Generic placeholder image

Journal of Photocatalysis

Editor-in-Chief

ISSN (Print): 2665-976X
ISSN (Online): 2665-9778

Research Article

Feasible Synthesis of C Fibers@C-MoO2+x Submicro-particles Core-shell Composite for Highly Efficient Solar-driven Photocatalyst

Author(s): Yan Chen, Meng Wang, Zhijian Peng* and Xiuli Fu*

Volume 4, 2024

Published on: 26 January, 2024

Article ID: e260124226353 Pages: 19

DOI: 10.2174/012665976X288652240106123813

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Molybdenum dioxide (MoO2) is attractive due to its applications in optical, electrical, and new energy fields. However, due to the poor conductivity, pure MoO2 possesses inferior photocatalytic activity because of the strong recombination between photogenerated electrons and holes.

Method: One of the methods to overcome this shortage is to enable nanostructured MoO2 to be composited with highly conductive materials like carbon fibers. Herein, we fabricate an interesting C fibers@C-MoO2+x nanoparticle core-shell composite by heat treating Polyacrylonitrile (PAN) fibers covered with PAN and MoO3 powder in Ar gas, in which the PAN carbonize into conductive carbon in a heating process and meanwhile, the emitting reducing gases in-situ transform MoO3 to conducting MoO2+x submicron-particles. Under simulated sunlight irradiation, the photocatalytic removal rate for rhodamine B, phenol, and K2Cr2O7 on such composite are 11.28, 5.15, and 6.19 times those on commercial MoO2 powder, respectively.

Result: The prepared composite presents excellent photocatalytic performance and outstanding stability for degrading various environmental pollutants in water, which will be a good solar-driven photocatalyst candidate for the degradation of toxic chemicals in industrial wastewater for environmental remediation.

Conclusion: Furthermore, this simple preparation strategy represents an easily operated, low-cost, and environmentally friendly solution for industrial production.

Keywords: MoO2+x submicro-particles, carbon fiber, solar-driven photocatalysis, waste water treatment, electron density, valence band.

[1]
Hussain, M.M.; Wang, J.; Bibi, I.; Shahid, M.; Niazi, N.K.; Iqbal, J.; Mian, I.A.; Shaheen, S.M.; Bashir, S.; Shah, N.S.; Hina, K.; Rinklebe, J. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. J. Hazard. Mater., 2021, 403, 124027.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124027] [PMID: 33265048]
[2]
Streets, D.G.; Devane, M.K.; Lu, Z.; Bond, T.C.; Sunderland, E.M.; Jacob, D.J. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol., 2011, 45(24), 10485-10491.
[http://dx.doi.org/10.1021/es202765m] [PMID: 22070723]
[3]
Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. Photochem. Rev., 2000, 1(1), 1-21.
[http://dx.doi.org/10.1016/S1389-5567(00)00002-2]
[4]
Tryk, D.A.; Fujishima, A.; Honda, K. Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochim. Acta, 2000, 45(15-16), 2363-2376.
[http://dx.doi.org/10.1016/S0013-4686(00)00337-6]
[5]
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116-1137.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[6]
Shi, Y.; Guo, B.; Corr, S.A.; Shi, Q.; Hu, Y.S.; Heier, K.R.; Chen, L.; Seshadri, R.; Stucky, G.D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett., 2009, 9(12), 4215-4220.
[http://dx.doi.org/10.1021/nl902423a] [PMID: 19775084]
[7]
Rajeswari, J.; Kishore, P.S.; Viswanathan, B.; Varadarajan, T.K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun., 2009, 11(3), 572-575.
[http://dx.doi.org/10.1016/j.elecom.2008.12.050]
[8]
Xie, X.; Lin, L.; Liu, R.Y.; Jiang, Y.F.; Zhu, Q.; Xu, A.W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(15), 8055-8061.
[http://dx.doi.org/10.1039/C5TA00622H]
[9]
Namvar, F.; Mortazavi-Derazkola, S.; Salavati-Niasari, M. Preparation and characterization of novel HgO/MoO2 nanocomposite by ultrasound-assisted precipitation method to enhance photocatalytic activity. J. Mater. Sci. Mater. Electron., 2017, 28(4), 3151-3158.
[http://dx.doi.org/10.1007/s10854-016-5903-5]
[10]
Ji, H.; Fei, T.; Zhang, L.; Yan, J.; Fan, Y.; Huang, J.; Song, Y.; Man, Y.; Tang, H.; Xu, H.; Li, H. Synergistic effects of MoO2 nanosheets and graphene-like C3N4 for highly improved visible light photocatalytic activities. Appl. Surf. Sci., 2018, 457, 1142-1150.
[http://dx.doi.org/10.1016/j.apsusc.2018.06.134]
[11]
Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M.D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H.H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci., 2014, 7(1), 387-392.
[http://dx.doi.org/10.1039/C3EE42441C]
[12]
Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano, 2011, 5(9), 7100-7107.
[http://dx.doi.org/10.1021/nn201802c] [PMID: 21823572]
[13]
Liu, Y.; Tian, L.; Tan, X.; Li, X.; Chen, X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull., 2017, 62(6), 431-441.
[http://dx.doi.org/10.1016/j.scib.2017.01.034] [PMID: 36659287]
[14]
Tian, J.; Zhang, H.; Li, Z. Synthesis of double-layer nitrogen-doped microporous hollow carbon@MoS2/MoO2 nanospheres for supercapacitors. ACS Appl. Mater. Interfaces, 2018, 10(35), 29511-29520.
[http://dx.doi.org/10.1021/acsami.8b08534] [PMID: 30110538]
[15]
Wu, J.Z.; Li, X.Y.; Zhu, Y.R.; Yi, T.F.; Zhang, J.H.; Xie, Y. Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceram. Int., 2016, 42(7), 9250-9256.
[http://dx.doi.org/10.1016/j.ceramint.2016.03.027]
[16]
Marques Neto, J.; Bellato, C.; de Souza, C.; da Silva, R.; Rocha, P. Synthesis, characterization and enhanced photocatalytic activity of iron oxide/carbon nanotube/Ag-doped TiO2 nanocomposites. J. Braz. Chem. Soc., 2017, 28, 2301-2312.
[http://dx.doi.org/10.21577/0103-5053.20170081]
[17]
Ji, X.; Herle, P.S.; Rho, Y.; Nazar, L.F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-nlock polymers. Chem. Mater., 2007, 19(3), 374-383.
[http://dx.doi.org/10.1021/cm060961y]
[18]
Zhou, L.; Wu, H.B.; Wang, Z.; Lou, X.W.D. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2011, 3(12), 4853-4857.
[http://dx.doi.org/10.1021/am201351z] [PMID: 22077330]
[19]
Luo, W.; Hu, X.; Sun, Y.; Huang, Y. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys. Chem. Chem. Phys., 2011, 13(37), 16735-16740.
[http://dx.doi.org/10.1039/c1cp22184a] [PMID: 21850323]
[20]
Gu, S.; Qin, M.; Zhang, H.; Ma, J.; Wu, H.; Qu, X. Facile solution combustion synthesis of MoO 2 nanoparticles as efficient photocatalysts. CrystEngComm, 2017, 19(43), 6516-6526.
[http://dx.doi.org/10.1039/C7CE01611E]
[21]
Jiang, J.; Yang, W.; Wang, H.; Zhao, Y.; Guo, J.; Zhao, J.; Beidaghi, M.; Gao, L. Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism. Electrochim. Acta, 2017, 240, 379-387.
[http://dx.doi.org/10.1016/j.electacta.2017.04.103]
[22]
Liu, B.; Zhao, X.; Tian, Y.; Zhao, D.; Hu, C.; Cao, M. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Phys. Chem. Chem. Phys., 2013, 15(22), 8831-8837.
[http://dx.doi.org/10.1039/c3cp44707c] [PMID: 23646353]
[23]
Xie, Q.; Zheng, X.; Wu, D.; Chen, X.; Shi, J.; Han, X.; Zhang, X.; Peng, G.; Gao, Y.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett., 2017, 111(9), 093505.
[http://dx.doi.org/10.1063/1.5001183]
[24]
Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Parilla, P.A.; Jones, K.M.; Lee, S-H. Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films, 2008, 516(5), 794-797.
[http://dx.doi.org/10.1016/j.tsf.2007.06.177]
[25]
Bozhko, S.I.; Walshe, K.; Tulina, N.; Walls, B.; Lübben, O.; Murphy, B.E.; Bozhko, V.; Shvets, I.V. Surface modification on MoO2+x/Mo(110) induced by a local electric potential. Sci. Rep., 2019, 9(1), 6216.
[http://dx.doi.org/10.1038/s41598-019-42536-9] [PMID: 30996282]
[26]
Shen, Z.; Zhao, Z.; Qian, J.; Peng, Z.; Fu, X. Synthesis of WO 3-x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res., 2016, 31(8), 1065-1076.
[http://dx.doi.org/10.1557/jmr.2016.106]
[27]
Xi, Q.; Liu, J.; Wu, Z.; Bi, H.; Li, Z.; Zhu, K.; Zhuang, J.; Chen, J.; Lu, S.; Huang, Y.; Qian, G. In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance. Appl. Surf. Sci., 2019, 480, 427-437.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.009]
[28]
Bowker, M.; Carley, A.F.; House, M. Contrasting the behaviour of MoO3 and MoO2 for the oxidation of methanol. Catal. Lett., 2008, 120(1-2), 34-39.
[http://dx.doi.org/10.1007/s10562-007-9255-x]
[29]
Qian, J.; Zhao, Z.; Shen, Z.; Zhang, G.; Peng, Z.; Fu, X. Oxide vacancies enhanced visible active photocatalytic W 19 O 55 NMRs via strong adsorption. RSC Advances, 2016, 6(10), 8061-8069.
[http://dx.doi.org/10.1039/C5RA23655J]
[30]
Huang, H.; Liu, K.; Chen, K.; Zhang, Y.; Zhang, Y.; Wang, S. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C, 2014, 118(26), 14379-14387.
[http://dx.doi.org/10.1021/jp503025b]
[31]
Gil-González, E.; Perejón, A.; Sánchez-Jiménez, P.E.; Medina-Carrasco, S.; Kupčík, J.; Šubrt, J.; Criado, J.M.; Pérez-Maqueda, L.A. Crystallization kinetics of nanocrystalline materials by combined x-ray diffraction and differential scanning calorimetry experiments. Cryst. Growth Des., 2018, 18(5), 3107-3116.
[http://dx.doi.org/10.1021/acs.cgd.8b00241]
[32]
Ding, R.; Wu, Y.; Chen, Y.; Chen, H.; Wang, J.; Shi, Y.; Yang, M. Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO 2/CNTs catalyst: An insight into the promoting effect of cobalt. Catal. Sci. Technol., 2016, 6(7), 2065-2076.
[http://dx.doi.org/10.1039/C5CY01575H]
[33]
Zhou, E.; Wang, C.; Zhao, Q.; Li, Z.; Shao, M.; Deng, X.; Liu, X.; Xu, X. Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts. Ceram. Int., 2016, 42(2), 2198-2203.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.008]
[34]
Yang, L.; Liu, L.; Zhu, Y.; Wang, X.; Wu, Y. Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J. Mater. Chem., 2012, 22(26), 13148-13152.
[http://dx.doi.org/10.1039/c2jm31364b]
[35]
Khaembal, D.N.; Neville, A.; Morinal, A. A methodology for Raman characterisation of MoDTC tribofilmsand its application in investigating the influence of surfacechemistry on friction performance of MoDTC lubricants. Tribol. Lett., 2015, 59, 1-17.
[36]
Shi, M.M.; Bao, D.; Li, S-J.; Wulan, B-R.; Yan, J-M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater., 2018, 8(21), 1800124.
[http://dx.doi.org/10.1002/aenm.201800124]
[37]
Li, Z.; Bommier, C.; Chong, Z.S.; Jian, Z.; Surta, T.W.; Wang, X.; Xing, Z.; Neuefeind, J.C.; Stickle, W.F.; Dolgos, M.; Greaney, P.A.; Ji, X. Mechanism of Na-Ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater., 2017, 7(18), 1602894.
[http://dx.doi.org/10.1002/aenm.201602894]
[38]
Liu, Y.; Zhang, H.; Ouyang, P.; Li, Z. One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim. Acta, 2013, 102, 429-435.
[http://dx.doi.org/10.1016/j.electacta.2013.03.195]
[39]
Kim, M.A.; Jang, D.; Tejima, S.; Cruz-Silva, R.; Joh, H.I.; Kim, H.C.; Lee, S.; Endo, M. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization. Sci. Rep., 2016, 6(1), 22988.
[http://dx.doi.org/10.1038/srep22988] [PMID: 27004752]
[40]
Wang, S.; Chen, Z.H.; Ma, W.J.; Ma, Q.S. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram. Int., 2006, 32(3), 291-295.
[http://dx.doi.org/10.1016/j.ceramint.2005.02.014]
[41]
Kim, Y.; Hwang, H.M.; Wang, L.; Kim, I.; Yoon, Y.; Lee, H. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep., 2016, 6(1), 25212.
[http://dx.doi.org/10.1038/srep25212] [PMID: 27121120]
[42]
Phor, L. Ankush; Suman; Malik, J.; Sharma, S.; Sonia; Chaudhary, V.; Rani, G.M.; Kumar, A.; Kumar, P.; Chahal, S. Magnetically separable NiZn-ferrite/CeO2 nanorods/CNT ternary composites for photocatalytic removal of organic pollutants. J. Mol. Liq., 2023, 390, 123064.
[http://dx.doi.org/10.1016/j.molliq.2023.123064]
[43]
Mousavi, M.; Habibi-Yangjeh, A.; Abitorabi, M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci., 2016, 480, 218-231.
[http://dx.doi.org/10.1016/j.jcis.2016.07.021] [PMID: 27442149]
[44]
Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57(4), 603-619.
[http://dx.doi.org/10.1351/pac198557040603]
[45]
Qian, J.; Zhao, Z.; Shen, Z.; Zhang, G.; Peng, Z.; Fu, X. A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res., 2015, 30(24), 3746-3756.
[http://dx.doi.org/10.1557/jmr.2015.373]
[46]
Wang, Z.; Luo, H.; Lin, R.; Lei, H.; Yuan, Y.; Zhu, Z.; Li, X.; Mai, W. Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production. Appl. Catal. B, 2019, 257, 117891.
[http://dx.doi.org/10.1016/j.apcatb.2019.117891]
[47]
Ojha, M.; Deepa, M. Molybdenum selenide nanotubes decorated carbon net for a high performance supercapacitor. Chem. Eng. J., 2019, 368, 772-783.
[http://dx.doi.org/10.1016/j.cej.2019.03.002]
[48]
Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. A novel architecture of dandelion-like Mo 2 C/TiO 2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(21), 10591-10598.
[http://dx.doi.org/10.1039/C7TA02655B]
[49]
Jing, X.; Peng, X.; Sun, X.; Zhou, W.; Wang, W.; Wang, S. Design and synthesis of Mo2C/MoO3 with enhanced visible-light photocatalytic performance for reduction of Cr (VI) and degradation of organic pollutants. Mater. Sci. Semicond. Process., 2019, 100, 262-269.
[http://dx.doi.org/10.1016/j.mssp.2019.05.004]
[50]
Wei, W.; Tian, Q.; Sun, H.; Liu, P.; Zheng, Y.; Fan, M.; Zhuang, J. Efficient visible-light-driven photocatalytic H2 evolution over MoO2-C/CdS ternary heterojunction with unique interfacial microstructures. Appl. Catal. B, 2020, 260, 118153.
[http://dx.doi.org/10.1016/j.apcatb.2019.118153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy