Research Article

Bioinformatics-Assisted Extraction of All PCa miRNAs and their Target Genes

Author(s): Akilandeswari Ramu and Jayaprakash Chinnappan*

Volume 13, Issue 1, 2024

Published on: 26 January, 2024

Page: [33 - 55] Pages: 23

DOI: 10.2174/0122115366253242231020053221

Price: $65

Abstract

Introduction: To retrieve, and classify PCa miRNAs and identify the functional relationship between miRNAs and their targets through literature collection with computational analysis.

Background: MicroRNAs play a role in gene regulation, which can either repress or activate the gene. Hence, the functions of miRNAs are dependent on the target gene. This study will be the first of its kind to combine computational analysis with corpus PCa data. Effectively, our study reported the huge number of miRNAs associated with PCa along with functional information.

Objective: The identification and classification of previously known full PCa miRNAs and their targets were made possible by mining the literature data. Systems Biology and curated data mining assisted in identifying optimum miRNAs and their target genes for PCa therapy.

Methods: PubMed database was used to collect the PCa literature up to December 2021. Pubmed. mineR package was used to extract the microRNAs associated articles and manual curation was performed to classify the microRNAs based on the function in PCa. PPI was constructed using the STRING database. Pathway analysis was performed using PANTHER and ToppGene Suite Software. Functional analysis was performed using ShinyGO software. Cluster analysis was performed using MCODE 2.0, and Hub gene analysis was performed using cytoHubba. The genemiRNA network was reconstructed using Cytoscape.

Results: Unique PCa miRNAs were retrieved and classified from mined PCa literature. Six hundred and five unique miRNAs from 250 articles were considered as oncomiRs to trigger PCa. One hundred and twenty unique miRNAs from 118 articles were considered Tumor Suppressor miRNAs to suppress the PCa. Twenty-four unique miRNAs from 22 articles were utilized as treatment miRNAs to treat PCa. miRNAs target genes and their significant pathways, functions and hub genes were identified.

Conclusion: miR-27a, miR-34b, miR-495, miR-23b, miR-100, miR-218, Let-7a family, miR-27a- 5p, miR-34c, miR-34a, miR-143/-145, miR-125b, miR-124 and miR-205 with their target genes AKT1, SRC, CTNNB1, HRAS, MYC and TP53 are significant PCa targets.

Keywords: Corpus, microRNAs, oncomiRs, systems biology, tumor suppressor, bioinformatics.

Graphical Abstract
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
National Cancer institute (NCI) Cancer Statistics https://www.cancer.gov/about-cancer/understanding/statistics (Accessed:2022 August 8)
[3]
American Cancer Society Cancer Facts & Figures 2021. Atlanta: American Cancer Society 2021.
[4]
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15(1): 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[5]
Yang R, Schlehe B, Hemminki K, et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat 2010; 121(3): 693-702.
[http://dx.doi.org/10.1007/s10549-009-0633-5] [PMID: 19921425]
[6]
Casanova-Salas I, Rubio-Briones J, Fernández-Serra A, López-Guerrero JA. MiRNAs as biomarkers in prostate cancer. Clin Transl Oncol 2012; 14(11): 803-11.
[http://dx.doi.org/10.1007/s12094-012-0877-0] [PMID: 22855165]
[7]
Doldi V, Pennati M, Forte B, Gandellini P, Zaffaroni N. Dissecting the role of microRNAs in prostate cancer metastasis: Implications for the design of novel therapeutic approaches. Cell Mol Life Sci 2016; 73(13): 2531-42.
[http://dx.doi.org/10.1007/s00018-016-2176-3] [PMID: 26970978]
[8]
Canese K, Weis S. PubMed: The bibliographic database. Available from 2013. https://www.ehu.eus/biofisica/juanma/mbb/pdf/pubmed_intro.pdf
[9]
Rani J, Shah AR, Ramachandran S. Pubmed.mineR: An R package with text-mining algorithms to analyse PubMed abstracts. J Biosci 2015; 40(4): 671-82.
[http://dx.doi.org/10.1007/s12038-015-9552-2] [PMID: 26564970]
[10]
Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res 2003; 31(1): 258-61.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[11]
Ge SX, Jung D, Yao R, Shiny GO. A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020; 36(8): 2628-9.
[http://dx.doi.org/10.1093/bioinformatics/btz931] [PMID: 31882993]
[12]
Thomas PD, Campbell MJ, Kejariwal A, et al. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res 2003; 13(9): 2129-41.
[http://dx.doi.org/10.1101/gr.772403] [PMID: 12952881]
[13]
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37(Web Server): W305-11.
[http://dx.doi.org/10.1093/nar/gkp427] [PMID: 19465376 ]
[14]
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(S4): S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[15]
Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4(1): 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[16]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[17]
Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 2009; 273(2): 233-42.
[http://dx.doi.org/10.1016/j.canlet.2008.08.003] [PMID: 18789835]
[18]
Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer 2010; 127(3): 589-97.
[http://dx.doi.org/10.1002/ijc.25065] [PMID: 19950226]
[19]
Jackson BL, Grabowska A, Ratan HL. MicroRNA in prostate cancer: Functional importance and potential as circulating biomarkers. BMC Cancer 2014; 14(1): 930.
[http://dx.doi.org/10.1186/1471-2407-14-930] [PMID: 25496077]
[20]
Mo W, Zhang J, Li X, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One 2013; 8(2): e56592.
[http://dx.doi.org/10.1371/journal.pone.0056592] [PMID: 23451058]
[21]
Wan X, Huang W, Yang S, et al. Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int J Biochem Cell Biol 2016; 79: 249-60.
[http://dx.doi.org/10.1016/j.biocel.2016.08.043] [PMID: 27594411]
[22]
Pickl JMA, Heckmann D, Ratz L, Klauck SM, Sültmann H. Novel RNA markers in prostate cancer: Functional considerations and clinical translation. BioMed Res Int 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/765207] [PMID: 25250334]
[23]
Singh P, Campbell M. The interactions of microRNA and epigenetic modifications in prostate cancer. Cancers 2013; 5(4): 998-1019.
[http://dx.doi.org/10.3390/cancers5030998] [PMID: 24202331]
[24]
Li JZ, Wang ZL, Xu WH, Li Q, Gao L, Wang ZM. MicroRNA-495 regulates migration and invasion in prostate cancer cells via targeting Akt and mTOR signaling. Cancer Invest 2016; 34(4): 181-8.
[http://dx.doi.org/10.3109/07357907.2016.1156690] [PMID: 27031291]
[25]
Thieu W, Tilki D, deVere White RW, Evans CP. The role of microRNA in castration-resistant prostate cancer. Urol Oncol 2014; 32(5): 517-23.
[http://dx.doi.org/10.1016/j.urolonc.2013.11.004] [PMID: 24935732]
[26]
Gao P, Tchernyshyov I, Chang TC, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458(7239): 762-5.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[27]
He H, Zhu J, Chen X, et al. MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. FEBS Lett 2012; 586(16): 2451-8.
[http://dx.doi.org/10.1016/j.febslet.2012.06.003] [PMID: 22710126]
[28]
Wang YL, Wu S, Jiang B, Yin FF, Zheng SS, Hou SC. Role of microRNAs in prostate cancer pathogenesis. Clin Genitourin Cancer 2015; 13(4): 261-70.
[http://dx.doi.org/10.1016/j.clgc.2015.01.003] [PMID: 25733057]
[29]
Ayub SG, Kaul D, Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet 2015; 208(6): 289-302.
[http://dx.doi.org/10.1016/j.cancergen.2015.02.010] [PMID: 26004033]
[30]
Rice MA, Ishteiwy RA, Magani F, et al. The microRNA-23b/-27b cluster suppresses prostate cancer metastasis via Huntingtin-interacting protein 1-related. Oncogene 2016; 35(36): 4752-61.
[http://dx.doi.org/10.1038/onc.2016.6] [PMID: 26898757]
[31]
McDonald AC, Vira M, Walter V, et al. Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy. Prostate 2019; 79(9): 961-8.
[http://dx.doi.org/10.1002/pros.23803] [PMID: 30958910]
[32]
Leite KRM, Morais DR, Reis ST, et al. MicroRNA 100: A context dependent miRNA in prostate cancer. Clinics 2013; 68(6): 797-802.
[http://dx.doi.org/10.6061/clinics/2013(06)12] [PMID: 23778488]
[33]
Li F, Gu C, Tian F, et al. MiR-218 impedes IL-6-induced prostate cancer cell proliferation and invasion via suppression of LGR4 expression. Oncol Rep 2016; 35(5): 2859-65.
[http://dx.doi.org/10.3892/or.2016.4663] [PMID: 26986507]
[34]
Han G, Fan M, Zhang X. MicroRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun 2015; 456(3): 804-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.026] [PMID: 25511701]
[35]
Nishikawa R, Goto Y, Sakamoto S, et al. Tumor-suppressive micro RNA -218 inhibits cancer cell migration and invasion via targeting ofLASP 1 in prostate cancer. Cancer Sci 2014; 105(7): 802-11.
[http://dx.doi.org/10.1111/cas.12441] [PMID: 24815849]
[36]
Cannistraci A, Di Pace AL, De Maria R, Bonci D. MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: Results from clinical data set and patients’ samples. BioMed Res Int 2014; 2014: 1-17.
[http://dx.doi.org/10.1155/2014/146170] [PMID: 25309903]
[37]
Tang G, Du R, Tang Z, Kuang Y. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway. J Cell Biochem 2018; 119(4): 3725-31.
[http://dx.doi.org/10.1002/jcb.26595] [PMID: 29236328]
[38]
Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett 2017; 407: 9-20.
[http://dx.doi.org/10.1016/j.canlet.2017.08.011] [PMID: 28823964]
[39]
Wang M, Hu Y, Amatangelo MD, Stearns ME. Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer. Mol Cancer Res 2011; 9(1): 36-50.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0158] [PMID: 21148031]
[40]
Wang LN, Chen WW, Zhang J, et al. The miRNA let-7a1 inhibits the expression of insulin-like growth factor 1 receptor (IGF1R) in prostate cancer PC-3 cells. Asian J Androl 2013; 15(6): 753-8.
[http://dx.doi.org/10.1038/aja.2013.84] [PMID: 23974362]
[41]
Barros-Silva D, Costa-Pinheiro P, Duarte H, et al. MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis 2018; 9(2): 167.
[http://dx.doi.org/10.1038/s41419-017-0241-y] [PMID: 29415999]
[42]
Chen Y, Rao Q, Zhang H, et al. MiR-34C disrupts the stemness of purified CD133+ prostatic cancer stem cells. Urology 2016; 96: 177.e1-9.
[http://dx.doi.org/10.1016/j.urology.2016.07.021] [PMID: 27461446]
[43]
Östling P, Leivonen SK, Aakula A, et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011; 71(5): 1956-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2421] [PMID: 21343391]
[44]
Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther 2008; 7(8): 1288-96.
[http://dx.doi.org/10.4161/cbt.7.8.6284] [PMID: 18497571]
[45]
Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7(16): 2591-600.
[http://dx.doi.org/10.4161/cc.7.16.6533] [PMID: 18719384]
[46]
Fujita Y, Kojima K, Hamada N, et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008; 377(1): 114-9.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.086] [PMID: 18834855]
[47]
Ding M, Lin B, Li T, et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget 2015; 6(10): 7686-700.
[http://dx.doi.org/10.18632/oncotarget.3480] [PMID: 25797256]
[48]
Li N, Zhang LY, Qiao YH, Song RJ. Long noncoding RNA LINC00662 functions as miRNA sponge to promote the prostate cancer tumorigenesis through targeting miR-34a. Eur Rev Med Pharmacol Sci 2019; 23(9): 3688-98.
[PMID: 31114993]
[49]
Zedan AH, Blavnsfeldt SG, Hansen TF, et al. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLoS One 2017; 12(6): e0179113.
[http://dx.doi.org/10.1371/journal.pone.0179113] [PMID: 28628624]
[50]
Liang J, Li Y, Daniels G, et al. LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Mol Cancer Res 2015; 13(4): 681-8.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0503] [PMID: 25587085]
[51]
Hart M, Wach S, Nolte E, et al. The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer. FEBS J 2013; 280(9): 2105-16.
[http://dx.doi.org/10.1111/febs.12236] [PMID: 23480797]
[52]
Xue G, Ren Z, Chen Y, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett 2015; 361(1): 121-7.
[http://dx.doi.org/10.1016/j.canlet.2015.02.046] [PMID: 25749421]
[53]
He JH, Zhang J, Han ZP, Wang L, Lv YB, Li YG. Reciprocal regulation of PCGEM1 and miR-145promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res 2014; 33(1): 72.
[http://dx.doi.org/10.1186/s13046-014-0072-y] [PMID: 25200485]
[54]
Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012; 31(8): 978-91.
[http://dx.doi.org/10.1038/onc.2011.304] [PMID: 21765474]
[55]
Panigrahi GK, Ramteke A, Birks D, et al. Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget 2018; 9(17): 13894-910.
[http://dx.doi.org/10.18632/oncotarget.24532] [PMID: 29568403]
[56]
Ma Z, Luo Y, Qiu M. MiR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit 2017; 23: 359-65.
[http://dx.doi.org/10.12659/MSM.899719] [PMID: 28109198]
[57]
Schaefer A, Jung K. Re: MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Eur Urol 2010; 57(5): 919.
[http://dx.doi.org/10.1016/j.eururo.2010.02.016] [PMID: 20945549]
[58]
Budd WT, Seashols S, Weaver D, Joseph C, Zehner ZE. A networks method for ranking microRNA dysregulation in cancer. BMC Syst Biol 2013; 7 (Suppl. 5): S3.
[http://dx.doi.org/10.1186/1752-0509-7-S5-S3] [PMID: 24564923]
[59]
Catto JWF, Alcaraz A, Bjartell AS, et al. MicroRNA in prostate, bladder, and kidney cancer: A systematic review. Eur Urol 2011; 59(5): 671-81.
[http://dx.doi.org/10.1016/j.eururo.2011.01.044] [PMID: 21296484]
[60]
Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27(12): 1788-93.
[http://dx.doi.org/10.1038/sj.onc.1210809] [PMID: 17891175]
[61]
Xu G, Wu J, Zhou L, et al. Characterization of the small RNA transcriptomes of androgen dependent and independent prostate cancer cell line by deep sequencing. PLoS One 2010; 5(11): e15519.
[http://dx.doi.org/10.1371/journal.pone.0015519] [PMID: 21152091]
[62]
Shi X-B, Xue L, Ma A-H, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32(35): 4130-8.
[http://dx.doi.org/10.1038/onc.2012.425] [PMID: 23069658]
[63]
Verdoodt B, Neid M, Vogt M, et al. MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol 2013; 43(1): 307-14.
[http://dx.doi.org/10.3892/ijo.2013.1915] [PMID: 23612742]
[64]
Majid S, Dar AA, Saini S, et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 2010; 116(24): 5637-49.
[http://dx.doi.org/10.1002/cncr.25488] [PMID: 20737563]
[65]
Zhang Q, Padi SKR, Tindall DJ, Guo B. Polycomb protein EZH2 suppresses apoptosis by silencing the proapoptotic miR-31. Cell Death Dis 2014; 5(10): e1486-6.
[http://dx.doi.org/10.1038/cddis.2014.454] [PMID: 25341040]
[66]
Saini S, Majid S, Dahiya R. Diet, microRNAs and prostate cancer. Pharm Res 2010; 27(6): 1014-26.
[http://dx.doi.org/10.1007/s11095-010-0086-x] [PMID: 20221895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy