamics simulations were conducted to assess structural stability over time.

Conclusion: The computational study on breast cancer on the target ER has yielded significant progress with the identification of six promising compounds that can be further evaluated through experimental validations.

Keywords: Estrogen receptor (ER- α), Molecular docking, 3D QSAR, ADMET/Tox, Molecular dynamics simulation, Cancer.

[1]
Sahayarayan, J.J.; Rajan, K.S.; Vidhyavathi, R.; Nachiappan, M.; Prabhu, D.; Alfarraj, S.; Arokiyaraj, S.; Daniel, A.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J. Biol. Sci., 2021, 28(1), 400-407.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.023] [PMID: 33424323]
[2]
Yin, W.; Wang, J.; Jiang, L.; James Kang, Y. Cancer and stem cells. Exp. Biol. Med., 2021, 246(16), 1791-1801.
[http://dx.doi.org/10.1177/15353702211005390] [PMID: 33820469]
[3]
Mathur, G.; Nain, S.; Sharma, P.K. Cancer: An overview. Acad. J. Cancer Res., 2015, 8(1)
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Guarneri, V.; Conte, P.F. The curability of breast cancer and the treatment of advanced disease. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(0)(Suppl. 1), S149-S161.
[http://dx.doi.org/10.1007/s00259-004-1538-5] [PMID: 15107948]
[6]
Rugo, H.S.; Delord, J.P.; Im, S.A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Tourneau, C.L.; van Brummelen, E.M.J.; Varga, A.; Salgado, R.; Loi, S.; Saraf, S.; Pietrangelo, D.; Karantza, V.; Tan, A.R. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer. Clin. Cancer Res., 2018, 24(12), 2804-2811.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3452] [PMID: 29559561]
[7]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[8]
Bai, Z.; Gust, R. Breast cancer, estrogen receptor and ligands. Arch. Pharm., 2009, 342(3), 133-149.
[http://dx.doi.org/10.1002/ardp.200800174] [PMID: 19274700]
[9]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051] [PMID: 29407951]
[10]
Sommer, S; Fuqua, SA Estrogen receptor and breast cancer. In: InSeminars in cancer biology; Academic Press, 2001; 11, pp. 339-352.
[http://dx.doi.org/10.1006/scbi.2001.0389]
[11]
Yue, W.; Wang, J.P.; Li, Y.; Fan, P.; Liu, G.; Zhang, N.; Conaway, M.; Wang, H.; Korach, K.S.; Bocchinfuso, W.; Santen, R. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int. J. Cancer, 2010, 127(8), 1748-1757.
[http://dx.doi.org/10.1002/ijc.25207] [PMID: 20104523]
[12]
Xiong, R.; Patel, H.K.; Gutgesell, L.M.; Zhao, J.; Delgado-Rivera, L.; Pham, T.N.D.; Zhao, H.; Carlson, K.; Martin, T.; Katzenellenbogen, J.A.; Moore, T.W.; Tonetti, D.A.; Thatcher, G.R.J. Selective human estrogen receptor partial agonists (ShERPAs) for tamoxifen-resistant breast cancer. J. Med. Chem., 2016, 59(1), 219-237.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01276] [PMID: 26681208]
[13]
Luo, G.; Li, X.; Zhang, G.; Wu, C.; Tang, Z.; Liu, L.; You, Q.; Xiang, H. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton - A possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer. Eur. J. Med. Chem., 2017, 140, 252-273.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.015] [PMID: 28942113]
[14]
Ali, S.; Coombes, R.C. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 271-281.
[http://dx.doi.org/10.1023/A:1009594727358] [PMID: 14973389]
[15]
Yu, E.; Xu, Y.; Shi, Y.; Yu, Q.; Liu, J.; Xu, L. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. J. Mol. Model., 2019, 25(9), 278.
[http://dx.doi.org/10.1007/s00894-019-4156-7] [PMID: 31463793]
[16]
Johmura, Y.; Maeda, I.; Suzuki, N.; Wu, W.; Goda, A.; Morita, M.; Yamaguchi, K.; Yamamoto, M.; Nagasawa, S.; Kojima, Y.; Tsugawa, K.; Inoue, N.; Miyoshi, Y.; Osako, T.; Akiyama, F.; Maruyama, R.; Inoue, J.; Furukawa, Y.; Ohta, T.; Nakanishi, M. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J. Clin. Invest., 2018, 128(12), 5603-5619.
[http://dx.doi.org/10.1172/JCI121679] [PMID: 30418174]
[17]
Suvannang, N.; Preeyanon, L.; Malik, A.A.; Schaduangrat, N.; Shoombuatong, W.; Worachartcheewan, A.; Tantimongcolwat, T.; Nantasenamat, C. Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study. RSC Advances, 2018, 8(21), 11344-11356.
[http://dx.doi.org/10.1039/C7RA10979B] [PMID: 35542807]
[18]
Li, X.; Wu, C.; Lin, X.; Cai, X.; Liu, L.; Luo, G.; You, Q.; Xiang, H. Synthesis and biological evaluation of 3-aryl-quinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Eur. J. Med. Chem., 2019, 161, 445-455.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.045] [PMID: 30384047]
[19]
Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with autodock: Theory and practice. Expert Opin. Drug Discov., 2010, 5(6), 597-607.
[http://dx.doi.org/10.1517/17460441.2010.484460] [PMID: 21532931]
[20]
Niinivehmas, S.P.; Manivannan, E.; Rauhamäki, S.; Huuskonen, J.; Pentikäinen, O.T. Identification of estrogen receptor α ligands with virtual screening techniques. J. Mol. Graph. Model., 2016, 64, 30-39.
[http://dx.doi.org/10.1016/j.jmgm.2015.12.006] [PMID: 26774287]
[21]
Shoichet, BK Virtual screening of chemical libraries. Nature, 2004, 432, 862-865.
[http://dx.doi.org/10.1038/nature03197]
[22]
Ghosh, S.; Nie, A.; an, J.; Huang, Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10(3), 194-202.
[http://dx.doi.org/10.1016/j.cbpa.2006.04.002] [PMID: 16675286]
[23]
Boehm, M. Virtual screening: Principles, challenges and practical guidelines. Drug Discovery & Development, 2011.
[24]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[25]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design--a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[26]
Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D.A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. QSAR without borders. Chem. Soc. Rev., 2020, 49(11), 3525-3564.
[http://dx.doi.org/10.1039/D0CS00098A] [PMID: 32356548]
[27]
Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419] [PMID: 29139324]
[28]
Maliwal, D.; Pissurlenkar, R.R.S.; Telvekar, V. Identification of novel potential anti-diabetic candidates targeting human pancreatic α-amylase and human α-glycosidase: An exhaustive structure-based screening. Can. J. Chem., 2022, 100(5), 338-352.
[http://dx.doi.org/10.1139/cjc-2021-0238]
[29]
Nandurkar, Y.; Bhoye, M.R.; Maliwal, D.; Pissurlenkar, R.R.S.; Chavan, A.; Katade, S.; Mhaske, P.C. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine derivatives as potential antifungal and antitubercular agents. Eur. J. Med. Chem., 2023, 258, 115548.
[http://dx.doi.org/10.1016/j.ejmech.2023.115548] [PMID: 37307623]
[30]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[31]
Trott, O; Olson, AJ AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem., 2009, 31(2), 455-461.
[32]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[33]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[http://dx.doi.org/10.1016/S0092-8674(00)81717-1] [PMID: 9875847]
[34]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank Nucleic Acids Res., 2017, 627-41.
[35]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[36]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[37]
Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 1984, 5(2), 129-145.
[http://dx.doi.org/10.1002/jcc.540050204]
[38]
Gasteiger, J.; Marsili, M. A new model for calculating atomic charges in molecules. Tetrahedron Lett., 1978, 19(34), 3181-3184.
[http://dx.doi.org/10.1016/S0040-4039(01)94977-9]
[39]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[40]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-W447.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[41]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[42]
Tosco, P.; Balle, T. Open3DQSAR: A new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J. Mol. Model., 2011, 17(1), 201-208.
[http://dx.doi.org/10.1007/s00894-010-0684-x] [PMID: 20383726]
[43]
Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC 2006, , p. 84.
[http://dx.doi.org/10.1145/1188455.1188544]
[44]
Release, S. 2022-1: Desmond Molecular Dynamics System; D. E. Shaw Research: New York, NY, 2022.
[45]
Davidchack, R.L.; Handel, R.; Tretyakov, M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys., 2009, 130(23), 234101.
[http://dx.doi.org/10.1063/1.3149788] [PMID: 19548705]
[46]
Jordan, V.C. Tamoxifen: toxicities and drug resistance during the treatment and prevention of breast cancer. Annu. Rev. Pharmacol. Toxicol., 1995, 35(1), 195-211.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.001211] [PMID: 7598491]
[47]
Jordan, V.C. The role of tamoxifen in the treatment and prevention of breast cancer. Curr. Probl. Cancer, 1992, 16(3), 129-176.
[PMID: 1582240]
[48]
Zhang, B.; Kiefer, J.R.; Blake, R.A.; Chang, J.H.; Hartman, S.; Ingalla, E.R.; Kleinheinz, T.; Mody, V.; Nannini, M.; Ortwine, D.F.; Ran, Y.; Sambrone, A.; Sampath, D.; Vinogradova, M.; Zhong, Y.; Nwachukwu, J.C.; Nettles, K.W.; Lai, T.; Liao, J.; Zheng, X.; Chen, H.; Wang, X.; Liang, J. Unexpected equivalent potency of a constrained chromene enantiomeric pair rationalized by co-crystal structures in complex with estrogen receptor alpha. Bioorg. Med. Chem. Lett., 2019, 29(7), 905-911.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.036] [PMID: 30732944]
[49]
Kahraman, M.; Govek, S.P.; Nagasawa, J.Y.; Lai, A.; Bonnefous, C.; Douglas, K.; Sensintaffar, J.; Liu, N.; Lee, K.; Aparicio, A.; Kaufman, J.; Qian, J.; Shao, G.; Prudente, R.; Joseph, J.D.; Darimont, B.; Brigham, D.; Heyman, R.; Rix, P.J.; Hager, J.H.; Smith, N.D. Maximizing ER-α degradation maximizes activity in a tamoxifen-resistant breast cancer model: Identification of GDC-0927. ACS Med. Chem. Lett., 2019, 10(1), 50-55.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00414] [PMID: 30655946]
[50]
Tria, G.S.; Abrams, T.; Baird, J.; Burks, H.E.; Firestone, B.; Gaither, L.A.; Hamann, L.G.; He, G.; Kirby, C.A.; Kim, S.; Lombardo, F.; Macchi, K.J.; McDonnell, D.P.; Mishina, Y.; Norris, J.D.; Nunez, J.; Springer, C.; Sun, Y.; Thomsen, N.M.; Wang, C.; Wang, J.; Yu, B.; Tiong-Yip, C.L.; Peukert, S. Discovery of LSZ102, a potent, orally bioavailable selective estrogen receptor degrader (SERD) for the treatment of estrogen receptor positive breast cancer. J. Med. Chem., 2018, 61(7), 2837-2864.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01682] [PMID: 29562737]

© 2024 Bentham Science Publishers | Privacy Policy