Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

HPV癌蛋白对肿瘤细胞碳水化合物和脂质代谢的影响

卷 24, 期 10, 2024

发表于: 26 January, 2024

页: [987 - 1004] 页: 18

弟呕挨: 10.2174/0115680096266981231215111109

价格: $65

conference banner
摘要

高危HPV感染占宫颈癌的99.7%,肛门癌的90%以上,头颈癌的50%,外阴癌的40%,以及一些阴道和阴茎癌的病例,约占全球癌症的5%。癌症的发展是一个复杂的、多步骤的过程,其特征是信号通路的失调和代谢途径的改变。大量研究表明,代谢重编程在宫颈癌、头颈癌、膀胱癌、前列腺癌等多种癌症的进展中起着关键作用,为癌细胞的快速增殖和迁移提供了物质和能量基础。肿瘤细胞的代谢重编程允许ATP的快速生成,有助于满足hpv相关癌细胞增殖的高能量需求。人乳头瘤病毒(HPV)与其相关癌症之间的相互作用已成为近年来研究的热点。HPV对细胞代谢的影响已成为一个新兴的研究课题。大量研究表明,HPV影响相关的代谢信号通路,导致细胞代谢改变。探索潜在的机制可能有助于发现hpv相关疾病的诊断和治疗的生物标志物。在本文中,我们介绍了HPV的分子结构及其复制过程,讨论了与HPV感染相关的疾病,描述了正常细胞的能量代谢,重点介绍了肿瘤细胞的代谢特征,并概述了作用于细胞代谢的潜在治疗靶点的最新进展。我们讨论了这些变化的潜在机制。本文旨在阐明人乳头瘤病毒(HPV)在重塑细胞代谢中的作用,以及代谢变化在相关疾病研究中的应用。靶向癌症代谢可能是支持传统癌症治疗的有效策略,因为代谢重编程对癌症的恶性转化至关重要。

关键词: 碳水化合物代谢,脂质代谢,宫颈癌,HPV,信号通路,癌蛋白。

图形摘要
[1]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Aydin, I.; Weber, S.; Snijder, B.; Samperio, V.P.; Kühbacher, A.; Becker, M.; Day, P.M.; Schiller, J.T.; Kann, M.; Pelkmans, L.; Helenius, A.; Schelhaas, M. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog., 2014, 10(5), e1004162.
[http://dx.doi.org/10.1371/journal.ppat.1004162] [PMID: 24874089]
[4]
Chen, C.C.; Li, B.; Millman, S.E.; Chen, C.; Li, X.; Morris, J.P., IV; Mayle, A.; Ho, Y.J.; Loizou, E.; Liu, H.; Qin, W.; Shah, H.; Violante, S.; Cross, J.R.; Lowe, S.W.; Zhang, L. Vitamin B6 addiction in acute myeloid leukemia. Cancer Cell, 2020, 37(1), 71-84.e7.
[http://dx.doi.org/10.1016/j.ccell.2019.12.002] [PMID: 31935373]
[5]
Sonnenschein, C.; Soto, A.M. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique. J. Biosci., 2013, 38(3), 651-663.
[http://dx.doi.org/10.1007/s12038-013-9335-6] [PMID: 23938395]
[6]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[7]
Lévy, P.; Bartosch, B. Metabolic reprogramming: A hallmark of viral oncogenesis. Oncogene, 2016, 35(32), 4155-4164.
[http://dx.doi.org/10.1038/onc.2015.479] [PMID: 26686092]
[8]
Jones, R.G.; Thompson, C.B. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev., 2009, 23(5), 537-548.
[http://dx.doi.org/10.1101/gad.1756509] [PMID: 19270154]
[9]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[10]
Xu, Y.; Miriyala, S.; Fang, F.; Bakthavatchalu, V.; Noel, T.; Schell, D.M.; Wang, C.; St Clair, W.H.; St Clair, D.K. Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect. Oncogene, 2015, 34(32), 4229-4237.
[http://dx.doi.org/10.1038/onc.2014.355] [PMID: 25362851]
[11]
Doherty, J.R.; Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest., 2013, 123(9), 3685-3692.
[http://dx.doi.org/10.1172/JCI69741] [PMID: 23999443]
[12]
Xia, C.; Li, S.; Long, T.; Chen, Z.; Chan, P.K.S.; Boon, S.S. Current updates on cancer-causing types of human papillomaviruses (HPVs) in East, Southeast, and South Asia. Cancers, 2021, 13(11), 2691.
[http://dx.doi.org/10.3390/cancers13112691] [PMID: 34070706]
[13]
Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human papillomaviruses; Epithelial tropisms, and the development of neoplasia. Viruses, 2015, 7(7), 3863-3890.
[http://dx.doi.org/10.3390/v7072802] [PMID: 26193301]
[14]
Dreer, M.; Blondzik, S.; Straub, E.; Iftner, T.; Stubenrauch, F. Contribution of HDAC3 to transcriptional repression by the human papillomavirus 31 E8^E2 protein. J. Gen. Virol., 2020, 101(7), 751-759.
[http://dx.doi.org/10.1099/jgv.0.001438] [PMID: 32421493]
[15]
Frattini, M.G.; Lim, H.B.; Laimins, L.A. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc. Natl. Acad. Sci., 1996, 93(7), 3062-3067.
[http://dx.doi.org/10.1073/pnas.93.7.3062] [PMID: 8610168]
[16]
Park, R.B.; Androphy, E.J. Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J. Virol., 2002, 76(22), 11359-11364.
[http://dx.doi.org/10.1128/JVI.76.22.11359-11364.2002] [PMID: 12388696]
[17]
Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology, 2013, 445(1-2), 80-98.
[http://dx.doi.org/10.1016/j.virol.2013.07.008] [PMID: 24016539]
[18]
Suprynowicz, F.A.; Krawczyk, E.; Hebert, J.D.; Sudarshan, S.R.; Simic, V.; Kamonjoh, C.M.; Schlegel, R. The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J. Virol., 2010, 84(20), 10619-10629.
[http://dx.doi.org/10.1128/JVI.00831-10] [PMID: 20686024]
[19]
Venuti, A.; Paolini, F.; Nasir, L.; Corteggio, A.; Roperto, S.; Campo, M.S.; Borzacchiello, G. Papillomavirus E5: The smallest oncoprotein with many functions. Mol. Cancer, 2011, 10(1), 140.
[http://dx.doi.org/10.1186/1476-4598-10-140] [PMID: 22078316]
[20]
Yeo-Teh, N.; Ito, Y.; Jha, S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis. Int. J. Mol. Sci., 2018, 19(6), 1706.
[http://dx.doi.org/10.3390/ijms19061706] [PMID: 29890655]
[21]
Buck, C.B.; Cheng, N.; Thompson, C.D.; Lowy, D.R.; Steven, A.C.; Schiller, J.T.; Trus, B.L. Arrangement of L2 within the papillomavirus capsid. J. Virol., 2008, 82(11), 5190-5197.
[http://dx.doi.org/10.1128/JVI.02726-07] [PMID: 18367526]
[22]
Yan, H.; Foo, S.S.; Chen, W.; Yoo, J.S.; Shin, W.J.; Wu, C.; Jung, J.U. Efficient inhibition of human papillomavirus infection by L2 minor capsid-derived lipopeptide. MBio, 2019, 10(4), e01834-19.
[http://dx.doi.org/10.1128/mBio.01834-19] [PMID: 31387913]
[23]
Shafti-Keramat, S.; Handisurya, A.; Kriehuber, E.; Meneguzzi, G.; Slupetzky, K.; Kirnbauer, R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J. Virol., 2003, 77(24), 13125-13135.
[http://dx.doi.org/10.1128/JVI.77.24.13125-13135.2003] [PMID: 14645569]
[24]
Stanley, M.A. Epithelial cell responses to infection with human papillomavirus. Clin. Microbiol. Rev., 2012, 25(2), 215-222.
[http://dx.doi.org/10.1128/CMR.05028-11] [PMID: 22491770]
[25]
Spoden, G.; Freitag, K.; Husmann, M.; Boller, K.; Sapp, M.; Lambert, C.; Florin, L. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs). PLoS One, 2008, 3(10), e3313.
[http://dx.doi.org/10.1371/journal.pone.0003313] [PMID: 18836553]
[26]
Mac, M.; Moody, C.A. Epigenetic regulation of the human papillomavirus life cycle. Pathogens, 2020, 9(6), 483.
[http://dx.doi.org/10.3390/pathogens9060483] [PMID: 32570816]
[27]
McLaughlin-Drubin, M.E.; Christensen, N.D.; Meyers, C. Propagation, infection, and neutralization of authentic HPV16 virus. Virology, 2004, 322(2), 213-219.
[http://dx.doi.org/10.1016/j.virol.2004.02.011] [PMID: 15110519]
[28]
Coupe, V.M.; González-Barreiro, L.; Gutiérrez-Berzal, J.; Melián-Bóveda, A.L.; López-Rodríguez, O.; Alba-Domínguez, J.; Alba-Losada, J. Transcriptional analysis of human papillomavirus type 16 in histological sections of cervical dysplasia by in situ hybridisation. J. Clin. Pathol., 2012, 65(2), 164-170.
[http://dx.doi.org/10.1136/jclinpath-2011-200330] [PMID: 22075186]
[29]
Rodríguez, A.C.; Schiffman, M.; Herrero, R.; Wacholder, S.; Hildesheim, A.; Castle, P.E.; Solomon, D.; Burk, R. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J. Natl. Cancer Inst., 2008, 100(7), 513-517.
[http://dx.doi.org/10.1093/jnci/djn044] [PMID: 18364507]
[30]
Vinokurova, S.; Wentzensen, N.; Kraus, I.; Klaes, R.; Driesch, C.; Melsheimer, P.; Kisseljov, F.; Dürst, M.; Schneider, A.; von Knebel, D.M. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res., 2008, 68(1), 307-313.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2754] [PMID: 18172324]
[31]
Li, W.; Tian, S.; Wang, P.; Zang, Y.; Chen, X.; Yao, Y.; Li, W. The characteristics of HPV integration in cervical intraepithelial cells. J. Cancer, 2019, 10(12), 2783-2787.
[http://dx.doi.org/10.7150/jca.31450] [PMID: 31258786]
[32]
Vojtechova, Z.; Sabol, I.; Salakova, M.; Turek, L.; Grega, M.; Smahelova, J.; Vencalek, O.; Lukesova, E.; Klozar, J.; Tachezy, R. Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients’ prognosis. Int. J. Cancer, 2016, 138(2), 386-395.
[http://dx.doi.org/10.1002/ijc.29712] [PMID: 26239888]
[33]
McBride, A.A.; Warburton, A.; Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog., 2017, 13(4), e1006211.
[http://dx.doi.org/10.1371/journal.ppat.1006211] [PMID: 28384274]
[34]
Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci., 2006, 110(5), 525-541.
[http://dx.doi.org/10.1042/CS20050369] [PMID: 16597322]
[35]
Hiller, T.; Poppelreuther, S.; Stubenrauch, F.; Iftner, T. Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol. Biomarkers Prev., 2006, 15(7), 1262-1267.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0778] [PMID: 16835321]
[36]
Zhang, B.; Chen, W.; Roman, A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc. Natl. Acad. Sci., 2006, 103(2), 437-442.
[http://dx.doi.org/10.1073/pnas.0510012103] [PMID: 16381817]
[37]
Gray, E.; Pett, M.R.; Ward, D.; Winder, D.M.; Stanley, M.A.; Roberts, I.; Scarpini, C.G.; Coleman, N. In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res., 2010, 70(10), 4081-4091.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3335] [PMID: 20442284]
[38]
de Villiers, E.M. Cross-roads in the classification of papillomaviruses. Virology, 2013, 445(1-2), 2-10.
[http://dx.doi.org/10.1016/j.virol.2013.04.023] [PMID: 23683837]
[39]
Screening for cervical cancer. CA Cancer J. Clin., 2020, 70(5), 347-348.
[http://dx.doi.org/10.3322/caac.21629] [PMID: 33460047]
[40]
Horvath, J.D.C.; Kops, N.L.; Caierão, J.; Bessel, M.; Hohenberger, G.; Wendland, E.M. Human papillomavirus knowledge, beliefs, and behaviors: A questionnaire adaptation. Eur. J. Obstet. Gynecol. Reprod. Biol., 2018, 230, 103-108.
[http://dx.doi.org/10.1016/j.ejogrb.2018.09.023] [PMID: 30248535]
[41]
Cubie, H.A. Diseases associated with human papillomavirus infection. Virology, 2013, 445(1-2), 21-34.
[http://dx.doi.org/10.1016/j.virol.2013.06.007] [PMID: 23932731]
[42]
Sniadecki, M.; Swierzko, A.; Dabkowski, M.; Orlowska-Volk, M.; Wycinka, E.; Klasa-Mazurkiewicz, D.; Milewska, A.; Poniewierza, P.; Liro, M.; Wydra, D. New therapeutic approaches in the treatment of node-positive cervical cancer patients based on molecular targets: A systematic review. Ginekol. Pol., 2019, 90(6), 336-345.
[http://dx.doi.org/10.5603/GP.2019.0062] [PMID: 31276186]
[43]
Torous, V.F.; Oliva, E. On the new (version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer—A commentary. Cancer Cytopathol., 2021, 129(8), 581-582.
[http://dx.doi.org/10.1002/cncy.22486] [PMID: 34161669]
[44]
Chatterjee, K.; Mukherjee, S.; Vanmanen, J.; Banerjee, P.; Fata, J.E. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an HPV E6-positive cervical cancer model: An in vitro and in vivo analysis. Front. Oncol., 2019, 9, 352.
[http://dx.doi.org/10.3389/fonc.2019.00352] [PMID: 31143704]
[45]
Hong, C.M.; Park, S.H.; Chong, G.O.; Lee, Y.H.; Jeong, J.H.; Lee, S.W.; Lee, J.; Ahn, B.C.; Jeong, S.Y. Enhancing prognosis prediction using pre-treatment nodal SUVmax and HPV status in cervical squamous cell carcinoma. Cancer Imaging, 2019, 19(1), 43.
[http://dx.doi.org/10.1186/s40644-019-0226-4] [PMID: 31234933]
[46]
Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.F.; Meijer, C.J.L.M. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med., 2003, 348(6), 518-527.
[http://dx.doi.org/10.1056/NEJMoa021641] [PMID: 12571259]
[47]
de Sanjosé, S.; Brotons, M.; Pavón, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, 47, 2-13.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.08.015] [PMID: 28964706]
[48]
Monsonego, J.; Cox, J.T.; Behrens, C.; Sandri, M.; Franco, E.L.; Yap, P.S.; Huh, W. Prevalence of high-risk human papilloma virus genotypes and associated risk of cervical precancerous lesions in a large U.S. screening population: Data from the ATHENA trial. Gynecol. Oncol., 2015, 137(1), 47-54.
[http://dx.doi.org/10.1016/j.ygyno.2015.01.551] [PMID: 25667973]
[49]
Parkin, D.M.; Bray, F. Chapter 2: The burden of HPV-related cancers. Vaccine, 2006, 24(S3), S11-S25, 11-25.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.111] [PMID: 16949997]
[50]
Ndiaye, C.; Mena, M.; Alemany, L.; Arbyn, M.; Castellsagué, X.; Laporte, L.; Bosch, F.X.; de Sanjosé, S.; Trottier, H. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: A systematic review and meta-analysis. Lancet Oncol., 2014, 15(12), 1319-1331.
[http://dx.doi.org/10.1016/S1470-2045(14)70471-1] [PMID: 25439690]
[51]
Bouwes Bavinck, J.N.; Feltkamp, M.C.W.; Green, A.C.; Fiocco, M.; Euvrard, S.; Harwood, C.A.; Nasir, S.; Thomson, J.; Proby, C.M.; Naldi, L.; Diphoorn, J.C.D.; Venturuzzo, A.; Tessari, G.; Nindl, I.; Sampogna, F.; Abeni, D.; Neale, R.E.; Goeman, J.J.; Quint, K.D.; Halk, A.B.; Sneek, C.; Genders, R.E.; de Koning, M.N.C.; Quint, W.G.V.; Wieland, U.; Weissenborn, S.; Waterboer, T.; Pawlita, M.; Pfister, H. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: A multicenter, prospective cohort study. Am. J. Transplant., 2018, 18(5), 1220-1230.
[http://dx.doi.org/10.1111/ajt.14537] [PMID: 29024374]
[52]
Hasche, D.; Vinzón, S.E.; Rösl, F. Cutaneous papillomaviruses and non-melanoma skin cancer: Causal agents or innocent bystanders? Front. Microbiol., 2018, 9, 874.
[http://dx.doi.org/10.3389/fmicb.2018.00874] [PMID: 29770129]
[53]
Rollison, D.E.; Viarisio, D.; Amorrortu, R.P.; Gheit, T.; Tommasino, M.; Sullivan, C.S. An emerging issue in oncogenic virology: The role of beta human papillomavirus types in the development of cutaneous squamous cell carcinoma. J. Virol., 2019, 93(7), e01003-18.
[http://dx.doi.org/10.1128/JVI.01003-18] [PMID: 30700603]
[54]
Handisurya, A.; Schellenbacher, C.; Kirnbauer, R. Diseases caused by human papillomaviruses (HPV). J. Dtsch. Dermatol. Ges., 2009, 7(5), 453-466.
[PMID: 19302229]
[55]
Wangu, Z.; Hsu, K.K. Impact of HPV vaccination on anogenital warts and respiratory papillomatosis. Hum. Vaccin. Immunother., 2016, 12(6), 1357-1362.
[http://dx.doi.org/10.1080/21645515.2016.1172754] [PMID: 27217191]
[56]
Sarbu, M.I.; Sarbu, I.F.; Tampa, M.; Benea, V.; Nicolae, I.; Matei, C.; Poteca, T.; Georgescu, S.R. Buschke-Löwenstein tumor of the vulva in a patient with a history of squamous cell carcinoma of the cervix. BMC Infect. Dis., 2014, 14(S7), P11.
[http://dx.doi.org/10.1186/1471-2334-14-S7-P11]
[57]
Miranda, P.M.; Silva, N.N.T.; Pitol, B.C.V.; Silva, I.D.C.G.; Lima-Filho, J.L.; Carvalho, R.F.; Stocco, R.C.; Beçak, W.; Lima, A.A. Persistence or clearance of human papillomavirus infections in women in Ouro Preto, Brazil. BioMed Res. Int., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/578276] [PMID: 24298551]
[58]
Maehama, T.; Patzelt, A.; Lengert, M.; Hutter, K.J.; Kanazawa, K.; Zur Hausen, H.; Rösl, F. Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int. J. Cancer, 1998, 76(5), 639-646.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980529)76:5<639::AID-IJC5>3.0.CO;2-R] [PMID: 9610719]
[59]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[60]
Lu, J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev., 2019, 38(1-2), 157-164.
[http://dx.doi.org/10.1007/s10555-019-09794-5] [PMID: 30997670]
[61]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[62]
Schurr, A.; West, C.A.; Rigor, B.M. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 1988, 240(4857), 1326-1328.
[http://dx.doi.org/10.1126/science.3375817] [PMID: 3375817]
[63]
Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 2011, 11(5), 325-337.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[64]
Metallo, C.M.; Gameiro, P.A.; Bell, E.L.; Mattaini, K.R.; Yang, J.; Hiller, K.; Jewell, C.M.; Johnson, Z.R.; Irvine, D.J.; Guarente, L.; Kelleher, J.K.; Vander Heiden, M.G.; Iliopoulos, O.; Stephanopoulos, G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 2012, 481(7381), 380-384.
[http://dx.doi.org/10.1038/nature10602] [PMID: 22101433]
[65]
Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[66]
Jones, W.; Bianchi, K. Aerobic glycolysis: Beyond proliferation. Front. Immunol., 2015, 6, 227.
[http://dx.doi.org/10.3389/fimmu.2015.00227] [PMID: 26029212]
[67]
Woods, M.W.; duBuy, H.G. Cytoplasmic diseases and cancer. Science, 1945, 102(2658), 591-593.
[http://dx.doi.org/10.1126/science.102.2658.591]
[68]
Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Marín-Hernández, A.; Saavedra, E. Energy metabolism in tumor cells. FEBS J., 2007, 274(6), 1393-1418.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05686.x] [PMID: 17302740]
[69]
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
[http://dx.doi.org/10.1016/j.ccr.2006.04.023] [PMID: 16766262]
[70]
Gottschalk, S.; Anderson, N.; Hainz, C.; Eckhardt, S.G.; Serkova, N.J. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin. Cancer Res., 2004, 10(19), 6661-6668.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0039] [PMID: 15475456]
[71]
Zhan, C.; Yan, L.; Wang, L.; Ma, J.; Jiang, W.; Zhang, Y.; Shi, Y.; Wang, Q. Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS One, 2015, 10(3), e0118663.
[http://dx.doi.org/10.1371/journal.pone.0118663] [PMID: 25738776]
[72]
Ge, T.; Yang, J.; Zhou, S.; Wang, Y.; Li, Y.; Tong, X. The role of the pentose phosphate pathway in diabetes and cancer. Front. Endocrinol., 2020, 11, 365.
[http://dx.doi.org/10.3389/fendo.2020.00365] [PMID: 32582032]
[73]
Burns, J.; Manda, G. Metabolic pathways of the warburg effect in health and disease: Perspectives of choice, chain or chance. Int. J. Mol. Sci., 2017, 18(12), 2755.
[http://dx.doi.org/10.3390/ijms18122755] [PMID: 29257069]
[74]
Redel, B.K.; Brown, A.N.; Spate, L.D.; Whitworth, K.M.; Green, J.A.; Prather, R.S. Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol. Reprod. Dev., 2012, 79(4), 262-271.
[http://dx.doi.org/10.1002/mrd.22017] [PMID: 22213464]
[75]
Hatzivassiliou, G.; Zhao, F.; Bauer, D.E.; Andreadis, C.; Shaw, A.N.; Dhanak, D.; Hingorani, S.R.; Tuveson, D.A.; Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005, 8(4), 311-321.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[76]
Pavlides, S.; Whitaker-Menezes, D.; Castello-Cros, R.; Flomenberg, N.; Witkiewicz, A.K.; Frank, P.G.; Casimiro, M.C.; Wang, C.; Fortina, P.; Addya, S.; Pestell, R.G.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8(23), 3984-4001.
[http://dx.doi.org/10.4161/cc.8.23.10238] [PMID: 19923890]
[77]
Reinfeld, B.I.; Rathmell, W.K.; Kim, T.K.; Rathmell, J.C. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell. Mol. Immunol., 2022, 19(1), 46-58.
[http://dx.doi.org/10.1038/s41423-021-00727-3] [PMID: 34239083]
[78]
Hirpara, J.; Eu, J.Q.; Tan, J.K.M.; Wong, A.L.; Clement, M.V.; Kong, L.R.; Ohi, N.; Tsunoda, T.; Qu, J.; Goh, B.C.; Pervaiz, S. Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biol., 2019, 25, 101076.
[http://dx.doi.org/10.1016/j.redox.2018.101076] [PMID: 30642723]
[79]
Boese, A.C.; Kang, S. Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biol., 2021, 42, 101870.
[http://dx.doi.org/10.1016/j.redox.2021.101870] [PMID: 33509708]
[80]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[81]
Seyfried, T.N.; Mukherjee, P. Targeting energy metabolism in brain cancer: Review and hypothesis. Nutr. Metab., 2005, 2(1), 30.
[http://dx.doi.org/10.1186/1743-7075-2-30] [PMID: 16242042]
[82]
Rattan, R.; Giri, S.; Singh, A.K.; Singh, I. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem., 2005, 280(47), 39582-39593.
[http://dx.doi.org/10.1074/jbc.M507443200] [PMID: 16176927]
[83]
Swinnen, J.V.; Beckers, A.; Brusselmans, K.; Organe, S.; Segers, J.; Timmermans, L.; Vanderhoydonc, F.; Deboel, L.; Derua, R.; Waelkens, E.; De Schrijver, E.; Van de Sande, T.; Noël, A.; Foufelle, F.; Verhoeven, G. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res., 2005, 65(6), 2441-2448.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3025] [PMID: 15781660]
[84]
Munir, R.; Lisec, J.; Swinnen, J.V.; Zaidi, N. Lipid metabolism in cancer cells under metabolic stress. Br. J. Cancer, 2019, 120(12), 1090-1098.
[http://dx.doi.org/10.1038/s41416-019-0451-4] [PMID: 31092908]
[85]
Igal, R.A. Stearoyl-CoA desaturase-1: A novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis, 2010, 31(9), 1509-1515.
[http://dx.doi.org/10.1093/carcin/bgq131] [PMID: 20595235]
[86]
Young, R.M.; Ackerman, D.; Quinn, Z.L.; Mancuso, A.; Gruber, M.; Liu, L.; Giannoukos, D.N.; Bobrovnikova-Marjon, E.; Diehl, J.A.; Keith, B.; Simon, M.C. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev., 2013, 27(10), 1115-1131.
[http://dx.doi.org/10.1101/gad.198630.112] [PMID: 23699409]
[87]
Krycer, J.R.; Sharpe, L.J.; Luu, W.; Brown, A.J. The Akt–SREBP nexus: Cell signaling meets lipid metabolism. Trends Endocrinol. Metab., 2010, 21(5), 268-276.
[http://dx.doi.org/10.1016/j.tem.2010.01.001] [PMID: 20117946]
[88]
Shao, W.; Espenshade, P.J. Expanding roles for SREBP in metabolism. Cell Metab., 2012, 16(4), 414-419.
[http://dx.doi.org/10.1016/j.cmet.2012.09.002] [PMID: 23000402]
[89]
Mashima, T.; Seimiya, H.; Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer, 2009, 100(9), 1369-1372.
[http://dx.doi.org/10.1038/sj.bjc.6605007] [PMID: 19352381]
[90]
Yan, S.; Cui, S.; Ke, K.; Zhao, B.; Liu, X.; Yue, S.; Wang, P. Hyperspectral stimulated raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. Anal. Chem., 2018, 90(11), 6362-6366.
[http://dx.doi.org/10.1021/acs.analchem.8b01312] [PMID: 29757615]
[91]
Kuhajda, F.P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition, 2000, 16(3), 202-208.
[http://dx.doi.org/10.1016/S0899-9007(99)00266-X] [PMID: 10705076]
[92]
Joyce, J.G.; Tung, J.S.; Przysiecki, C.T.; Cook, J.C.; Lehman, E.D.; Sands, J.A.; Jansen, K.U.; Keller, P.M. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J. Biol. Chem., 1999, 274(9), 5810-5822.
[http://dx.doi.org/10.1074/jbc.274.9.5810] [PMID: 10026203]
[93]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[94]
Sounni, N.E.; Cimino, J.; Blacher, S.; Primac, I.; Truong, A.; Mazzucchelli, G.; Paye, A.; Calligaris, D.; Debois, D.; De Tullio, P.; Mari, B.; De Pauw, E.; Noel, A. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab., 2014, 20(2), 280-294.
[http://dx.doi.org/10.1016/j.cmet.2014.05.022] [PMID: 25017943]
[95]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[96]
Münger, K.; Howley, P.M. Human papillomavirus immortalization and transformation functions. Virus Res., 2002, 89(2), 213-228.
[http://dx.doi.org/10.1016/S0168-1702(02)00190-9] [PMID: 12445661]
[97]
Han, J.; Zhang, L.; Guo, H.; Wysham, W.Z.; Roque, D.R.; Willson, A.K.; Sheng, X.; Zhou, C.; Bae-Jump, V.L. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol. Oncol., 2015, 138(3), 668-675.
[http://dx.doi.org/10.1016/j.ygyno.2015.06.036] [PMID: 26135947]
[98]
Song, K.; Li, M.; Xu, X.; Xuan, L.; Huang, G.; Liu, Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol. Lett., 2016, 12(1), 334-342.
[http://dx.doi.org/10.3892/ol.2016.4600] [PMID: 27347147]
[99]
Mazurek, S.; Boschek, C.B.; Hugo, F.; Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol., 2005, 15(4), 300-308.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.009] [PMID: 15908230]
[100]
Yuan, Y.; Cai, X.; Shen, F.; Ma, F. HPV post-infection microenvironment and cervical cancer. Cancer Lett., 2021, 497, 243-254.
[http://dx.doi.org/10.1016/j.canlet.2020.10.034] [PMID: 33122098]
[101]
Ilhan, Z.E.; Łaniewski, P.; Thomas, N.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine, 2019, 44, 675-690.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.028] [PMID: 31027917]
[102]
Sitarz, K.; Czamara, K.; Bialecka, J.; Klimek, M.; Zawilinska, B.; Szostek, S.; Kaczor, A. HPV infection significantly accelerates glycogen metabolism in cervical cells with large nuclei: Raman microscopic study with subcellular resolution. Int. J. Mol. Sci., 2020, 21(8), 2667.
[http://dx.doi.org/10.3390/ijms21082667] [PMID: 32290479]
[103]
Castro-Muñoz, L.J.; Manzo-Merino, J.; Muñoz-Bello, J.O.; Olmedo-Nieva, L.; Cedro-Tanda, A.; Alfaro-Ruiz, L.A.; Hidalgo-Miranda, A.; Madrid-Marina, V.; Lizano, M. The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response. Sci. Rep., 2019, 9(1), 13620.
[http://dx.doi.org/10.1038/s41598-019-49886-4] [PMID: 31541186]
[104]
He, M.; Jin, Q.; Chen, C.; Liu, Y.; Ye, X.; Jiang, Y.; Ji, F.; Qian, H.; Gan, D.; Yue, S.; Zhu, W.; Chen, T. The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene, 2019, 38(28), 5551-5565.
[http://dx.doi.org/10.1038/s41388-019-0817-3] [PMID: 30967627]
[105]
Lee, I.H.; Sohn, M.; Lim, H.J.; Yoon, S.; Oh, H.; Shin, S.; Shin, J.H.; Oh, S-H.; Kim, J.; Lee, D.K.; Noh, D.Y.; Bae, D.S.; Seong, J.K.; Bae, Y.S. Ahnak functions as a tumor suppressor via modulation of TGFβ/Smad signaling pathway. Oncogene, 2014, 33(38), 4675-4684.
[http://dx.doi.org/10.1038/onc.2014.69] [PMID: 24662814]
[106]
Cruz-Gregorio, A.; Manzo-Merino, J.; Gonzaléz-García, M.C.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Valverde, M.; Rojas, E.; Rodríguez-Sastre, M.A.; García-Cuellar, C.M.; Lizano, M. Human papillomavirus types 16 and 18 early-expressed proteins differentially modulate the cellular redox state and DNA damage. Int. J. Biol. Sci., 2018, 14(1), 21-35.
[http://dx.doi.org/10.7150/ijbs.21547] [PMID: 29483822]
[107]
Wang, T.; Liu, H.; Lian, G.; Zhang, S-Y.; Wang, X.; Jiang, C. HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/3102737]
[108]
Jung, S.N.; Yang, W.K.; Kim, J.; Kim, H.S.; Kim, E.J.; Yun, H.; Park, H.; Kim, S.S.; Choe, W.; Kang, I.; Ha, J. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis, 2008, 29(4), 713-721.
[http://dx.doi.org/10.1093/carcin/bgn032] [PMID: 18258605]
[109]
Lai, D.; Tan, C.L.; Gunaratne, J.; Quek, L.S.; Nei, W.; Thierry, F.; Bellanger, S. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism. PLoS One, 2013, 8(9), e75625.
[http://dx.doi.org/10.1371/journal.pone.0075625] [PMID: 24086592]
[110]
Ilahi, N.E.; Bhatti, A. Impact of HPV E5 on viral life cycle via EGFR signaling. Microb. Pathog., 2020, 139, 103923.
[http://dx.doi.org/10.1016/j.micpath.2019.103923] [PMID: 31836496]
[111]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[112]
Valle-Mendiola, A.; Soto-Cruz, I. Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. Cancers, 2020, 12(1), 124.
[http://dx.doi.org/10.3390/cancers12010124] [PMID: 31947710]
[113]
Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep., 20189, 19(2), 783-791.
[http://dx.doi.org/10.3892/mmr.2018.9713] [PMID: 30535469]
[114]
Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38(13), 2223-2240.
[http://dx.doi.org/10.1038/s41388-018-0582-8] [PMID: 30487597]
[115]
Blair, D.; Dufort, F.J.; Chiles, T.C. Protein kinase Cβ is critical for the metabolic switch to glycolysis following B-cell antigen receptor engagement. Biochem. J., 2012, 448(1), 165-169.
[http://dx.doi.org/10.1042/BJ20121225] [PMID: 22994860]
[116]
Xu, Q.; Zhang, Q.; Ishida, Y.; Hajjar, S.; Tang, X.; Shi, H.; Dang, C.V.; Le, A.D. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. Oncotarget, 2017, 8(6), 9557-9571.
[http://dx.doi.org/10.18632/oncotarget.13771] [PMID: 27926487]
[117]
Martínez-Ramírez, I.; Carrillo-García, A.; Contreras-Paredes, A.; Ortiz-Sánchez, E.; Cruz-Gregorio, A.; Lizano, M. Regulation of cellular metabolism by high-risk human papillomaviruses. Int. J. Mol. Sci., 2018, 19(7), 1839.
[http://dx.doi.org/10.3390/ijms19071839] [PMID: 29932118]
[118]
Chandel, V.; Raj, S.; Kumar, P.; Gupta, S.; Dhasmana, A.; Kesari, K.K.; Ruokolainen, J.; Mehra, P.; Das, B.C.; Kamal, M.A.; Kumar, D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci., 2020, 258, 118236.
[http://dx.doi.org/10.1016/j.lfs.2020.118236] [PMID: 32795537]
[119]
Jang, M.; Rhee, J.; Jang, D.H.; Kim, S.S. Gene expression profiles are altered in human papillomavirus-16 E6 D25E-expressing cell lines. Virol. J., 2011, 8(1), 453.
[http://dx.doi.org/10.1186/1743-422X-8-453] [PMID: 21943319]
[120]
Thomas, M.C.; Chiang, C.M. E6 oncoprotein represses p53-dependent gene activation in vitro inhibition of protein acetylation independently of inducing p53 degradation. Mol. Cell, 2005, 17(2), 251-264.
[http://dx.doi.org/10.1016/j.molcel.2004.12.016] [PMID: 15664194]
[121]
Green, D.R.; Chipuk, J.E. p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126(1), 30-32.
[http://dx.doi.org/10.1016/j.cell.2006.06.032] [PMID: 16839873]
[122]
Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 2004, 64(7), 2627-2633.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0846] [PMID: 15059920]
[123]
Choy, M.K.; Movassagh, M.; Bennett, M.R.; Foo, R.S.Y. PKB/Akt activation inhibits p53-mediated HIF1A degradation that is independent of MDM2. J. Cell. Physiol., 2010, 222(3), 635-639.
[http://dx.doi.org/10.1002/jcp.21980] [PMID: 19950214]
[124]
Leiprecht, N.; Munoz, C.; Alesutan, I.; Siraskar, G.; Sopjani, M.; Föller, M.; Stubenrauch, F.; Iftner, T.; Lang, F. Regulation of Na+-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein. Biochem. Biophys. Res. Commun., 2011, 404(2), 695-700.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.044] [PMID: 21156162]
[125]
Ganapathy, V.; Thangaraju, M.; Prasad, P.D. Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. Pharmacol. Ther., 2009, 121(1), 29-40.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.005] [PMID: 18992769]
[126]
Gonzalez-Menendez, P.; Hevia, D.; Mayo, J.C.; Sainz, R.M. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int. J. Cancer, 2018, 142(12), 2414-2424.
[http://dx.doi.org/10.1002/ijc.31165] [PMID: 29159872]
[127]
Medina, R.A.; Owen, G. Glucose transporters: Expression, regulation and cancer. Biol. Res., 2002, 35(1), 9-26.
[http://dx.doi.org/10.4067/S0716-97602002000100004] [PMID: 12125211]
[128]
Weihua, Z.; Tsan, R.; Huang, W.C.; Wu, Q.; Chiu, C.H.; Fidler, I.J.; Hung, M.C. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell, 2008, 13(5), 385-393.
[http://dx.doi.org/10.1016/j.ccr.2008.03.015] [PMID: 18455122]
[129]
Suzuki, S.; Tanaka, T.; Poyurovsky, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S.; Lokshin, M.; Hosokawa, H.; Nakayama, T.; Suzuki, Y.; Sugano, S.; Sato, E.; Nagao, T.; Yokote, K.; Tatsuno, I.; Prives, C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci., 2010, 107(16), 7461-7466.
[http://dx.doi.org/10.1073/pnas.1002459107] [PMID: 20351271]
[130]
Plaitakis, A.; Kalef-Ezra, E.; Kotzamani, D.; Zaganas, I.; Spanaki, C. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology, 2017, 6(4), 11.
[http://dx.doi.org/10.3390/biology6010011] [PMID: 28208702]
[131]
Liu, Y.; Murray-Stewart, T.; Casero, R.A., Jr; Kagiampakis, I.; Jin, L.; Zhang, J.; Wang, H.; Che, Q.; Tong, H.; Ke, J.; Jiang, F.; Wang, F.; Wan, X. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth. Int. J. Oncol., 2017, 50(6), 2011-2023.
[http://dx.doi.org/10.3892/ijo.2017.3979] [PMID: 28498475]
[132]
Rodolico, V.; Arancio, W.; Amato, M.C.; Aragona, F.; Cappello, F.; Di Fede, O.; Pannone, G.; Campisi, G. Hypoxia inducible factor-1 alpha expression is increased in infected positive HPV16 DNA oral squamous cell carcinoma and positively associated with HPV16 E7 oncoprotein. Infect. Agent. Cancer, 2011, 6(1), 18.
[http://dx.doi.org/10.1186/1750-9378-6-18] [PMID: 22032288]
[133]
Veldman, T.; Liu, X.; Yuan, H.; Schlegel, R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl. Acad. Sci., 2003, 100(14), 8211-8216.
[http://dx.doi.org/10.1073/pnas.1435900100] [PMID: 12821782]
[134]
Spangle, J.M.; Münger, K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol., 2010, 84(18), 9398-9407.
[http://dx.doi.org/10.1128/JVI.00974-10] [PMID: 20631133]
[135]
Semenza, G.L. HIF-1: Upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev., 2010, 20(1), 51-56.
[http://dx.doi.org/10.1016/j.gde.2009.10.009] [PMID: 19942427]
[136]
Semenza, G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010, 29(5), 625-634.
[http://dx.doi.org/10.1038/onc.2009.441] [PMID: 19946328]
[137]
Sarbassov, D.D.; Ali, S.M.; Sengupta, S.; Sheen, J.H.; Hsu, P.P.; Bagley, A.F.; Markhard, A.L.; Sabatini, D.M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell, 2006, 22(2), 159-168.
[http://dx.doi.org/10.1016/j.molcel.2006.03.029] [PMID: 16603397]
[138]
Wong, N.; Ojo, D.; Yan, J.; Tang, D. PKM2 contributes to cancer metabolism. Cancer Lett., 2015, 356(2), 184-191.
[http://dx.doi.org/10.1016/j.canlet.2014.01.031] [PMID: 24508027]
[139]
Menges, C.W.; Baglia, L.A.; Lapoint, R.; McCance, D.J. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res., 2006, 66(11), 5555-5559.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0499] [PMID: 16740689]
[140]
Zwerschke, W.; Mazurek, S.; Massimi, P.; Banks, L.; Eigenbrodt, E.; Jansen-Dürr, P. Modulation of type M 2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc. Natl. Acad. Sci., 1999, 96(4), 1291-1296.
[http://dx.doi.org/10.1073/pnas.96.4.1291] [PMID: 9990017]
[141]
Zwerschke, W.; Mannhardt, B.; Massimi, P.; Nauenburg, S.; Pim, D.; Nickel, W.; Banks, L.; Reuser, A.J.; Jansen-Dürr, P. Allosteric activation of acid α-glucosidase by the human papillomavirus E7 protein. J. Biol. Chem., 2000, 275(13), 9534-9541.
[http://dx.doi.org/10.1074/jbc.275.13.9534] [PMID: 10734102]
[142]
Kirschberg, M.; Heuser, S.; Marcuzzi, G.P.; Hufbauer, M.; Seeger, J.M.; Đukić, A.; Tomaić, V.; Majewski, S.; Wagner, S.; Wittekindt, C.; Würdemann, N.; Klussmann, J.P.; Quaas, A.; Kashkar, H.; Akgül, B. ATP synthase modulation leads to an increase of spare respiratory capacity in HPV associated cancers. Sci. Rep., 2020, 10(1), 17339.
[http://dx.doi.org/10.1038/s41598-020-74311-6] [PMID: 33060693]
[143]
Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452(7184), 230-233.
[http://dx.doi.org/10.1038/nature06734] [PMID: 18337823]
[144]
Zeng, Q.; Chen, J.; Li, Y.; Werle, K.D.; Zhao, R-X.; Quan, C-S.; Wang, Y-S.; Zhai, Y-X.; Wang, J-W.; Youssef, M.; Cui, R.; Liang, J.; Genovese, N.; Chow, L.T.; Li, Y-L.; Xu, Z-X. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene, 2017, 36(9), 1245-1255.
[http://dx.doi.org/10.1038/onc.2016.290] [PMID: 27546620]
[145]
Zhuo, B.; Li, Y.; Li, Z.; Qin, H.; Sun, Q.; Zhang, F.; Shen, Y.; Shi, Y.; Wang, R. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. Biochem. Biophys. Res. Commun., 2015, 464(2), 401-406.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.092] [PMID: 26116768]
[146]
Hu, C.; Liu, T.; Han, C.; Xuan, Y.; Jiang, D.; Sun, Y.; Zhang, X.; Zhang, W.; Xu, Y.; Liu, Y.; Pan, J.; Wang, J.; Fan, J.; Che, Y.; Huang, Y.; Zhang, J.; Ding, J.; Yang, S.; Yang, K. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m 6 A-MYC expression. Int. J. Biol. Sci., 2022, 18(2), 507-521.
[http://dx.doi.org/10.7150/ijbs.67770] [PMID: 35002506]
[147]
Hoppe-Seyler, K.; Honegger, A.; Bossler, F.; Sponagel, J.; Bulkescher, J.; Lohrey, C.; Hoppe-Seyler, F. Viral E6/E7 oncogene and cellular hexokinase 2 expression in HPV-positive cancer cell lines. Oncotarget, 2017, 8(63), 106342-106351.
[http://dx.doi.org/10.18632/oncotarget.22463] [PMID: 29290953]
[148]
Jin, L.H.; Wei, C. Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer. Asian Pac. J. Cancer Prev., 2014, 15(17), 7015-7019.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7015] [PMID: 25227784]
[149]
Gao, P.; Sun, L.; He, X.; Cao, Y.; Zhang, H. MicroRNAs and the warburg effect: New players in an old arena. Curr. Gene Ther., 2012, 12(4), 285-291.
[http://dx.doi.org/10.2174/156652312802083620] [PMID: 22856603]
[150]
Wei, Z.; Cui, L.; Mei, Z.; Liu, M.; Zhang, D. miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway. FEBS Lett., 2014, 588(9), 1773-1779.
[http://dx.doi.org/10.1016/j.febslet.2014.03.037] [PMID: 24685694]
[151]
Masui, K.; Tanaka, K.; Akhavan, D.; Babic, I.; Gini, B.; Matsutani, T.; Iwanami, A.; Liu, F.; Villa, G.R.; Gu, Y.; Campos, C.; Zhu, S.; Yang, H.; Yong, W.H.; Cloughesy, T.F.; Mellinghoff, I.K.; Cavenee, W.K.; Shaw, R.J.; Mischel, P.S. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab., 2013, 18(5), 726-739.
[http://dx.doi.org/10.1016/j.cmet.2013.09.013] [PMID: 24140020]
[152]
Zine El Abidine, A.; Tomaić, V.; Bel Haj Rhouma, R.; Massimi, P.; Guizani, I.; Boubaker, S.; Ennaifer, E.; Banks, L. A naturally occurring variant of HPV-16 E7 exerts increased transforming activity through acquisition of an additional phospho-acceptor site. Virology, 2017, 500, 218-225.
[http://dx.doi.org/10.1016/j.virol.2016.10.023] [PMID: 27829177]
[153]
Wang, S.; Li, J.; Xie, J.; Liu, F.; Duan, Y.; Wu, Y.; Huang, S.; He, X.; Wang, Z.; Wu, X. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene, 2018, 37(30), 4164-4180.
[http://dx.doi.org/10.1038/s41388-018-0252-x] [PMID: 29706653]
[154]
Chai, Z.; Yang, Y.; Gu, Z.; Cai, X.; Ye, W.; Kong, L.; Qiu, X.; Ying, L.; Wang, Z.; Wang, L. Recombinant viral capsid protein L2 (rVL2) of HPV 16 suppresses cell proliferation and glucose metabolism via ITGB7/C/EBPβ signaling pathway in cervical cancer cell lines. OncoTargets Ther., 2019, 12, 10415-10425.
[http://dx.doi.org/10.2147/OTT.S228631] [PMID: 31819523]
[155]
Sitarz, K.; Czamara, K.; Bialecka, J.; Klimek, M.; Szostek, S.; Kaczor, A. Dual switch in lipid metabolism in cervical epithelial cells during dysplasia development observed using raman microscopy and molecular methods. Cancers, 2021, 13(9), 1997.
[http://dx.doi.org/10.3390/cancers13091997] [PMID: 33919178]
[156]
Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; Hall, M.N. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell, 2017, 32(6), 807-823.e12.
[http://dx.doi.org/10.1016/j.ccell.2017.11.011] [PMID: 29232555]
[157]
Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232.
[http://dx.doi.org/10.1038/nrc3483] [PMID: 23446547]
[158]
Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(6), 1357.
[http://dx.doi.org/10.1016/j.cmet.2018.04.018] [PMID: 29874570]
[159]
Zietkowski, D.; deSouza, N.M.; Davidson, R.L.; Payne, G.S. Characterisation of mobile lipid resonances in tissue biopsies from patients with cervical cancer and correlation with cytoplasmic lipid droplets. NMR Biomed., 2013, 26(9), 1096-1102.
[http://dx.doi.org/10.1002/nbm.2923] [PMID: 23417787]
[160]
Sharma, A.; Jha, A.K.; Mishra, S.; Jain, A.; Chauhan, B.S.; Kathuria, M.; Rawat, K.S.; Gupta, N.M.; Tripathi, R.; Mitra, K.; Sachdev, M.; Bhatt, M.L.B.; Goel, A. Imaging and quantitative detection of lipid droplets by yellow fluorescent probes in liver sections of plasmodium infected mice and third stage human cervical cancer tissues. Bioconjug. Chem., 2018, 29(11), 3606-3613.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00552] [PMID: 30247899]
[161]
Mondal, S.; Roy, D.; Sarkar, B.S.; Jin, L.; Jung, D.; Zhang, S.; Kalogera, E.; Staub, J.; Wang, Y.; Xuyang, W.; Khurana, A.; Chien, J.; Telang, S.; Chesney, J.; Tapolsky, G.; Petras, D.; Shridhar, V. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int. J. Cancer, 2019, 144(1), 178-189.
[http://dx.doi.org/10.1002/ijc.31868] [PMID: 30226266]
[162]
Shang, C.; Wang, W.; Liao, Y.; Chen, Y.; Liu, T.; Du, Q.; Huang, J.; Liang, Y.; Liu, J.; Zhao, Y.; Guo, L.; Hu, Z.; Yao, S. LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism. Cancer Res., 2018, 78(4), 877-890.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2356] [PMID: 29229603]
[163]
Bravo, I.G.; Crusius, K.; Alonso, A. The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes. Arch. Virol., 2005, 150(2), 231-246.
[http://dx.doi.org/10.1007/s00705-004-0420-x] [PMID: 15503216]
[164]
Ni, K.; Wang, D.; Xu, H.; Mei, F.; Wu, C.; Liu, Z.; Zhou, B. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int., 2019, 19(1), 219.
[http://dx.doi.org/10.1186/s12935-019-0941-8] [PMID: 31462892]
[165]
Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev., 2010, 90(1), 207-258.
[http://dx.doi.org/10.1152/physrev.00015.2009] [PMID: 20086077]
[166]
Ma, D.; Huang, Y.; Song, S. Inhibiting the HPV16 oncogene-mediated glycolysis sensitizes human cervical carcinoma cells to 5-fluorouracil. OncoTargets Ther., 2019, 12, 6711-6720.
[http://dx.doi.org/10.2147/OTT.S205334] [PMID: 31695407]
[167]
Kim, S.M.; Yun, M.R.; Hong, Y.K.; Solca, F.; Kim, J.H.; Kim, H.J.; Cho, B.C. Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol. Cancer Ther., 2013, 12(10), 2145-2156.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1188] [PMID: 23883584]
[168]
Komurov, K.; Tseng, J.T.; Muller, M.; Seviour, E.G.; Moss, T.J.; Yang, L.; Nagrath, D.; Ram, P.T. The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol. Syst. Biol., 2012, 8(1), 596.
[http://dx.doi.org/10.1038/msb.2012.25] [PMID: 22864381]
[169]
Martinho, O.; Silva-Oliveira, R.; Cury, F.P.; Barbosa, A.M.; Granja, S.; Evangelista, A.F.; Marques, F.; Miranda-Gonçalves, V.; Cardoso-Carneiro, D.; de Paula, F.E.; Zanon, M.; Scapulatempo-Neto, C.; Moreira, M.A.R.; Baltazar, F.; Longatto-Filho, A.; Reis, R.M. HER family receptors are important theranostic biomarkers for cervical cancer: Blocking glucose metabolism enhances the therapeutic effect of HER inhibitors. Theranostics, 2017, 7(3), 717-732.
[http://dx.doi.org/10.7150/thno.17154] [PMID: 28255362]
[170]
Coppock, J.D.; Lee, J.H. mTOR, metabolism, and the immune response in HPV-positive head and neck squamous cell cancer. World J. Otorhinolaryngol. Head Neck Surg., 2016, 2(2), 76-83.
[http://dx.doi.org/10.1016/j.wjorl.2016.05.010] [PMID: 29204551]
[171]
Lucido, C.T.; Callejas-Valera, J.L.; Colbert, P.L.; Vermeer, D.W.; Miskimins, W.K.; Spanos, W.C.; Vermeer, P.D. β2-Adrenergic receptor modulates mitochondrial metabolism and disease progression in recurrent/metastatic HPV(+) HNSCC. Oncogenesis, 2018, 7(10), 81.
[http://dx.doi.org/10.1038/s41389-018-0090-2] [PMID: 30297705]
[172]
Lucido, C.; Miskimins, W.; Vermeer, P. Propranolol promotes glucose dependence and synergizes with dichloroacetate for anti-cancer activity in HNSCC. Cancers, 2018, 10(12), 476.
[http://dx.doi.org/10.3390/cancers10120476] [PMID: 30513596]
[173]
Liu, Z.; Zhu, W.; Kong, X.; Chen, X.; Sun, X.; Zhang, W.; Zhang, R. Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol. Rep., 2019, 42(5), 1893-1903.
[http://dx.doi.org/10.3892/or.2019.7294] [PMID: 31485631]
[174]
Gao, R.; Wu, X.; Huang, Z.; Wang, B.; Li, F.; Xu, H.; Ran, L. Anti-tumor effect of aloe-emodin on cervical cancer cells was associated with human papillomavirus E6/E7 and glucose metabolism. OncoTargets Ther., 2019, 12, 3713-3721.
[http://dx.doi.org/10.2147/OTT.S182405] [PMID: 31190872]
[175]
Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125.
[http://dx.doi.org/10.1016/j.canlet.2019.10.046] [PMID: 31693922]
[176]
Gu, Z.; Zhang, H.; Guo, X.; Cao, Y. Enhanced glycogen metabolism supports the survival and proliferation of HPV-infected keratinocytes in condylomata acuminata. J. Invest. Dermatol., 2020, 140(8), 1513-1523.e5.
[http://dx.doi.org/10.1016/j.jid.2020.01.010] [PMID: 32004566]
[177]
Sattler, U.G.A.; Mueller-Klieser, W. The anti-oxidant capacity of tumour glycolysis. Int. J. Radiat. Biol., 2009, 85(11), 963-971.
[http://dx.doi.org/10.3109/09553000903258889] [PMID: 19895273]
[178]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[179]
Hensley, C.T.; Faubert, B.; Yuan, Q.; Lev-Cohain, N.; Jin, E.; Kim, J.; Jiang, L.; Ko, B.; Skelton, R.; Loudat, L.; Wodzak, M.; Klimko, C.; McMillan, E.; Butt, Y.; Ni, M.; Oliver, D.; Torrealba, J.; Malloy, C.R.; Kernstine, K.; Lenkinski, R.E.; DeBerardinis, R.J. Metabolic heterogeneity in human lung tumors. Cell, 2016, 164(4), 681-694.
[http://dx.doi.org/10.1016/j.cell.2015.12.034] [PMID: 26853473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy