Review Article

The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location

Author(s): Fatemeh Sabaghi, Saina Yousefi Sadat, Zohreh Mirsaeedi, Aref Salahi, Sara Vazifehshenas, Neda Zahmat Kesh*, Mahdieh Balavar* and Pegah Ghoraeian*

Volume 13, Issue 1, 2024

Published on: 24 January, 2024

Page: [14 - 32] Pages: 19

DOI: 10.2174/0122115366265540231201065341

Price: $65

Abstract

Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.

Keywords: Biomarker, cancer, diagnosis, drug resistance, LncRNA, metastasis.

Graphical Abstract
[1]
Passegué E, Jamieson CHM, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci 2003; 100 (Suppl. 1): 11842-9.
[http://dx.doi.org/10.1073/pnas.2034201100] [PMID: 14504387]
[2]
Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol 2021; 39(1): 27-40.
[http://dx.doi.org/10.1002/hon.2776] [PMID: 32621547]
[3]
Zeeb H, Blettner M. Adult leukaemia: What is the role of currently known risk factors? Radiat Environ Biophys 1998; 36(4): 217-28.
[http://dx.doi.org/10.1007/s004110050075] [PMID: 9523337]
[4]
Huang J, Chan SC, Ngai CH, et al. Disease burden, risk factors, and trends of leukaemia: A global analysis. Front Oncol 2022; 12: 904292.
[http://dx.doi.org/10.3389/fonc.2022.904292] [PMID: 35936709]
[5]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Kater AP, van Oers MHJ, van Norden Y, et al. Feasibility and efficacy of addition of individualized-dose lenalidomide to chlorambucil and rituximab as first-line treatment in elderly and FCR-unfit patients with advanced chronic lymphocytic leukemia. Haematologica 2019; 104(1): 147-54.
[http://dx.doi.org/10.3324/haematol.2018.193854] [PMID: 30115656]
[7]
Robak T, Jamroziak K, Robak P. Current and emerging treatments for chronic lymphocytic leukaemia. Drugs 2009; 69(17): 2415-49.
[http://dx.doi.org/10.2165/11319270-000000000-00000] [PMID: 19911856]
[8]
Shi T, Gao G, Cao Y. Long noncoding rnas as novel biomarkers have a promising future in cancer diagnostics. Dis Markers 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/9085195] [PMID: 27143813]
[9]
Safaei M, Mehri-Ghahfarrokhi A, Shojaeian A. Trace of Long Non-Coding RNAs in Signaling Pathways in Thyroid Cancer. Curr Signal Transduct Ther 2021; 16(2): 164-70.
[http://dx.doi.org/10.2174/1574362415666200211104406]
[10]
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51(6): 344-57.
[http://dx.doi.org/10.3109/10408363.2014.944299] [PMID: 25123609]
[11]
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell 2015; 58(4): 586-97.
[http://dx.doi.org/10.1016/j.molcel.2015.05.004] [PMID: 26000844]
[12]
Chen J, Wang R, Zhang K, Chen LB. Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med 2014; 18(12): 2425-36.
[http://dx.doi.org/10.1111/jcmm.12431] [PMID: 25297942]
[13]
Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett 2013; 339(2): 159-66.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[14]
Hubbard T, Barker D, Birney E, et al. The Ensembl genome database project. Nucleic Acids Res 2002; 30(1): 38-41.
[http://dx.doi.org/10.1093/nar/30.1.38] [PMID: 11752248]
[15]
Bhat AA, Younes SN, Raza SS, et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 2020; 19(1): 57.
[http://dx.doi.org/10.1186/s12943-020-01175-9] [PMID: 32164715]
[16]
Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA expression in leukemia. J Cancer 2020; 11(14): 4284-96.
[http://dx.doi.org/10.7150/jca.42093] [PMID: 32368311]
[17]
Dieter C, Lourenco ED, Lemos NE. Association of long non-coding RNA and leukemia: A systematic review. Gene 2020; 735: 144405.
[http://dx.doi.org/10.1016/j.gene.2020.144405] [PMID: 32014562]
[18]
Wang F, Zhu W, Yang R, Xie W, Wang D. LncRNA ZEB2-AS1 contributes to the tumorigenesis of gastric cancer via activating the Wnt/β-catenin pathway. Mol Cell Biochem 2019; 456(1-2): 73-83.
[http://dx.doi.org/10.1007/s11010-018-03491-7] [PMID: 30635820]
[19]
Mahboobeh Z, Pegah M, Fatemeh S, et al. lncRNA ZEB2-AS1: A promising biomarker in human cancers. IUBMB Life 2020; 72(9): 1891-9.
[http://dx.doi.org/10.1002/iub.2338] [PMID: 32687675]
[20]
Guan J, Liu P, Wang A, Wang B. Long non coding RNA ZEB2 AS1 affects cell proliferation and apoptosis via the miR 122 5p/PLK1 axis in acute myeloid leukemia. Int J Mol Med 2020; 46(4): 1490-500.
[http://dx.doi.org/10.3892/ijmm.2020.4683] [PMID: 32700753]
[21]
Li X, Song F, Sun H. Long non coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T cell acute lymphoblastic leukemia. Oncol Lett 2020; 20(5): 1.
[http://dx.doi.org/10.3892/ol.2020.12102] [PMID: 32973953]
[22]
Orlandella FM, Smaldone G, Salvatore G, et al. The lncRNA TEX41 is upregulated in pediatric B-Cells Acute Lymphoblastic Leukemia and it is necessary for leukemic cell growth. Biomark Res 2021; 9(1): 54.
[http://dx.doi.org/10.1186/s40364-021-00307-7] [PMID: 34233751]
[23]
Li M, Wang Q, Xue F, Wu Y. lncRNA-CYTOR works as an oncogene through the CYTOR/miR-3679-5p/MACC1 axis in colorectal cancer. DNA Cell Biol 2019; 38(6): 572-82.
[http://dx.doi.org/10.1089/dna.2018.4548] [PMID: 31144988]
[24]
Cui C, Wang Y, Gong W, et al. Long non-coding RNA LINC00152 regulates self-renewal of leukemia stem cells and induces chemo-resistance in acute myeloid leukemia. Front Oncol 2021; 11: 694021.
[http://dx.doi.org/10.3389/fonc.2021.694021] [PMID: 34295821]
[25]
Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract 2018; 214(6): 801-5.
[http://dx.doi.org/10.1016/j.prp.2018.04.003] [PMID: 29728310]
[26]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[27]
Cheng Y, Su Y, Wang S, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous RNA network as novel prognostic markers for acute myeloid leukemia. Genes 2020; 11(8): 868.
[http://dx.doi.org/10.3390/genes11080868] [PMID: 32751923]
[28]
Asadi MR, Moslehian MS, Sabaie H, et al. CircRNA-associated CeRNAs regulatory axes in retinoblastoma: A systematic scoping review. Front Oncol 2022; 12: 910470.
[http://dx.doi.org/10.3389/fonc.2022.910470] [PMID: 35865469]
[29]
Sabaie H, Talebi M, Gharesouarn J, et al. Identification and analysis of BCAS4/hsa-miR-185-5p/SHISA7 competing endogenous RNA axis in late-onset alzheimer’s disease using bioinformatic and experimental approaches. Front Aging Neurosci 2022; 14: 812169.
[http://dx.doi.org/10.3389/fnagi.2022.812169] [PMID: 35264942]
[30]
Ghafouri-Fard S, Esmaeili M, Taheri M. Expression of non-coding RNAs in hematological malignancies. Eur J Pharmacol 2020; 875: 172976.
[http://dx.doi.org/10.1016/j.ejphar.2020.172976] [PMID: 32112777]
[31]
Du X, Liu H, Yang C, et al. LncRNA landscape analysis identified LncRNA LEF-AS1 as an oncogene that upregulates LEF1 and promotes survival in chronic lymphocytic leukemia. Leuk Res 2021; 110: 106706.
[http://dx.doi.org/10.1016/j.leukres.2021.106706] [PMID: 34563944]
[32]
Fantini S, Rontauroli S, Sartini S, et al. Increased plasma levels of lncRNAs LINC01268, GAS5 and MALAT1 correlate with negative prognostic factors in myelofibrosis. Cancers 2021; 13(19): 4744.
[http://dx.doi.org/10.3390/cancers13194744] [PMID: 34638230]
[33]
Chen B, Li Y, Nie Y, Tang A, Zhou Q. Long non-coding RNA LINC01268 promotes cell growth and inhibits cell apoptosis by modulating miR-217/SOS1 axis in acute myeloid leukemia. Braz J Med Biol Res 2020; 53(8): e9299.
[http://dx.doi.org/10.1590/1414-431x20209299] [PMID: 32609259]
[34]
Xue F, Che H. The long non-coding RNA LOC285758 promotes invasion of acute myeloid leukemia cells by down-regulating miR-204-5p. FEBS Open Bio 2020; 10(5): 734-43.
[http://dx.doi.org/10.1002/2211-5463.12814] [PMID: 32067385]
[35]
Yu Y, Wang Y, Xiao X, et al. MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1. Biochem Cell Biol 2019; 97(5): 563-70.
[http://dx.doi.org/10.1139/bcb-2018-0354] [PMID: 30807203]
[36]
Peng W, Gao W, Feng J. Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol 2014; 31(12): 346.
[http://dx.doi.org/10.1007/s12032-014-0346-4] [PMID: 25412939]
[37]
Han Y, Ma Z. LncRNA highly upregulated in liver cancer regulates imatinib resistance in chronic myeloid leukemia via the miR-150-5p/MCL1 axis. Anticancer Drugs 2021; 32(4): 427-36.
[http://dx.doi.org/10.1097/CAD.0000000000001019] [PMID: 33587348]
[38]
Leoncini PP, Bertaina A, Papaioannou D, et al. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget 2016; 7(34): 55395-408.
[http://dx.doi.org/10.18632/oncotarget.10577] [PMID: 27447965]
[39]
Ding J, Xie M, Lian Y, et al. Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis 2017; 6(1): e288-8.
[http://dx.doi.org/10.1038/oncsis.2016.84] [PMID: 28112720]
[40]
Qu Y, Wang Y, Wang P, Lin N, Yan X, Li Y. Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia. Cell Biol Int 2020; 44(8): 1745-59.
[http://dx.doi.org/10.1002/cbin.11370] [PMID: 32369230]
[41]
Huang R, Liao X, Wang X, Li Q. Comprehensive investigation of the clinical significance of long non-coding RNA HOXA-AS2 in acute myeloid leukemia using genome-wide RNA sequencing dataset. J Cancer 2021; 12(7): 2151-64.
[http://dx.doi.org/10.7150/jca.48045] [PMID: 33754013]
[42]
Zhu Y, Gu L, Lin X, et al. LINC00265 promotes colorectal tumorigenesis via ZMIZ2 and USP7-mediated stabilization of β-catenin. Cell Death Differ 2020; 27(4): 1316-27.
[http://dx.doi.org/10.1038/s41418-019-0417-3] [PMID: 31527801]
[43]
Ying X, Zhang W, Fang M, Wang C, Han L, Yang C. LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia. Inflamm Res 2020; 69(6): 607-18.
[http://dx.doi.org/10.1007/s00011-020-01345-x] [PMID: 32266420]
[44]
Ma L, Kuai WX, Sun XZ, Lu XC, Yuan YF. Long noncoding RNA LINC00265 predicts the prognosis of acute myeloid leukemia patients and functions as a promoter by activating PI3K-AKT pathway. Eur Rev Med Pharmacol Sci 2018; 22: 7867-76.
[45]
Li J, Jiang X, Li Z, et al. Long noncoding RNA GHET1 in human cancer. Clin Chim Acta 2019; 488: 111-5.
[http://dx.doi.org/10.1016/j.cca.2018.11.007] [PMID: 30399371]
[46]
Xiao Y, Li T, Xue Q, Miao L. Long non-coding RNA GHET1/miR-105/RAP2B axis regulates the progression of acute myeloid leukemia. J Cancer 2020; 11(23): 7081-90.
[http://dx.doi.org/10.7150/jca.47294] [PMID: 33123297]
[47]
Meyer KB, Maia AT, O’Reilly M, et al. A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet 2011; 7(7): e1002165.
[http://dx.doi.org/10.1371/journal.pgen.1002165] [PMID: 21814516]
[48]
El-Khazragy N, Elayat W, Matbouly S, et al. The prognostic significance of the long non-coding RNAs “CCAT1, PVT1” in t(8;21) associated acute myeloid leukemia. Gene 2019; 707: 172-7.
[http://dx.doi.org/10.1016/j.gene.2019.03.055] [PMID: 30943439]
[49]
Yazdi N, Houshmand M, Atashi A, Kazemi A, Najmedini AA, Zarif MN. Long noncoding RNA PVT1: Potential oncogene in the development of acute lymphoblastic leukemia. Turk J Biol 2018; 42(5): 405-13.
[http://dx.doi.org/10.3906/biy-1801-46] [PMID: 30930624]
[50]
Cheng J, Song Y, Xu J, Li HH, Zheng JF. LncRNA PVT1 promotes the malignant progression of acute myeloid leukaemia via sponging miR-29 family to increase WAVE1 expression. Pathology 2021; 53(5): 613-22.
[http://dx.doi.org/10.1016/j.pathol.2020.11.003] [PMID: 33558065]
[51]
Liu Z, Chen Q, Hann SS. The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother 2019; 115: 108943.
[http://dx.doi.org/10.1016/j.biopha.2019.108943] [PMID: 31078038]
[52]
Chen L, Wang W, Cao L, Li Z, Wang X. Long non-coding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Mol Cells 2016; 39(4): 330-6.
[http://dx.doi.org/10.14348/molcells.2016.2308] [PMID: 26923190]
[53]
Su H, Liu B, Chen H, et al. LncRNA ANRIL mediates endothelial dysfunction through BDNF downregulation in chronic kidney disease. Cell Death Dis 2022; 13(7): 661.
[http://dx.doi.org/10.1038/s41419-022-05068-1] [PMID: 35906216]
[54]
Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol 2018; 9: 405.
[http://dx.doi.org/10.3389/fendo.2018.00405] [PMID: 30087655]
[55]
Wang CH, Li QY, Nie L, Ma J, Yao CJ, Chen FP. LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol 2020; 119: 105666.
[http://dx.doi.org/10.1016/j.biocel.2019.105666] [PMID: 31830533]
[56]
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20(1): 335.
[http://dx.doi.org/10.1186/s12935-020-01376-8] [PMID: 32714094]
[57]
Shi Y, Luo X, Li P, et al. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Lett 2015; 358(1): 27-36.
[http://dx.doi.org/10.1016/j.canlet.2014.12.014] [PMID: 25511742]
[58]
Giles KM, Brown RAM, Ganda C, et al. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB. Oncotarget 2016; 7(22): 31663-80.
[http://dx.doi.org/10.18632/oncotarget.9421] [PMID: 27203220]
[59]
Xiao H. MiR-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting NOVA2. Cell Mol Biol Lett 2019; 24(1): 60.
[http://dx.doi.org/10.1186/s11658-019-0188-3] [PMID: 31832068]
[60]
Mofidi M, Rahgozar S, Pouyanrad S. Increased level of long non coding RNA H19 is correlated with the downregulation of miR-326 and BCL-2 genes in pediatric acute lymphoblastic leukemia, a possible hallmark for leukemogenesis. Mol Biol Rep 2021; 48(2): 1531-8.
[http://dx.doi.org/10.1007/s11033-021-06161-y] [PMID: 33580459]
[61]
Cai L, Chen JJ, Deng FM, Wang L, Chen Y. MiR-326 regulates the proliferation and apoptosis of endometrial cancer by targeting Bcl-2. J Obstet Gynaecol Res 2021; 47(2): 621-30.
[http://dx.doi.org/10.1111/jog.14572] [PMID: 33210403]
[62]
Ghodousi ES, Rahgozar S. MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem 2018; 119(7): 6024-32.
[http://dx.doi.org/10.1002/jcb.26800] [PMID: 29630744]
[63]
Yang J, Yin Z, Li Y, et al. The identification of long non-coding RNA H19 target and its function in chronic myeloid leukemia. Mol Ther Nucleic Acids 2020; 19: 1368-78.
[http://dx.doi.org/10.1016/j.omtn.2020.01.021] [PMID: 32160707]
[64]
Zhao TT, Liu X. LncRNA-H19 inhibits apoptosis of acute myeloid leukemia cells via targeting miR-29a-3p. Eur Rev Med Pharmacol Sci 2019; 23(3): 224-31.
[PMID: 31389605]
[65]
Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22(39): 8031-41.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[66]
Wang Y, Gu XX, Huang HT, Liu CH, Wei YS. A genetic variant in the promoter of lncRNA MALAT1 is related to susceptibility of ischemic stroke. Lipids Health Dis 2020; 19(1): 57.
[http://dx.doi.org/10.1186/s12944-020-01236-4] [PMID: 32238151]
[67]
Sheng XF, Hong LL, Li H, Huang FY, Wen Q, Zhuang HF. Long non-coding RNA MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA-146a to regulate CXCR4 expression in acute myeloid leukemia. Hematology 2021; 26(1): 43-52.
[http://dx.doi.org/10.1080/16078454.2020.1867781] [PMID: 33382018]
[68]
Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 2013; 3(1): 34-9.
[http://dx.doi.org/10.7150/thno.5150] [PMID: 23382784]
[69]
Huang JL, Liu W, Tian LH, et al. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia. Oncol Rep 2017; 38(3): 1353-62.
[http://dx.doi.org/10.3892/or.2017.5802] [PMID: 28713913]
[70]
Song Y, Guo NH, Zheng JF. LncRNA-MALAT1 regulates proliferation and apoptosis of acute lymphoblastic leukemia cells via miR-205-PTK7 pathway. Pathol Int 2020; 70(10): 724-32.
[http://dx.doi.org/10.1111/pin.12993] [PMID: 32754978]
[71]
Dou L, Li J, Zheng D, et al. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia. OncoTargets Ther 2013; 6(Aug): 1153-60.
[PMID: 24009426]
[72]
Jiang G, Zhang M, Yue B, et al. PTK7: A new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res 2012; 36(11): 1347-53.
[http://dx.doi.org/10.1016/j.leukres.2012.07.004] [PMID: 22898210]
[73]
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311-23.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[74]
Hu X. Qu. Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett 2015; 589(15): 1981-7.
[75]
Wu S, Zheng C, Chen S, et al. Overexpression of long non-coding RNA HOTAIR predicts a poor prognosis in patients with acute myeloid leukemia. Oncol Lett 2015; 10(4): 2410-4.
[http://dx.doi.org/10.3892/ol.2015.3552] [PMID: 26622861]
[76]
Wang S-L, Huang Y. Silencing long non-coding RNA HOTAIR exerts anti-oncogenic effect on human acute myeloid leukemia via demethylation of HOXA5 by inhibiting Dnmt3b. Cancer Cell Int 2019; 19(1): 1-14.
[77]
Yang Y, Zhong F, Huang X, et al. High expression of HOXA5 is associated with poor prognosis in acute myeloid leukemia. Curr Probl Cancer 2021; 45(3): 100673.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100673] [PMID: 33223227]
[78]
Hu L, Liu J, Meng Y, et al. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol 2021; 18(10): 1434-44.
[http://dx.doi.org/10.1080/15476286.2020.1854520] [PMID: 33241756]
[79]
Zhuang Q, Jin Z, Zheng X, Jin T, Xiang L. Long non coding RNA LINC00460 serves as a potential biomarker and oncogene via regulation of the miR 320b/PBX3 axis in acute myeloid leukemia. Mol Med Rep 2021; 23(6): 435.
[http://dx.doi.org/10.3892/mmr.2021.12074] [PMID: 33846790]
[80]
Xiong L. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis 2019; 10(11): 829.
[81]
Zhang Y, Tang L. Inhibition of breast cancer cell proliferation and tumorigenesis by long non-coding RNA RPPH1 down-regulation of miR-122 expression. Cancer Cell Int 2017; 17(1): 109.
[http://dx.doi.org/10.1186/s12935-017-0480-0] [PMID: 29200969]
[82]
Jing Z, Gao L, Wang H, Chen J, Nie B, Hong Q. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark 2019; 26(3): 385-92.
[http://dx.doi.org/10.3233/cbm-190246] [PMID: 31594210]
[83]
Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization. OncoTargets Ther 2018; 12: 157-68.
[http://dx.doi.org/10.2147/OTT.S171957] [PMID: 30613154]
[84]
Yang Y, Dai W, Sun Y, Zhao Z. Long non coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells. Oncol Rep 2019; 41(4): 2311-20.
[http://dx.doi.org/10.3892/or.2019.6991] [PMID: 30720129]
[85]
Chen M, Wu X, Ma W, et al. Decreased expression of lncRNA VPS9D1-AS1 in gastric cancer and its clinical significance. Cancer Biomark 2017; 21(1): 23-8.
[http://dx.doi.org/10.3233/CBM-170172] [PMID: 29036784]
[86]
Tan J, Yang L. Long noncoding RNA VPS9D1-AS1 overexpression predicts a poor prognosis in non-small cell lung cancer. Biomed Pharmacother 2018; 106: 1600-6.
[http://dx.doi.org/10.1016/j.biopha.2018.07.113] [PMID: 30119235]
[87]
Xiao S, Xu N, Ding Q, Huang S, Zha Y, Zhu H. LncRNA VPS9D1-AS1 promotes cell proliferation in acute lymphoblastic leukemia through modulating GPX1 expression by miR-491-5p and miR-214-3p evasion. Biosci Rep 2020; 40(10): BSR20193461.
[http://dx.doi.org/10.1042/BSR20193461] [PMID: 32808668]
[88]
Zhuang M, Chaolumen Q, Li L, et al. MiR-29b-3p cooperates with miR-29c-3p to affect the malignant biological behaviors in T-cell acute lymphoblastic leukemia via TFAP2C/GPX1 axis. Biochem Biophys Res Commun 2020; 527(2): 511-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.170] [PMID: 32423796]
[89]
Lin L, Que Y, Lu P, et al. Chidamide inhibits acute myeloid leukemia cell proliferation by lncRNA VPS9D1-AS1 downregulation via MEK/ERK signaling pathway. Front Pharmacol 2020; 11: 569651.
[http://dx.doi.org/10.3389/fphar.2020.569651] [PMID: 33192510]
[90]
Graham LD, Pedersen SK, Brown GS, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011; 2(8): 829-40.
[http://dx.doi.org/10.1177/1947601911431081] [PMID: 22393467]
[91]
Ni J, Hong J, Li Q, Zeng Q, Xia R. Long non-coding RNA CRNDE suppressing cell proliferation is regulated by DNA methylation in chronic lymphocytic leukemia. Leuk Res 2021; 105: 106564.
[http://dx.doi.org/10.1016/j.leukres.2021.106564] [PMID: 33857783]
[92]
Kang Y, Zhang S, Cao W, Wan D, Sun L. Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep 2020; 40(6): BSR20193450.
[http://dx.doi.org/10.1042/BSR20193450] [PMID: 32426817]
[93]
Wang W, Wu F, Ma P, et al. LncRNA CRNDE promotes the progression of B-cell Precursor Acute Lymphoblastic Leukemia by Targeting the miR-345-5p/CREB axis. Mol Cells 2020; 43(8): 718-27.
[PMID: 32868489]
[94]
Cho E-C, Mitton B, Sakamoto K. CREB and leukemogenesis. Crit Rev Oncog 2011; 16(1-2): 50.
[http://dx.doi.org/10.1615/CritRevOncog.v16.i1-2.50]
[95]
Huang J-Z, Chen M, Chen D, Gao X-C, Zhu S, Huang H, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 2017; 68(1): 171-84.
[96]
Zhang XM, Chen H, Zhou B, et al. lncRNA HOXB-AS3 promotes hepatoma by inhibiting p53 expression. Eur Rev Med Pharmacol Sci 2018; 22(20): 6784-92.
[PMID: 30402841]
[97]
Zhuang X, liu Y, Li J. Overexpression of long noncoding RNA HOXB-AS3 indicates an unfavorable prognosis and promotes tumorigenesis in epithelial ovarian cancer via Wnt/β-catenin signaling pathway. Biosci Rep 2019; 39(8): BSR20190906.
[http://dx.doi.org/10.1042/BSR20190906] [PMID: 31337688]
[98]
Huang HH, Chen FY, Chou WC, et al. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2019; 19(1): 617.
[http://dx.doi.org/10.1186/s12885-019-5822-y] [PMID: 31234830]
[99]
Papaioannou D, Petri A, Dovey OM, et al. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun 2019; 10(1): 5351.
[http://dx.doi.org/10.1038/s41467-019-13259-2] [PMID: 31767858]
[100]
Liu Z, Lu C, Hu H, et al. LINC00909 promotes tumor progression in human glioma through regulation of miR-194/MUC1-C axis. Biomed Pharmacother 2019; 116: 108965.
[http://dx.doi.org/10.1016/j.biopha.2019.108965] [PMID: 31132669]
[101]
Yang X, Wu G, Yang F, He L, Xie X, Li L, et al. Elevated LINC00909 promotes tumor progression of ovarian cancer via regulating the miR-23b-3p/MRC2 axis. Oxid Med Cell Longevity 2021; 2021
[102]
Ma L, Wang YY, Jiang P. LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun 2020; 527(3): 654-61.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.001] [PMID: 32423818]
[103]
Zheng Q, Wu F, Dai WY, et al. Aberrant expression of UCA1 in gastric cancer and its clinical significance. Clin Transl Oncol 2015; 17(8): 640-6.
[http://dx.doi.org/10.1007/s12094-015-1290-2] [PMID: 25903045]
[104]
Li JJ, Chen XF, Wang M, Zhang PP, Zhang F, Zhang JJ. Long non-coding RNA UCA1 promotes autophagy by targeting miR-96-5p in acute myeloid leukaemia. Clin Exp Pharmacol Physiol 2020; 47(5): 877-85.
[http://dx.doi.org/10.1111/1440-1681.13259] [PMID: 31953866]
[105]
Piya S, Kornblau SM, Ruvolo VR, et al. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia. Blood 2016; 128(9): 1260-9.
[http://dx.doi.org/10.1182/blood-2016-01-692244] [PMID: 27268264]
[106]
Meng W, Cui W, Zhao L, Chi W, Cao H, Wang B. Aberrant methylation and downregulation of ZNF667-AS1 and ZNF667 promote the malignant progression of laryngeal squamous cell carcinoma. J Biomed Sci 2019; 26(1): 13.
[http://dx.doi.org/10.1186/s12929-019-0506-0] [PMID: 30684967]
[107]
Wang N, Feng Y, Xie J, Han H, Dong Q, Wang W. Long non-coding RNA ZNF667-AS1 knockdown curbs liver metastasis in acute myeloid leukemia by regulating the microRNA-206/AKAP13 axis. Cancer Manag Res 2020; 12: 13285-300.
[http://dx.doi.org/10.2147/CMAR.S269258] [PMID: 33380835]
[108]
Jiang X, Yang Z, Li Z. Zinc finger antisense 1: A long noncoding RNA with complex roles in human cancers. Gene 2019; 688: 26-33.
[http://dx.doi.org/10.1016/j.gene.2018.11.075] [PMID: 30503395]
[109]
Su L, Kong H, Wu F, et al. Long non coding RNA zinc finger antisense 1 functions as an oncogene in acute promyelocytic leukemia cells. Oncol Lett 2019; 18(6): 6331-8.
[http://dx.doi.org/10.3892/ol.2019.11014] [PMID: 31807158]
[110]
Guo H, Wu L, Zhao P, Feng A. Overexpression of long non-coding RNA zinc finger antisense 1 in acute myeloid leukemia cell lines influences cell growth and apoptosis. Exp Ther Med 2017; 14(1): 647-51.
[http://dx.doi.org/10.3892/etm.2017.4535] [PMID: 28672980]
[111]
Wang WT, Chen TQ, Zeng ZC, et al. The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol 2020; 13(1): 78.
[http://dx.doi.org/10.1186/s13045-020-00909-y] [PMID: 32552847]
[112]
Gradia D, Mathias C, Coutinho R, Cavalli I, Ribeiro E, de Oliveira J. Long non-coding RNA TUG1 expression is associated with different subtypes in human breast cancer. Noncoding RNA 2017; 3(4): 26.
[http://dx.doi.org/10.3390/ncrna3040026] [PMID: 29657297]
[113]
Yang F, Li X, Zhang L, Cheng L, Li X. LncRNA TUG1 promoted viability and associated with gemcitabine resistant in pancreatic ductal adenocarcinoma. J Pharmacol Sci 2018; 137(2): 116-21.
[http://dx.doi.org/10.1016/j.jphs.2018.06.002] [PMID: 29960845]
[114]
Wang M, Hu H, Wang Y, et al. Long non-coding RNA TUG1 mediates 5-fluorouracil resistance by acting as a ceRNA of miR-197-3p in colorectal cancer. J Cancer 2019; 10(19): 4603-13.
[http://dx.doi.org/10.7150/jca.32065] [PMID: 31528224]
[115]
Xu K, Zhang L. Inhibition of TUG1/miRNA-299-3p axis represses pancreatic cancer malignant progression via suppression of the notch1 pathway. Dig Dis Sci 2020; 65(6): 1748-60.
[http://dx.doi.org/10.1007/s10620-019-05911-0] [PMID: 31655908]
[116]
Kuang D, Zhang X, Hua S, Dong W, Li Z. Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition. Exp Mol Pathol 2016; 101(2): 267-73.
[http://dx.doi.org/10.1016/j.yexmp.2016.09.008] [PMID: 27693324]
[117]
Zeng P, Chai Y, You C, et al. Correlation analysis of long non-coding RNA TUG1 with disease risk, clinical characteristics, treatment response, and survival profiles of adult Ph − Acute lymphoblastic leukemia. J Clin Lab Anal 2021; 35(8): e23583.
[http://dx.doi.org/10.1002/jcla.23583] [PMID: 34251066]
[118]
Qin J, Bao H, Li H. Correlation of long non-coding RNA taurine-upregulated gene 1 with disease conditions and prognosis, as well as its effect on cell activities in acute myeloid leukemia. Cancer Biomark 2018; 23(4): 569-77.
[http://dx.doi.org/10.3233/CBM-181834] [PMID: 30452403]
[119]
Luo W, Yu H, Zou X, Ni X, Wei J. Long non-coding RNA taurine-upregulated gene 1 correlates with unfavorable prognosis in patients with refractory or relapsed acute myeloid leukemia treated by purine analogue based chemotherapy regimens. Cancer Biomark 2018; 23(4): 485-94.
[http://dx.doi.org/10.3233/CBM-181405] [PMID: 30347595]
[120]
Li G, Zheng P, Wang H, Ai Y, Mao X. Long non-coding RNA TUG1 modulates proliferation, migration, and invasion of acute myeloid leukemia cells via regulating miR-370-3p/MAPK1/ERK. OncoTargets Ther 2019; 12: 10375-88.
[http://dx.doi.org/10.2147/OTT.S217795] [PMID: 31819520]
[121]
Zhang W, Liu Y, Zhang J, Zheng N. Long non-coding RNA taurine upregulated gene 1 targets miR-185 to regulate cell proliferation and glycolysis in acute myeloid leukemia cells in vitro. OncoTargets Ther 2020; 13: 7887-96.
[http://dx.doi.org/10.2147/OTT.S238189] [PMID: 32982274]
[122]
Wang X, Zhang L, Zhao F, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol 2018; 97(8): 1375-89.
[http://dx.doi.org/10.1007/s00277-018-3315-8] [PMID: 29654398]
[123]
Wang C, Li L, Li M, Wang W, Liu Y, Wang S. Silencing long non-coding RNA XIST suppresses drug resistance in acute myeloid leukemia through down-regulation of MYC by elevating microRNA-29a expression. Mol Med 2020; 26(1): 114.
[http://dx.doi.org/10.1186/s10020-020-00229-4] [PMID: 33228517]
[124]
Qiao HP, Gao WS, Huo JX, Yang ZS. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 2013; 14(2): 1077-82.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.1077] [PMID: 23621190]
[125]
Xue D, Zhou C, Lu H, Xu R, Xu X, He X. LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biol 2016; 37(12): 16187-97.
[http://dx.doi.org/10.1007/s13277-016-5429-8] [PMID: 27743383]
[126]
Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009; 28(2): 195-208.
[http://dx.doi.org/10.1038/onc.2008.373] [PMID: 18836484]
[127]
Zhong S, Li W, Chen Z, Xu J, Zhao J. miR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 2013; 531(1): 8-14.
[http://dx.doi.org/10.1016/j.gene.2013.08.062] [PMID: 23994196]
[128]
Gasic V, Stankovic B, Zukic B, et al. Expression pattern of long non-coding RNA growth arrest-specific 5 in the remission induction therapy in childhood acute lymphoblastic leukemia. J Med Biochem 2019; 38(3): 292-8.
[http://dx.doi.org/10.2478/jomb-2018-0038] [PMID: 31156339]
[129]
Wang S, Xu M, Sun Z, Yu X, Deng Y, Chang H. LINC01018 confers a novel tumor suppressor role in hepatocellular carcinoma through sponging microRNA-182-5p. Am J Physiol Gastrointest Liver Physiol 2019; 317(2): G116-26.
[http://dx.doi.org/10.1152/ajpgi.00005.2019] [PMID: 31021172]
[130]
Zhou H, Shi P, Jia X, Xue Q. Long non coding RNA LINC01018 inhibits the progression of acute myeloid leukemia by targeting miR 499a 5p to regulate PDCD4. Oncol Lett 2021; 22(1): 541.
[http://dx.doi.org/10.3892/ol.2021.12802] [PMID: 34079594]
[131]
Chen XD, Zhu MX, Wang SJ. Expression of long non-coding RNA MAGI2 AS3 in human gliomas and its prognostic significance. Eur Rev Med Pharmacol Sci 2019; 23(8): 3455-60.
[PMID: 31081100]
[132]
Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol 2020; 17(6): 784-93.
[http://dx.doi.org/10.1080/15476286.2020.1726637] [PMID: 32174258]
[133]
Stadler PF, Ed. Evolution of the long non-coding RNAs MALAT1 and MENβ/ε. Brazilian Symposium on Bioinformatics. Springer. 2010.
[http://dx.doi.org/10.1007/978-3-642-15060-9_1]
[134]
Liu H, Li A, Sun Z, Zhang J, Xu H. Long non-coding RNA NEAT1 promotes colorectal cancer progression by regulating miR-205-5p/VEGFA axis. Hum Cell 2020; 33(2): 386-96.
[http://dx.doi.org/10.1007/s13577-019-00301-0] [PMID: 32065361]
[135]
Zeng C, Xu Y, Xu L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 2014; 14(1): 693.
[http://dx.doi.org/10.1186/1471-2407-14-693] [PMID: 25245097]
[136]
Yao FY, Zhao C, Zhong FM, et al. m (6) A modification of lncRNA NEAT1 regulates chronic myelocytic leukemia progression via miR-766-5p/CDKN1A axis. Front Oncol 2021; 11: 679634.
[http://dx.doi.org/10.3389/fonc.2021.679634] [PMID: 34354942]
[137]
Duan MY, Li M, Tian H, Tang G, Yang YC, Peng NC. Down-regulation of lncRNA NEAT1 regulated by miR-194-5p/DNMT3A facilitates acute myeloid leukemia. Blood Cells Mol Dis 2020; 82: 102417.
[http://dx.doi.org/10.1016/j.bcmd.2020.102417] [PMID: 32179410]
[138]
Yao H, Sun P, Duan M, et al. microRNA-22 can regulate expression of the long non-coding RNA MEG3 in acute myeloid leukemia. Oncotarget 2017; 8(39): 65211-7.
[http://dx.doi.org/10.18632/oncotarget.18059] [PMID: 29029424]
[139]
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8(42): 73282-95.
[http://dx.doi.org/10.18632/oncotarget.19931] [PMID: 29069869]
[140]
Gao W. Long non-coding RNA MEG3 as a candidate prognostic factor for induction therapy response and survival profile in childhood acute lymphoblastic leukemia patients. Scand J Clin Lab Invest 2021; 81(3): 194-200.
[http://dx.doi.org/10.1080/00365513.2021.1881998] [PMID: 33600264]
[141]
Zhou X, Yuan P, Liu Q, Liu Z. LncRNA MEG3 regulates imatinib resistance in chronic myeloid leukemia via suppressing microRNA-21. Biomol Ther 2017; 25(5): 490-6.
[http://dx.doi.org/10.4062/biomolther.2016.162] [PMID: 28190319]
[142]
Park S-M, Park S-J, Kim H-J, Kwon O-H, Kang T-W, Sohn H-A, et al. A known expressed sequence tag, BM742401, is a potent lincRNA inhibiting cancer metastasis. Experim Mol Med 2013; 45(17): 31.
[143]
Wang LQ, Wong KY, Li ZH, Chim CS. Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. Oncotarget 2016; 7(50): 82400-10.
[http://dx.doi.org/10.18632/oncotarget.12252] [PMID: 27689399]
[144]
Zhao C, Wang Y, Tu F, et al. A prognostic autophagy-related long non-coding RNA (ARlncRNA) signature in acute myeloid leukemia (AML). Front Genet 2021; 12: 681867.
[http://dx.doi.org/10.3389/fgene.2021.681867] [PMID: 34276784]
[145]
Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science 2004; 304(5675): 1321-5.
[http://dx.doi.org/10.1126/science.1098119] [PMID: 15131266]
[146]
das Chagas PF, de Sousa GR, Kodama MH, et al. Ultraconserved long non-coding RNA uc.112 is highly expressed in childhood T versus B-cell acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2021; 43(1): 28-34.
[http://dx.doi.org/10.1016/j.htct.2019.12.003] [PMID: 32014474]
[147]
Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology 2012; 56(6): 2231-41.
[http://dx.doi.org/10.1002/hep.25895] [PMID: 22706893]
[148]
Nie F, Zhu Q, Xu T, et al. Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumour Biol 2014; 35(8): 7587-94.
[http://dx.doi.org/10.1007/s13277-014-2009-7] [PMID: 24793017]
[149]
Jiang Z, Yu Q, Luo X. Identification of long non-coding RNA MVIH as a prognostic marker and therapeutic target in acute myeloid leukemia. J Clin Lab Anal 2020; 34(4): e23113.
[http://dx.doi.org/10.1002/jcla.23113] [PMID: 31724217]
[150]
Shi J, Ding W, Lu H. Identification of long non-coding RNA SNHG family as promising prognostic biomarkers in acute Myeloid Leukemia. OncoTargets Ther 2020; 13: 8441-50.
[http://dx.doi.org/10.2147/OTT.S265853] [PMID: 32922034]
[151]
Chi JR, Yu ZH, Liu BW, et al. SNHG5 promotes breast cancer proliferation by sponging the miR-154-5p/PCNA axis. Mol Ther Nucleic Acids 2019; 17: 138-49.
[http://dx.doi.org/10.1016/j.omtn.2019.05.013] [PMID: 31255976]
[152]
Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: A new budding star in human cancers. Gene 2020; 749: 144724.
[http://dx.doi.org/10.1016/j.gene.2020.144724] [PMID: 32360843]
[153]
Wang D, Zeng T, Lin Z, et al. Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed Pharmacother 2020; 123: 109802.
[http://dx.doi.org/10.1016/j.biopha.2019.109802] [PMID: 31884339]
[154]
Li C, Gao Q, Wang M, Xin H. LncRNA SNHG1 contributes to the regulation of acute myeloid leukemia cell growth by modulating miR-489-3p/SOX12/Wnt/β-catenin signaling. J Cell Physiol 2021; 236(1): 653-63.
[http://dx.doi.org/10.1002/jcp.29892] [PMID: 32592199]
[155]
Chen L, Gong X, Huang M. YY1-activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK signaling pathway. Cancer Biother Radiopharm 2019; 34(9): 589-96.
[http://dx.doi.org/10.1089/cbr.2019.2779] [PMID: 31657621]
[156]
Tian M, Gong W, Guo J. Long noncoding RNA SNHG1 predicts poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open 2019; 8(10): bio.046417..
[http://dx.doi.org/10.1242/bio.046417] [PMID: 31615767]
[157]
Shen Q, Bae HJ, Eun JW, et al. MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Lett 2014; 344(2): 204-11.
[http://dx.doi.org/10.1016/j.canlet.2013.10.030] [PMID: 24189458]
[158]
Nikoonahad Lotfabadi N, Mohseni Kouchesfahani H, Sheikhha MH, Kalantar SM. In vitro transfection of anti-tumor miR-101 induces BIM, a pro-apoptotic protein, expression in acute myeloid leukemia (AML). EXCLI J 2017; 16: 1257-67.
[PMID: 29333128]
[159]
Xiao S, Zha Y, Zhu H. miR-621 May Suppress Cell Proliferation via Targeting lncRNA SNHG10 in Acute Myeloid Leukemia. Cancer Manag Res 2021; 13: 2117-23.
[http://dx.doi.org/10.2147/CMAR.S269528] [PMID: 33688254]
[160]
Guo Z, Zhang J, Fan L, et al. Long noncoding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) predicts poor prognosis and sorafenib resistance in hepatocellular carcinoma. Med Sci Monit 2019; 25: 2079-86.
[http://dx.doi.org/10.12659/MSM.915541] [PMID: 30893293]
[161]
Gong CY, Tang R, Nan W, Zhou KS, Zhang HH. Role of SNHG16 in human cancer. Clin Chim Acta 2020; 503: 175-80.
[http://dx.doi.org/10.1016/j.cca.2019.12.023] [PMID: 31901482]
[162]
Yang T, Jin X, Lan J, Wang W. Long non-coding RNA SNHG16 has Tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa-miR-124-3p. IUBMB Life 2019; 71(1): 134-42.
[http://dx.doi.org/10.1002/iub.1947] [PMID: 30380185]
[163]
Yang R, Ma D, Wu Y, Zhang Y, Zhang L. LncRNA SNHG16 Regulates the Progress of Acute Myeloid Leukemia Through miR183-5p–FOXO1 Axis. OncoTargets Ther 2020; 13: 12943-54.
[http://dx.doi.org/10.2147/OTT.S258684] [PMID: 33364784]
[164]
Shi M, Yang R, Lin J, et al. LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci 2021; 46(1): 4.
[http://dx.doi.org/10.1007/s12038-020-00127-1] [PMID: 33576342]
[165]
Hofmans M, Lammens T, Depreter B, et al. Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia. Sci Rep 2021; 11(1): 2801.
[http://dx.doi.org/10.1038/s41598-021-82509-5] [PMID: 33531590]
[166]
Gao C, Zhang J, Wang Q, Ren C. Overexpression of lncRNA NEAT1 mitigates multidrug resistance by inhibiting ABCG2 in leukemia. Oncol Lett 2016; 12(2): 1051-7.
[http://dx.doi.org/10.3892/ol.2016.4738] [PMID: 27446393]
[167]
Feng S, Liu N, Chen X, Liu Y, An J. Long non-coding RNA NEAT1/miR-338-3p axis impedes the progression of acute myeloid leukemia via regulating CREBRF. Cancer Cell Int 2020; 20(1): 112.
[http://dx.doi.org/10.1186/s12935-020-01182-2] [PMID: 32280304]
[168]
Pouyanrad S, Rahgozar S, Ghodousi ES. Dysregulation of miR-335-3p, targeted by NEAT1 and MALAT1 long non-coding RNAs, is associated with poor prognosis in childhood acute lymphoblastic leukemia. Gene 2019; 692: 35-43.
[http://dx.doi.org/10.1016/j.gene.2019.01.003] [PMID: 30639603]
[169]
El Hajj J, Nguyen E, Liu Q, et al. Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells. Mol Cancer 2018; 17(1): 85.
[http://dx.doi.org/10.1186/s12943-018-0835-8] [PMID: 29703210]
[170]
Sheng H, Zhang J, Ma Y, Zhang Y, Dai Y, Jiang R. lncRNA FBXL19-AS1 is a diagnosis biomarker for paediatric patients with acute myeloid leukemia. J Gene Med 2021; 23(3): e3317.
[http://dx.doi.org/10.1002/jgm.3317] [PMID: 33474753]
[171]
Tang P, Xie M, Wei Y, Xie X, Chen D, Jiang Z. A 10-long non-coding RNA-based expression signature as a potential biomarker for prognosis of acute myeloid leukemia. Med Sci Monit 2019; 25: 4999-5004.
[http://dx.doi.org/10.12659/MSM.917182] [PMID: 31278736]
[172]
Yin X, Huang S, Zhu R, Fan F, Sun C, Hu Y. Identification of long non-coding RNA competing interactions and biological pathways associated with prognosis in pediatric and adolescent cytogenetically normal acute myeloid leukemia. Cancer Cell Int 2018; 18(1): 122.
[http://dx.doi.org/10.1186/s12935-018-0621-0] [PMID: 30181715]
[173]
Feng Y, Shen Y, Chen H, et al. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics. Cancer Sci 2018; 109(2): 340-53.
[http://dx.doi.org/10.1111/cas.13465] [PMID: 29220122]
[174]
Wang Y, Li Y, Song HQ, Sun GW. Long non-coding RNA LINC00899 as a novel serum biomarker for diagnosis and prognosis prediction of acute myeloid leukemia. Eur Rev Med Pharmacol Sci 2018; 22(21): 7364-70.
[PMID: 30468482]
[175]
Cao L, Xiao PF, Tao YF, et al. Microarray profiling of bone marrow long non-coding RNA expression in Chinese pediatric acute myeloid leukemia patients. Oncol Rep 2016; 35(2): 757-70.
[http://dx.doi.org/10.3892/or.2015.4415] [PMID: 26573779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy