Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products

Author(s): Patil Amruta Adhikrao, Gudle Mayuri Motiram and Gautam Kumar*

Volume 24, Issue 15, 2024

Published on: 29 January, 2024

Page: [1291 - 1326] Pages: 36

DOI: 10.2174/0115680266276938240108060247

Price: $65

Open Access Journals Promotions 2
Abstract

Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.

Keywords: Nontuberculous mycobacteria, Drug resistance, Natural products, M. abscessus, Mycobacterium avium complex, chronic obstructive pneumoconiosis.

Graphical Abstract
[1]
Swain, A.; Gnanasekar, P.; Prava, J.; Rajeev, A.C.; Kesarwani, P.; Lahiri, C.; Pan, A. A comparative genomics approach for shortlisting broad-spectrum drug targets in nontuberculous mycobacteria. Microb. Drug Resist., 2021, 27(2), 212-226.
[http://dx.doi.org/10.1089/mdr.2020.0161] [PMID: 32936741]
[2]
Falkinham, J.O., III Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr. Environ. Health Rep., 2016, 3(2), 161-167.
[http://dx.doi.org/10.1007/s40572-016-0086-z] [PMID: 27020801]
[3]
Fedrizzi, T.; Meehan, C.J.; Grottola, A.; Giacobazzi, E.; Fregni Serpini, G.; Tagliazucchi, S.; Fabio, A.; Bettua, C.; Bertorelli, R.; De Sanctis, V.; Rumpianesi, F.; Pecorari, M.; Jousson, O.; Tortoli, E.; Segata, N. Genomic characterization of nontuberculous mycobacteria. Sci. Rep., 2017, 7(1), 45258.
[http://dx.doi.org/10.1038/srep45258] [PMID: 28345639]
[4]
Falkinham, J.O., III Ecology of nontuberculous mycobacteria. Microorganisms, 2021, 9(11), 2262.
[http://dx.doi.org/10.3390/microorganisms9112262] [PMID: 34835388]
[5]
Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of mycobacterium abscessus. Nat. Rev. Microbiol., 2020, 18(7), 392-407.
[http://dx.doi.org/10.1038/s41579-020-0331-1] [PMID: 32086501]
[6]
Koh, W.J. Nontuberculous mycobacteria-overview. Microbiol. Spectr., 2017, 5(1), 5.1.11.
[http://dx.doi.org/10.1128/microbiolspec.TNMI7-0024-2016] [PMID: 28128073]
[7]
Sethiya, J.P.; Sowards, M.A.; Jackson, M.; North, E.J. MmpL3 inhibition: A new approach to treat nontuberculous mycobacterial infections. Int. J. Mol. Sci., 2020, 21(17), 6202.
[http://dx.doi.org/10.3390/ijms21176202] [PMID: 32867307]
[8]
Huang, H.L.; Lu, P.L.; Lee, C.H.; Chong, I.W. Treatment of pulmonary disease caused by mycobacterium kansasii. J. Formos. Med. Assoc., 2020, 119(Suppl. 1), S51-S57.
[http://dx.doi.org/10.1016/j.jfma.2020.05.018] [PMID: 32505588]
[9]
Mogami, R.; Goldenberg, T.; Marca, P.G.C.; Mello, F.C.Q.; Lopes, A.J. Pulmonary infection caused by mycobacterium kansasii: Findings on computed tomography of the chest. Radiol. Bras., 2016, 49(4), 209-213.
[http://dx.doi.org/10.1590/0100-3984.2015.0078] [PMID: 27777472]
[10]
Coolen-Allou, N.; Touron, T.; Belmonte, O.; Gazaille, V.; Andre, M.; Allyn, J.; Picot, S.; Payet, A.; Veziris, N. Clinical, radiological, and microbiological characteristics of mycobacterium simiae infection in 97 patients. Antimicrob. Agents Chemother., 2018, 62(7), e00395-e18.
[http://dx.doi.org/10.1128/AAC.00395-18] [PMID: 29760130]
[11]
Sette, C.S.; Wachholz, P.A.; Masuda, P.Y.; da Costa Figueira, R.B.F.; de Oliveira Mattar, F.R.; Ura, D.G. mycobacterium marinum infection: A case report. J. Venom. Anim. Toxins Incl. Trop. Dis., 2015, 21(1), 7.
[http://dx.doi.org/10.1186/s40409-015-0008-9] [PMID: 25806076]
[12]
Johnson, M.G.; Stout, J.E. Twenty-eight cases of mycobacterium marinum infection: Retrospective case series and literature review. Infection, 2015, 43(6), 655-662.
[http://dx.doi.org/10.1007/s15010-015-0776-8] [PMID: 25869820]
[13]
Chen, Y.; Jiang, J.; Jiang, H.; Chen, J.; Wang, X.; Liu, W.; Chen, Z.; Shi, Y.; Zhang, W.; Wang, H. mycobacterium gordonae in patient with facial ulcers, nosebleeds, and positive T-SPOT. TB test, China. Emerg. Infect. Dis., 2017, 23(7), 1204-1206.
[http://dx.doi.org/10.3201/eid2307.162033] [PMID: 28628445]
[14]
Utsugi, H.; Usui, Y.; Nishihara, F.; Kanazawa, M.; Nagata, M. mycobacterium gordonae-induced humidifier lung. BMC Pulm. Med., 2015, 15(1), 108.
[http://dx.doi.org/10.1186/s12890-015-0107-y] [PMID: 26420433]
[15]
Lotfi, H.; Sankian, M.; Meshkat, Z.; Khalifeh Soltani, A.; Aryan, E. mycobacterium szulgai pulmonary infection in a vitamin D–deficient patient: A case report. Clin. Case Rep., 2021, 9(3), 1146-1149.
[http://dx.doi.org/10.1002/ccr3.3692] [PMID: 33768798]
[16]
Wilson, J.W.; Jagtiani, A.C.; Wengenack, N.L. mycobacterium scrofulaceum disease: Experience from a tertiary medical centre and review of the literature. Infect. Dis., 2019, 51(8), 602-609.
[http://dx.doi.org/10.1080/23744235.2019.1634281] [PMID: 31264491]
[17]
Busatto, C.; Vianna, J.S.; da Silva, L.V.; Ramis, I.B.; da Silva, P.E.A. mycobacterium avium: An overview. Tuberculosis, 2019, 114, 127-134.
[http://dx.doi.org/10.1016/j.tube.2018.12.004] [PMID: 30711152]
[18]
Gutierrez, C.; Somoskovi, A. Human pathogenic mycobacteria. In: Reference Module in Biomedical Sciences; Elsevier, 2014; pp. 1-15.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.00137-9]
[19]
Duran, M.; Araiza, A.; Surani, S.R.; Vakil, A.; Varon, J. Pulmonary infection caused by mycobacterium terrae: A case report and literature review. Cureus, 2019, 11(11), e6228.
[http://dx.doi.org/10.7759/cureus.6228] [PMID: 31890427]
[20]
Lee, M.R.; Sheng, W.H.; Hung, C.C.; Yu, C.J.; Lee, L.N.; Hsueh, P.R. mycobacterium abscessus complex infections in humans. Emerg. Infect. Dis., 2015, 21(9), 1638-1646.
[http://dx.doi.org/10.3201/2109.141634] [PMID: 26295364]
[21]
Little, J.S.; Dedrick, R.M.; Freeman, K.G.; Cristinziano, M.; Smith, B.E.; Benson, C.A.; Jhaveri, T.A.; Baden, L.R.; Solomon, D.A.; Hatfull, G.F. Bacteriophage treatment of disseminated cutaneous mycobacterium chelonae infection. Nat. Commun., 2022, 13(1), 2313.
[http://dx.doi.org/10.1038/s41467-022-29689-4] [PMID: 35504908]
[22]
Pinto-Gouveia, M.; Gameiro, A.; Ramos, L.; Cardoso, J.C.; Brites, M.M.; Tellechea, Ó.; Figueiredo, A. mycobacterium chelonae is an ubiquitous atypical mycobacterium. Case Rep. Dermatol., 2015, 7(2), 207-211.
[http://dx.doi.org/10.1159/000438898] [PMID: 26351432]
[23]
Saffo, Z.; Ognjan, A. mycobacterium smegmatis infection of a prosthetic total knee arthroplasty. IDCases, 2016, 5, 80-82.
[http://dx.doi.org/10.1016/j.idcr.2016.07.007] [PMID: 27516972]
[24]
Okamori, S.; Asakura, T.; Nishimura, T.; Tamizu, E.; Ishii, M.; Yoshida, M.; Fukano, H.; Hayashi, Y.; Fujita, M.; Hoshino, Y.; Betsuyaku, T.; Hasegawa, N. Natural history of mycobacterium fortuitum pulmonary infection presenting with migratory infiltrates: A case report with microbiological analysis. BMC Infect. Dis., 2018, 18(1), 1-6.
[http://dx.doi.org/10.1186/s12879-017-2892-9] [PMID: 29291713]
[25]
Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci., 2020, 27(1), 74.
[http://dx.doi.org/10.1186/s12929-020-00667-6] [PMID: 32552732]
[26]
van Ingen, J. Diagnosis of nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med., 2013, 34(1), 103-109.
[http://dx.doi.org/10.1055/s-0033-1333569] [PMID: 23460010]
[27]
Tarashi, S.; Siadat, S.D.; Fateh, A. Nontuberculous mycobacterial resistance to antibiotics and disinfectants: Challenges still ahead. BioMed Res. Int., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/8168750] [PMID: 35257011]
[28]
Hoffner, S.; Chan, M.M.; Chan, E.D.; Ordway, D. Drug discovery targeting drug-resistant nontuberculous mycobacteria. In: Drug Discovery Targeting Drug-Resistant Bacteria; Elsevier, 2020; pp. 361-376.
[http://dx.doi.org/10.1016/B978-0-12-818480-6.00012-6]
[29]
Saxena, S.; Spaink, H.P.; Forn-Cuní, G. Drug resistance in nontuberculous mycobacteria: Mechanisms and models. Biology, 2021, 10(2), 96.
[http://dx.doi.org/10.3390/biology10020096] [PMID: 33573039]
[30]
van Ingen, J. Drug susceptibility testing of nontuberculous mycobacteria. In: Nontuberculous Mycobacterial Disease; Respiratory Medicine, 2019; pp. 61-88.
[http://dx.doi.org/10.1007/978-3-319-93473-0_3]
[31]
Wu, M.L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today, 2018, 23(8), 1502-1519.
[http://dx.doi.org/10.1016/j.drudis.2018.04.001] [PMID: 29635026]
[32]
Luthra, S.; Rominski, A.; Sander, P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in mycobacterium abscessus drug resistance. Front. Microbiol., 2018, 9, 2179.
[http://dx.doi.org/10.3389/fmicb.2018.02179] [PMID: 30258428]
[33]
Rominski, A.; Roditscheff, A.; Selchow, P.; Böttger, E.C.; Sander, P. Intrinsic rifamycin resistance of mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J. Antimicrob. Chemother., 2017, 72(2), 376-384.
[http://dx.doi.org/10.1093/jac/dkw466] [PMID: 27999011]
[34]
Griffith, D.E.; Daley, C.L. Treatment of mycobacterium abscessus pulmonary disease. Chest, 2022, 161(1), 64-75.
[http://dx.doi.org/10.1016/j.chest.2021.07.035] [PMID: 34314673]
[35]
Huh, H.J.; Kim, S.Y.; Jhun, B.W.; Shin, S.J.; Koh, W.J. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect. Genet. Evol., 2019, 72, 169-182.
[http://dx.doi.org/10.1016/j.meegid.2018.10.003] [PMID: 30315892]
[36]
van Ingen, J. Treatment of pulmonary disease caused by non-tuberculous mycobacteria. Lancet Respir. Med., 2015, 3(3), 179-180.
[http://dx.doi.org/10.1016/S2213-2600(15)00033-8] [PMID: 25773208]
[37]
Jang, S. Multidrug efflux pumps in staphylococcus aureus and their clinical implications. J. Microbiol., 2016, 54(1), 1-8.
[http://dx.doi.org/10.1007/s12275-016-5159-z] [PMID: 26727895]
[38]
Andersen, J.; He, G.X.; Kakarla, P.; Kc, R.; Kumar, S.; Lakra, W.; Mukherjee, M.; Ranaweera, I.; Shrestha, U.; Tran, T.; Varela, M. Multidrug efflux pumps from enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int. J. Environ. Res. Public Health, 2015, 12(2), 1487-1547.
[http://dx.doi.org/10.3390/ijerph120201487] [PMID: 25635914]
[39]
Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.; Nautiyal, A. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plants, 2017, 6(4), 16.
[http://dx.doi.org/10.3390/plants6020016] [PMID: 28394295]
[40]
Duan, W.; Li, X.; Ge, Y.; Yu, Z.; Li, P.; Li, J.; Qin, L.; Xie, J. mycobacterium tuberculosis Rv1473 is a novel macrolides ABC efflux pump regulated by WhiB7. Future Microbiol., 2019, 14(1), 47-59.
[http://dx.doi.org/10.2217/fmb-2018-0207] [PMID: 30539658]
[41]
Zheng, W.; Thorne, N.; McKew, J.C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today, 2013, 18(21-22), 1067-1073.
[http://dx.doi.org/10.1016/j.drudis.2013.07.001] [PMID: 23850704]
[42]
Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol., 2019, 4(4), 565-577.
[http://dx.doi.org/10.1038/s41564-019-0357-1] [PMID: 30833727]
[43]
Kaul, G.; Shukla, M.; Dasgupta, A.; Chopra, S. Update on drug-repurposing: Is it useful for tackling antimicrobial resistance? Future Microbiol., 2019, 14(10), 829-831.
[http://dx.doi.org/10.2217/fmb-2019-0122] [PMID: 31368794]
[44]
Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. Semin. Cancer Biol., 2021, 68, 279-290.
[http://dx.doi.org/10.1016/j.semcancer.2020.03.011] [PMID: 32437876]
[45]
Dinić, J.; Efferth, T.; García-Sosa, A.T.; Grahovac, J.; Padrón, J.M.; Pajeva, I.; Rizzolio, F.; Saponara, S.; Spengler, G.; Tsakovska, I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist. Updat., 2020, 52, 100713.
[http://dx.doi.org/10.1016/j.drup.2020.100713] [PMID: 32615525]
[46]
Soni, I.; De Groote, M.A.; Dasgupta, A.; Chopra, S. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J. Med. Microbiol., 2016, 65(1), 1-8.
[http://dx.doi.org/10.1099/jmm.0.000198] [PMID: 26515915]
[47]
Kumar, N.; Sharma, S.; Kaushal, P.S. Protein synthesis in mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol. Aspects Med., 2021, 81, 101002.
[http://dx.doi.org/10.1016/j.mam.2021.101002] [PMID: 34344520]
[48]
Coolen, N.; Morand, P.; Martin, C.; Hubert, D.; Kanaan, R.; Chapron, J.; Honoré, I.; Dusser, D.; Audureau, E.; Veziris, N.; Burgel, P.R. Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J. Cyst. Fibros., 2015, 14(5), 594-599.
[http://dx.doi.org/10.1016/j.jcf.2015.02.006] [PMID: 25735458]
[49]
Moon, S.M.; Choe, J.; Jhun, B.W.; Jeon, K.; Kwon, O.J.; Huh, H.J.; Lee, N.Y.; Daley, C.L.; Koh, W.J. Treatment with a macrolide-containing regimen for mycobacterium kansasii pulmonary disease. Respir. Med., 2019, 148, 37-42.
[http://dx.doi.org/10.1016/j.rmed.2019.01.012] [PMID: 30827472]
[50]
Palencia, A.; Li, X.; Bu, W.; Choi, W.; Ding, C.Z.; Easom, E.E.; Feng, L.; Hernandez, V.; Houston, P.; Liu, L.; Meewan, M.; Mohan, M.; Rock, F.L.; Sexton, H.; Zhang, S.; Zhou, Y.; Wan, B.; Wang, Y.; Franzblau, S.G.; Woolhiser, L.; Gruppo, V.; Lenaerts, A.J.; O’Malley, T.; Parish, T.; Cooper, C.B.; Waters, M.G.; Ma, Z.; Ioerger, T.R.; Sacchettini, J.C.; Rullas, J.; Angulo-Barturen, I.; Pérez-Herrán, E.; Mendoza, A.; Barros, D.; Cusack, S.; Plattner, J.J.; Alley, M.R.K. Discovery of novel oral protein synthesis inhibitors of mycobacterium tuberculosis that target Leucyl-tRNA synthetase. Antimicrob. Agents Chemother., 2016, 60(10), 6271-6280.
[http://dx.doi.org/10.1128/AAC.01339-16] [PMID: 27503647]
[51]
Raaijmakers, J.; Schildkraut, J.A.; Hoefsloot, W.; van Ingen, J. The role of amikacin in the treatment of nontuberculous mycobacterial disease. Expert Opin. Pharmacother., 2021, 22(15), 1961-1974.
[http://dx.doi.org/10.1080/14656566.2021.1953472] [PMID: 34292097]
[52]
Kim, O.H.; Kwon, B.S.; Han, M.; Koh, Y.; Kim, W.S.; Song, J.W.; Oh, Y.M.; Lee, S.D.; Lee, S.W.; Lee, J.S.; Lim, C.M.; Choi, C.M.; Huh, J.W.; Hong, S.B.; Shim, T.S.; Jo, K.W. Association between duration of aminoglycoside treatment and outcome of cavitary mycobacterium avium complex lung disease. Clin. Infect. Dis., 2019, 68(11), 1870-1876.
[http://dx.doi.org/10.1093/cid/ciy804] [PMID: 30239615]
[53]
Shirley, M. Amikacin liposome inhalation suspension: A review in mycobacterium avium complex lung disease. Drugs, 2019, 79(5), 555-562.
[http://dx.doi.org/10.1007/s40265-019-01095-z] [PMID: 30877642]
[54]
Yip, P.C.W.; Kam, K.M.; Lam, E.T.K.; Chan, R.C.Y.; Yew, W.W. In vitro activities of PNU-100480 and linezolid against drug-susceptible and drug-resistant mycobacterium tuberculosis isolates. Int. J. Antimicrob. Agents, 2013, 42(1), 96-97.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.03.002] [PMID: 23684005]
[55]
Kim, T.S.; Choe, J.H.; Kim, Y.J.; Yang, C.S.; Kwon, H.J.; Jeong, J.; Kim, G.; Park, D.E.; Jo, E.K.; Cho, Y.L.; Jang, J. Activity of LCB01-0371, a Novel Oxazolidinone, against mycobacterium abscessus. Antimicrob. Agents Chemother., 2017, 61(9), e02752-e16.
[http://dx.doi.org/10.1128/AAC.02752-16] [PMID: 28674049]
[56]
Brown-Elliott, B.A.; Wallace, R.J., Jr; Rubio, A.; Wallace, R.J. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J. Clin. Microbiol., 2017, 55(6), 1747-1754.
[http://dx.doi.org/10.1128/JCM.00274-17] [PMID: 28330892]
[57]
Ruth, M.M.; Koeken, V.A.C.M.; Pennings, L.J.; Svensson, E.M.; Wertheim, H.F.L.; Hoefsloot, W.; van Ingen, J. Is there a role for tedizolid in the treatment of non-tuberculous mycobacterial disease? J. Antimicrob. Chemother., 2020, 75(3), 609-617.
[http://dx.doi.org/10.1093/jac/dkz511] [PMID: 31886864]
[58]
Shaw, T.D.; Smyth, M.; Turner, G.; Hunter, M. Prolonged tedizolid use in cutaneous non-tuberculous mycobacterial infection. J. Clin. Tuberc. Other Mycobact. Dis., 2021, 24, 100261.
[http://dx.doi.org/10.1016/j.jctube.2021.100261] [PMID: 34355067]
[59]
Le Run, E.; Arthur, M.; Mainardi, J.L. In vitro and intracellular activity of imipenem combined with tedizolid, rifabutin, and avibactam against mycobacterium abscessus. Antimicrob. Agents Chemother., 2019, 63(4), e01915-e01918.
[http://dx.doi.org/10.1128/AAC.01915-18] [PMID: 30745387]
[60]
Guo, Q.; Xu, L.; Tan, F.; Zhang, Y.; Fan, J.; Wang, X.; Zhang, Z.; Li, B.; Chu, H. A novel oxazolidinone, contezolid (MRX-I), expresses anti-mycobacterium abscessus activity in vitro. Antimicrob. Agents Chemother., 2021, 65(11), e00889-e21.
[http://dx.doi.org/10.1128/AAC.00889-21] [PMID: 34460305]
[61]
Kaushik, A.; Ammerman, N.C.; Martins, O.; Parrish, N.M.; Nuermberger, E.L. In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of mycobacterium abscessus. Antimicrob. Agents Chemother., 2019, 63(6), e00470-e19.
[http://dx.doi.org/10.1128/AAC.00470-19] [PMID: 30962331]
[62]
Bax, H.I.; de Vogel, C.P.; Mouton, J.W.; de Steenwinkel, J.E.M. Omadacycline as a promising new agent for the treatment of infections with mycobacterium abscessus. J. Antimicrob. Chemother., 2019, 74(10), 2930-2933.
[http://dx.doi.org/10.1093/jac/dkz267] [PMID: 31236595]
[63]
Brown-Elliott, B.A.; Wallace, R.J., Jr In vitro susceptibility testing of eravacycline against nontuberculous mycobacteria. Antimicrob. Agents Chemother., 2022, 66(9), e00689-e22.
[http://dx.doi.org/10.1128/aac.00689-22]
[64]
Nicklas, D.A.; Maggioncalda, E.C.; Story-Roller, E.; Eichelman, B.; Tabor, C.; Serio, A.W.; Keepers, T.R.; Chitra, S.; Lamichhane, G. Potency of omadacycline against mycobacteroides abscessus clinical isolates in vitro and in a mouse model of pulmonary infection. Antimicrob. Agents Chemother., 2022, 66(1), e01704-e01721.
[http://dx.doi.org/10.1128/AAC.01704-21] [PMID: 34662184]
[65]
Reiche, M.A.; Warner, D.F.; Mizrahi, V. Targeting DNA replication and repair for the development of novel therapeutics against tuberculosis. Front. Mol. Biosci., 2017, 4, 75.
[http://dx.doi.org/10.3389/fmolb.2017.00075] [PMID: 29184888]
[66]
Stokes, S.S.; Vemula, R.; Pucci, M.J. Advancement of GyrB inhibitors for treatment of infections caused by mycobacterium tuberculosis and non-tuberculous mycobacteria. ACS Infect. Dis., 2020, 6(6), 1323-1331.
[http://dx.doi.org/10.1021/acsinfecdis.0c00025] [PMID: 32183511]
[67]
Piton, J.; Petrella, S.; Delarue, M.; André-Leroux, G.; Jarlier, V.; Aubry, A.; Mayer, C. Structural insights into the quinolone resistance mechanism of mycobacterium tuberculosis DNA gyrase. PLoS One, 2010, 5(8), e12245.
[http://dx.doi.org/10.1371/journal.pone.0012245] [PMID: 20805881]
[68]
Locher, C.P.; Jones, S.M.; Hanzelka, B.L.; Perola, E.; Shoen, C.M.; Cynamon, M.H.; Ngwane, A.H.; Wiid, I.J.; van Helden, P.D.; Betoudji, F.; Nuermberger, E.L.; Thomson, J.A. A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrob. Agents Chemother., 2015, 59(3), 1455-1465.
[http://dx.doi.org/10.1128/AAC.04347-14] [PMID: 25534737]
[69]
Kumar, G.; Sathe, A.; Krishna, V.S.; Sriram, D.; Jachak, S.M. Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 157, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.046] [PMID: 30064024]
[70]
Gold, B.; Nathan, C. Targeting phenotypically tolerant mycobacterium tuberculosis. In: Tuberculosis and the Tubercle Bacillus; ASM Press: Washington, DC, USA, 2017; pp. 317-360.
[http://dx.doi.org/10.1128/9781555819569.ch15]
[71]
Alffenaar, J.W.; Märtson, A.G.; Heysell, S.K.; Cho, J.G.; Patanwala, A.; Burch, G.; Kim, H.Y.; Sturkenboom, M.G.G.; Byrne, A.; Marriott, D.; Sandaradura, I.; Tiberi, S.; Sintchencko, V.; Srivastava, S.; Peloquin, C.A. Therapeutic drug monitoring in non-tuberculosis mycobacteria infections. Clin. Pharmacokinet., 2021, 60(6), 711-725.
[http://dx.doi.org/10.1007/s40262-021-01000-6] [PMID: 33751415]
[72]
Muñoz-Egea, M.C.; Carrasco-Antón, N.; Esteban, J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin. Pharmacother., 2020, 21(8), 969-981.
[http://dx.doi.org/10.1080/14656566.2020.1740205] [PMID: 32200657]
[73]
Brown-Elliott, B.A.; Rubio, A.; Wallace, R.J., Jr In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrob. Agents Chemother., 2018, 62(11), e01503-e01518.
[http://dx.doi.org/10.1128/AAC.01503-18] [PMID: 30126964]
[74]
Durcik, M.; Tomašič, T.; Zidar, N.; Zega, A.; Kikelj, D.; Mašič, L.P.; Ilaš, J. ATP-competitive DNA gyrase and topoisomerase IV inhibitors as antibacterial agents. Expert Opin. Ther. Pat., 2019, 29(3), 171-180.
[http://dx.doi.org/10.1080/13543776.2019.1575362] [PMID: 30686070]
[75]
Talley, A.K.; Thurston, A.; Moore, G.; Gupta, V.K.; Satterfield, M.; Manyak, E.; Stokes, S.; Dane, A.; Melnick, D. First-in-human evaluation of the safety, tolerability, and pharmacokinetics of SPR720, a novel oral Bacterial DNA gyrase (GyrB) inhibitor for mycobacterial infections. Antimicrob. Agents Chemother., 2021, 65(11), e01208-e01221.
[http://dx.doi.org/10.1128/AAC.01208-21] [PMID: 34491803]
[76]
Stephanie, F.; Tambunan, U.S.F.; Siahaan, T.J.M. tuberculosis transcription machinery: A review on the mycobacterial rna polymerase and drug discovery efforts. Life, 2022, 12(11), 1774.
[http://dx.doi.org/10.3390/life12111774] [PMID: 36362929]
[77]
Lal, U.R.; Singh, A. Recent developments in natural product-based drug discovery in tropical diseases. Stud. Nat. Prod. Chem., 2016, 48, 263-285.
[http://dx.doi.org/10.1016/B978-0-444-63602-7.00008-4]
[78]
Igarashi, M.; Ishizaki, Y.; Takahashi, Y. New antituberculous drugs derived from natural products: Current perspectives and issues in antituberculous drug development. J. Antibiot., 2018, 71(1), 15-25.
[http://dx.doi.org/10.1038/ja.2017.126] [PMID: 29089593]
[79]
Alfarisi, O.; Alghamdi, W.A.; Al-Shaer, M.H.; Dooley, K.E.; Peloquin, C.A. Rifampin vs. Rifapentine: What is the preferred rifamycin for tuberculosis? Expert Rev. Clin. Pharmacol., 2017, 10(10), 1027-1036.
[http://dx.doi.org/10.1080/17512433.2017.1366311] [PMID: 28803492]
[80]
Aziz, D.B.; Low, J.L.; Wu, M.L.; Gengenbacher, M.; Teo, J.W.P.; Dartois, V.; Dick, T. Rifabutin is active against mycobacterium abscessus complex. Antimicrob. Agents Chemother., 2017, 61(6), e00155-e17.
[http://dx.doi.org/10.1128/AAC.00155-17]
[81]
Kim, D.H.; Kim, S.Y.; Huh, H.J.; Lee, N.Y.; Koh, W.J.; Jhun, B.W. In vitro activity of rifamycin derivatives against nontuberculous mycobacteria, including macrolide-/amikacin-resistant clinical isolates. Antimicrob. Agents Chemother., 2023, 65(5), 1-6.
[PMID: 33685889]
[82]
Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; Ormerod, P.; Shingadia, D.; Smith, D.; Whitehead, N.; Wilson, R.; Floto, R.A. British thoracic society guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir. Res., 2017, 4(1), e000242.
[http://dx.doi.org/10.1136/bmjresp-2017-000242] [PMID: 29449949]
[83]
Le Run, E.; Arthur, M.; Mainardi, J.L. In vitro and intracellular activity of imipenem combined with rifabutin and avibactam against mycobacterium abscessus. Antimicrob. Agents Chemother., 2018, 62(8), e00623-e18.
[http://dx.doi.org/10.1128/AAC.00623-18] [PMID: 29866869]
[84]
Dick, T.; Shin, S.J.; Koh, W.J.; Dartois, V.; Gengenbacher, M. Rifabutin is active against mycobacterium abscessus in mice. Antimicrob. Agents Chemother., 2020, 64(2), e01943-e19.
[http://dx.doi.org/10.1128/AAC.01943-19] [PMID: 31767722]
[85]
Iqbal, I.; Bajeli, S.; Akela, A.; Kumar, A. Bioenergetics of mycobacterium: An emerging landscape for drug discovery. Pathogens, 2018, 7(1), 24.
[http://dx.doi.org/10.3390/pathogens7010024] [PMID: 29473841]
[86]
Urban, M.; Šlachtová, V.; Brulíková, L. Small organic molecules targeting the energy metabolism of mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 113139.
[http://dx.doi.org/10.1016/j.ejmech.2020.113139] [PMID: 33422979]
[87]
Roy, K.K.; Wani, M.A. Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opin. Drug Discov., 2020, 15(2), 231-241.
[http://dx.doi.org/10.1080/17460441.2020.1696771] [PMID: 31774006]
[88]
Hasenoehrl, E.J.; Wiggins, T.J.; Berney, M. Bioenergetic inhibitors: Antibiotic efficacy and mechanisms of action in mycobacterium tuberculosis. Front. Cell. Infect. Microbiol., 2021, 10, 611683.
[http://dx.doi.org/10.3389/fcimb.2020.611683] [PMID: 33505923]
[89]
Lee, B.S.; Sviriaeva, E.; Pethe, K. Targeting the cytochrome oxidases for drug development in mycobacteria. Prog. Biophys. Mol. Biol., 2020, 152, 45-54.
[http://dx.doi.org/10.1016/j.pbiomolbio.2020.02.001] [PMID: 32081616]
[90]
O’Donnell, M.R.; Padayatchi, N.; Metcalfe, J.Z. Elucidating the role of clofazimine for the treatment of tuberculosis. Int. J. Tuberc. Lung Dis., 2016, 20(12), 52-57.
[http://dx.doi.org/10.5588/ijtld.16.0073] [PMID: 28240574]
[91]
Dalcolmo, M.; Gayoso, R.; Sotgiu, G.; D’Ambrosio, L.; Rocha, J.L.; Borga, L.; Fandinho, F.; Braga, J.U.; Galesi, V.M.N.; Barreira, D.; Sanchez, D.A.; Dockhorn, F.; Centis, R.; Caminero, J.A.; Migliori, G.B. Effectiveness and safety of clofazimine in multidrug-resistant tuberculosis: A nationwide report from Brazil. Eur. Respir. J., 2017, 49(3), 1602445.
[http://dx.doi.org/10.1183/13993003.02445-2016] [PMID: 28331044]
[92]
Lechartier, B.; Cole, S.T. Mode of action of clofazimine and combination therapy with benzothiazinones against mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(8), 4457-4463.
[http://dx.doi.org/10.1128/AAC.00395-15] [PMID: 25987624]
[93]
Cholo, M.C.; Mothiba, M.T.; Fourie, B.; Anderson, R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J. Antimicrob. Chemother., 2017, 72(2), 338-353.
[http://dx.doi.org/10.1093/jac/dkw426] [PMID: 27798208]
[94]
McGuffin, S.A.; Pottinger, P.S.; Harnisch, J.P. Clofazimine in nontuberculous mycobacterial infections: A growing niche. Open Forum Infect. Dis., 2017, 4(3), ofx147.
[http://dx.doi.org/10.1093/ofid/ofx147] [PMID: 30202770]
[95]
Luo, J.; Yu, X.; Jiang, G.; Fu, Y.; Huo, F.; Ma, Y.; Wang, F.; Shang, Y.; Liang, Q.; Xue, Y.; Huang, H. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in beijing, China. Antimicrob. Agents Chemother., 2018, 62(7), e00072-e18.
[http://dx.doi.org/10.1128/AAC.00072-18] [PMID: 29760127]
[96]
Pfaeffle, H.O.I.; Alameer, R.M.; Marshall, M.H.; Houpt, E.R.; Albon, D.P.; Heysell, S.K. Clofazimine for treatment of multidrug-resistant non-tuberculous mycobacteria. Pulm. Pharmacol. Ther., 2021, 70, 102058.
[http://dx.doi.org/10.1016/j.pupt.2021.102058] [PMID: 34293446]
[97]
Banaschewski, B.; Verma, D.; Pennings, L.J.; Zimmerman, M.; Ye, Q.; Gadawa, J.; Dartois, V.; Ordway, D.; van Ingen, J.; Ufer, S.; Stapleton, K.; Hofmann, T. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J. Cyst. Fibros., 2019, 18(5), 714-720.
[http://dx.doi.org/10.1016/j.jcf.2019.05.013] [PMID: 31138497]
[98]
Kunkel, M.; Doyle-Eisele, M.; Kuehl, P.; Rotermund, K.; Hittinger, M.; Ufer, S.; Reed, M.; Grant, M.; Hofmann, T. Clofazimine inhalation suspension demonstrates promising toxicokinetics in canines for treating pulmonary nontuberculous mycobacteria infection. Antimicrob. Agents Chemother., 2023, 67(2), e01144-e22.
[http://dx.doi.org/10.1128/aac.01144-22] [PMID: 36648233]
[99]
Preiss, L.; Langer, J.D.; Yildiz, Ö.; Eckhardt-Strelau, L.; Guillemont, J.E.G.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase F o rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2015, 1(4), e1500106.
[http://dx.doi.org/10.1126/sciadv.1500106] [PMID: 26601184]
[100]
Kundu, S.; Biukovic, G.; Grüber, G.; Dick, T. Bedaquiline targets the ε subunit of mycobacterial F-ATP synthase. Antimicrob. Agents Chemother., 2016, 60(11), 6977-6979.
[http://dx.doi.org/10.1128/AAC.01291-16] [PMID: 27620476]
[101]
Brown-Elliott, B.A.; Wallace, R.J., Jr In vitro susceptibility testing of bedaquiline against mycobacterium abscessus complex. Antimicrob. Agents Chemother., 2019, 63(2), e01919-e18.
[http://dx.doi.org/10.1128/AAC.01919-18] [PMID: 30509936]
[102]
Kim, D.H.; Jhun, B.W.; Moon, S.M.; Kim, S.Y.; Jeon, K.; Kwon, O.J.; Huh, H.J.; Lee, N.Y.; Shin, S.J.; Daley, C.L.; Koh, W.J. In vitro activity of bedaquiline and delamanid against nontuberculous mycobacteria, including macrolide-resistant clinical isolates. Antimicrob. Agents Chemother., 2019, 63(8), e00665-e19.
[http://dx.doi.org/10.1128/AAC.00665-19] [PMID: 31182533]
[103]
Ruth, M.M.; Sangen, J.J.N.; Remmers, K.; Pennings, L.J.; Svensson, E.; Aarnoutse, R.E.; Zweijpfenning, S.M.H.; Hoefsloot, W.; Kuipers, S.; Magis-Escurra, C.; Wertheim, H.F.L.; van Ingen, J. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J. Antimicrob. Chemother., 2019, 74(4), 935-943.
[http://dx.doi.org/10.1093/jac/dky526] [PMID: 30649327]
[104]
Le Moigne, V.; Raynaud, C.; Moreau, F.; Dupont, C.; Nigou, J.; Neyrolles, O.; Kremer, L.; Herrmann, J.L. Efficacy of bedaquiline, alone or in combination with imipenem, against mycobacterium abscessus in C3HeB/FeJ mice. Antimicrob. Agents Chemother., 2020, 64(6), e00114-e00120.
[http://dx.doi.org/10.1128/AAC.00114-20] [PMID: 32253217]
[105]
Kumar, G.; Engle, K. Natural products acting against S. Aureus through membrane and cell wall disruption. Nat. Prod. Rep., 2023, 40(10), 1608-1646.
[http://dx.doi.org/10.1039/D2NP00084A] [PMID: 37326041]
[106]
Kumar, G.; C, A. Natural products and their analogues acting against mycobacterium tuberculosis: A recent update. Drug Dev. Res., 2023, 84(5), 779-804.
[http://dx.doi.org/10.1002/ddr.22063] [PMID: 37086027]
[107]
Muñoz-Muñoz, L.; Aínsa, J.A.; Ramón-García, S. Repurposing β-lactams for the treatment of mycobacterium kansasii infections: An in vitro study. Antibiotics, 2023, 12(2), 335.
[http://dx.doi.org/10.3390/antibiotics12020335] [PMID: 36830246]
[108]
Lefebvre, A.L.; Le Moigne, V.; Bernut, A.; Veckerlé, C.; Compain, F.; Herrmann, J.L.; Kremer, L.; Arthur, M.; Mainardi, J.L. Inhibition of the β-lactamase bla mab by avibactam improves the in vitro and in vivo efficacy of imipenem against mycobacterium abscessus. Antimicrob. Agents Chemother., 2017, 61(4), e02440-e16.
[http://dx.doi.org/10.1128/AAC.02440-16] [PMID: 28096155]
[109]
Dubée, V.; Bernut, A.; Cortes, M.; Lesne, T.; Dorchene, D.; Lefebvre, A.L.; Hugonnet, J.E.; Gutmann, L.; Mainardi, J.L.; Herrmann, J.L.; Gaillard, J.L.; Kremer, L.; Arthur, M. β-Lactamase inhibition by avibactam in mycobacterium abscessus. J. Antimicrob. Chemother., 2015, 70(4), 1051-1058.
[http://dx.doi.org/10.1093/jac/dku510] [PMID: 25525201]
[110]
Negatu, D.A.; González del Río, R.; Cacho-Izquierdo, M.; Barros-Aguirre, D.; Lelievre, J.; Rullas, J.; Casado, P.; Ganapathy, U.S.; Zimmerman, M.D.; Gengenbacher, M.; Dartois, V.; Dick, T. Activity of oral tebipenem-avibactam in a mouse model of mycobacterium abscessus lung infection. Antimicrob. Agents Chemother., 2023, 67(2), e01459-e22.
[http://dx.doi.org/10.1128/aac.01459-22] [PMID: 36688684]
[111]
Le Run, E.; Atze, H.; Arthur, M.; Mainardi, J-L. Impact of relebactam-mediated inhibition of mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. J. Antimicrob. Chemother., 2020, 75(2), 379-383.
[PMID: 31637424]
[112]
Kaushik, A.; Ammerman, N.C.; Parrish, N.M.; Nuermberger, E.L. New β-lactamase inhibitors nacubactam and zidebactam improve the in vitro activity of β-lactam antibiotics against mycobacterium abscessus complex clinical isolates. Antimicrob. Agents Chemother., 2019, 63(9), e00733-e19.
[http://dx.doi.org/10.1128/AAC.00733-19] [PMID: 31209013]
[113]
Kaushik, A.; Ammerman, N.C.; Lee, J.; Martins, O.; Kreiswirth, B.N.; Lamichhane, G.; Parrish, N.M.; Nuermberger, E.L. In vitro activity of the new β-lactamase inhibitors relebactam and vaborbactam in combination with β-lactams against mycobacterium abscessus complex clinical isolates. Antimicrob. Agents Chemother., 2019, 63(3), e02623-e18.
[http://dx.doi.org/10.1128/AAC.02623-18] [PMID: 30642943]
[114]
Meir, M.; Bifani, P.; Barkan, D. The addition of avibactam renders piperacillin an effective treatment for mycobacterium abscessus infection in an in vivo model. Antimicrob. Resist. Infect. Control, 2018, 7(1), 151.
[http://dx.doi.org/10.1186/s13756-018-0448-4] [PMID: 30564307]
[115]
Kaushik, A.; Gupta, C.; Fisher, S.; Story-Roller, E.; Galanis, C.; Parrish, N.; Lamichhane, G. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant mycobacterium abscessus. Future Microbiol., 2017, 12(6), 473-480.
[http://dx.doi.org/10.2217/fmb-2016-0234] [PMID: 28326811]
[116]
Harrison, J.; Weaver, J.A.; Desai, M.; Cox, J.A.G. In vitro efficacy of relebactam versus avibactam against mycobacterium abscessus complex. Cell Surf., 2021, 7, 100064.
[http://dx.doi.org/10.1016/j.tcsw.2021.100064] [PMID: 34703957]
[117]
Pandey, R.; Chen, L.; Manca, C.; Jenkins, S.; Glaser, L.; Vinnard, C.; Stone, G.; Lee, J.; Mathema, B.; Nuermberger, E.L.; Bonomo, R.A.; Kreiswirth, B.N. Dual β-lactam combinations highly active against mycobacterium abscessus complex in vitro. MBio, 2019, 10(1), e02895-e18.
[http://dx.doi.org/10.1128/mBio.02895-18] [PMID: 30755518]
[118]
Rimal, B.; Batchelder, H.R.; Story-Roller, E.; Panthi, C.M.; Tabor, C.; Nuermberger, E.L.; Townsend, C.A.; Lamichhane, G. T405, a new penem, exhibits in vivo efficacy against M. Abscessus and synergy with β-lactams imipenem and cefditoren. Antimicrob. Agents Chemother., 2022, 66(6), e00536-e22.
[http://dx.doi.org/10.1128/aac.00536-22] [PMID: 35638855]
[119]
Zheng, H.; Wang, Y.; He, W.; Li, F.; Xia, H.; Zhao, B.; Wang, S.; Shen, C.; Zhao, Y. In vitro activity of pretomanid against nontuberculous mycobacteria. Antimicrob. Agents Chemother., 2022, 66(1), e01810-e01821.
[http://dx.doi.org/10.1128/AAC.01810-21] [PMID: 34723628]
[120]
Krieger, D.; Schönfeld, N.; Vesenbeckh, S.; Bettermann, G.; Bauer, T.T.; Rüssmann, H.; Mauch, H. Is delamanid a potential agent in the treatment of diseases caused by mycobacterium avium-intracellulare? Eur. Respir. J., 2016, 48(6), 1803-1804.
[http://dx.doi.org/10.1183/13993003.01420-2016] [PMID: 27836960]
[121]
Blair, H.A.; Scott, L.J. Delamanid: A review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015, 75(1), 91-100.
[http://dx.doi.org/10.1007/s40265-014-0331-4] [PMID: 25404020]
[122]
Batson, S.; de Chiara, C.; Majce, V.; Lloyd, A.J.; Gobec, S.; Rea, D.; Fülöp, V.; Thoroughgood, C.W.; Simmons, K.J.; Dowson, C.G.; Fishwick, C.W.G.; de Carvalho, L.P.S.; Roper, D.I. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat. Commun., 2017, 8(1), 1939.
[http://dx.doi.org/10.1038/s41467-017-02118-7] [PMID: 29208891]
[123]
Khosravi, A.D.; Mirsaeidi, M.; Farahani, A.; Tabandeh, M.R.; Mohajeri, P.; Shoja, S.; Hoseini Lar KhosroShahi, S.R. Prevalence of nontuberculous mycobacteria and high efficacy of D-cycloserine and its synergistic effect with clarithromycin against mycobacterium fortuitum and mycobacterium abscessus. Infect. Drug Resist., 2018, 11, 2521-2532.
[http://dx.doi.org/10.2147/IDR.S187554] [PMID: 30573983]
[124]
Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492.
[http://dx.doi.org/10.1016/j.meegid.2016.09.004] [PMID: 27612406]
[125]
Laborde, J.; Deraeve, C.; Lecoq, L.; Sournia-Saquet, A.; Stigliani, J.L.; Orena, B.S.; Mori, G.; Pratviel, G.; Bernardes-Génisson, V. Synthesis, oxidation potential and anti-mycobacterial activity of isoniazid and analogues: Insights into the molecular isoniazid activation mechanism. ChemistrySelect, 2016, 1(2), 172-179.
[http://dx.doi.org/10.1002/slct.201600040]
[126]
Kumar, G.; Krishna, V.S.; Sriram, D.; Jachak, S.M. Synthesis of carbohydrazides and carboxamides as anti-tubercular agents. Eur. J. Med. Chem., 2018, 156, 871-884.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.047] [PMID: 30056283]
[127]
Basille, D.; Jounieaux, V.; Andréjak, C. Treatment of other nontuberculous mycobacteria. Semin. Respir. Crit. Care Med., 2018, 39(3), 377-382.
[http://dx.doi.org/10.1055/s-0038-1660473] [PMID: 30071552]
[128]
DeStefano, M.S.; Shoen, C.M.; Cynamon, M.H. Therapy for mycobacterium kansasii infection: Beyond 2018. Front. Microbiol., 2018, 9, 2271.
[http://dx.doi.org/10.3389/fmicb.2018.02271] [PMID: 30319580]
[129]
Kuo, H.I.; Huang, S.T.; Wu, Y.H. Rapid improvement of mycobacterium kansasii pneumonia after rifabutin, isoniazid, and ethambutol: A case report. Kaohsiung J. Med. Sci., 2022, 38(11), 1137-1138.
[http://dx.doi.org/10.1002/kjm2.12608] [PMID: 36254860]
[130]
Degiacomi, G.; Chiarelli, L.R.; Recchia, D.; Petricci, E.; Gianibbi, B.; Fiscarelli, E.V.; Fattorini, L.; Manetti, F.; Pasca, M.R. The antimalarial mefloquine shows activity against mycobacterium abscessus, inhibiting mycolic acid metabolism. Int. J. Mol. Sci., 2021, 22(16), 8533.
[http://dx.doi.org/10.3390/ijms22168533] [PMID: 34445239]
[131]
Viljoen, A.; Dubois, V.; Girard-Misguich, F.; Blaise, M.; Herrmann, J.L.; Kremer, L. The diverse family of M mp L transporters in mycobacteria: From regulation to antimicrobial developments. Mol. Microbiol., 2017, 104(6), 889-904.
[http://dx.doi.org/10.1111/mmi.13675] [PMID: 28340510]
[132]
Umare, M.D.; Khedekar, P.B.; Chikhale, R.V. Mycobacterial membrane protein large 3 (MmpL3) inhibitors: A promising approach to combat tuberculosis. ChemMedChem, 2021, 16(20), 3136-3148.
[http://dx.doi.org/10.1002/cmdc.202100359] [PMID: 34288519]
[133]
Fay, A.; Czudnochowski, N.; Rock, J.M.; Johnson, J.R.; Krogan, N.J.; Rosenberg, O.; Glickman, M.S. Two accessory proteins govern MmpL3 mycolic acid transport in mycobacteria. MBio, 2019, 10(3), e00850-e19.
[http://dx.doi.org/10.1128/mBio.00850-19] [PMID: 31239378]
[134]
Li, W.; Obregón-Henao, A.; Wallach, J.B.; North, E.J.; Lee, R.E.; Gonzalez-Juarrero, M.; Schnappinger, D.; Jackson, M. Therapeutic potential of the mycobacterium tuberculosis mycolic acid transporter, MmpL3. Antimicrob. Agents Chemother., 2016, 60(9), 5198-5207.
[http://dx.doi.org/10.1128/AAC.00826-16] [PMID: 27297488]
[135]
Degiacomi, G.; Benjak, A.; Madacki, J.; Boldrin, F.; Provvedi, R.; Palù, G.; Kordulakova, J.; Cole, S.T.; Manganelli, R. Essentiality of mmpL3 and impact of its silencing on mycobacterium tuberculosis gene expression. Sci. Rep., 2017, 7(1), 43495.
[http://dx.doi.org/10.1038/srep43495] [PMID: 28240248]
[136]
Quémard, A. New insights into the mycolate-containing compound biosynthesis and transport in mycobacteria. Trends Microbiol., 2016, 24(9), 725-738.
[http://dx.doi.org/10.1016/j.tim.2016.04.009] [PMID: 27268593]
[137]
Dupont, C.; Viljoen, A.; Dubar, F.; Blaise, M.; Bernut, A.; Pawlik, A.; Bouchier, C.; Brosch, R.; Guérardel, Y.; Lelièvre, J.; Ballell, L.; Herrmann, J.L.; Biot, C.; Kremer, L. A new piperidinol derivative targeting mycolic acid transport in mycobacterium abscessus. Mol. Microbiol., 2016, 101(3), 515-529.
[http://dx.doi.org/10.1111/mmi.13406] [PMID: 27121350]
[138]
Kumar, G.; Kapoor, S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg. Med. Chem., 2023, 81, 117212.
[http://dx.doi.org/10.1016/j.bmc.2023.117212] [PMID: 36804747]
[139]
Foss, M.H.; Pou, S.; Davidson, P.M.; Dunaj, J.L.; Winter, R.W.; Pou, S.; Licon, M.H.; Doh, J.K.; Li, Y.; Kelly, J.X.; Dodean, R.A.; Koop, D.R.; Riscoe, M.K.; Purdy, G.E. Diphenylether-modified 1,2-diamines with improved drug properties for development against mycobacterium tuberculosis. ACS Infect. Dis., 2016, 2(7), 500-508.
[http://dx.doi.org/10.1021/acsinfecdis.6b00052] [PMID: 27626102]
[140]
Li, W.; Yazidi, A.; Pandya, A.N.; Hegde, P.; Tong, W.; Calado Nogueira de Moura, V.; North, E.J.; Sygusch, J.; Jackson, M. MmpL3 as a target for the treatment of drug-resistant nontuberculous mycobacterial infections. Front. Microbiol., 2018, 9, 1547.
[http://dx.doi.org/10.3389/fmicb.2018.01547] [PMID: 30042757]
[141]
Pacheco, S.A.; Hsu, F.F.; Powers, K.M.; Purdy, G.E. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in mycobacterium smegmatis. J. Biol. Chem., 2013, 288(33), 24213-24222.
[http://dx.doi.org/10.1074/jbc.M113.473371] [PMID: 23836904]
[142]
Kumar, G.; Narayan, R.; Kapoor, S. Chemical tools for illumination of tuberculosis biology, virulence mechanisms, and diagnosis. J. Med. Chem., 2020, 63(24), 15308-15332.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01337] [PMID: 33307693]
[143]
Das, S.; Garg, T.; Chopra, S.; Dasgupta, A. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J. Antimicrob. Chemother., 2019, 74(5), 1317-1322.
[http://dx.doi.org/10.1093/jac/dkz018] [PMID: 30753528]
[144]
Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B, 2017, 7(2), 119-136.
[http://dx.doi.org/10.1016/j.apsb.2016.06.003] [PMID: 28303218]
[145]
Dong, M.; Pfeiffer, B.; Altmann, K.H. Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov. Today, 2017, 22(3), 585-591.
[http://dx.doi.org/10.1016/j.drudis.2016.11.015] [PMID: 27890820]
[146]
De Filippis, L.F. Plant Secondary Metabolites: From Molecular Biology to Health Products; Plant-Environment Interact. Responses Approaches to Mitigate Stress, 2015, pp. 263-299.
[147]
Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants, 2015, 2(4), 105-113.
[http://dx.doi.org/10.1016/j.jarmap.2015.09.002]
[148]
Bills, G.F.; Gloer, J.B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr., 2016, 4(6), 4.6.01.
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0009-2016] [PMID: 27809954]
[149]
Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol., 2019, 17(3), 167-180.
[http://dx.doi.org/10.1038/s41579-018-0121-1] [PMID: 30531948]
[150]
Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. Technol., 2021, 109, 103-115.
[http://dx.doi.org/10.1016/j.tifs.2021.01.005]
[151]
Benfield, A.H.; Henriques, S.T. Mode-of-action of antimicrobial peptides: Membrane disruption vs. Intracellular mechanisms. Front. Med. Technol., 2020, 2, 610997.
[http://dx.doi.org/10.3389/fmedt.2020.610997] [PMID: 35047892]
[152]
Dijksteel, G.S.; Ulrich, M.M.W.; Middelkoop, E.; Boekema, B.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol., 2021, 12, 616979.
[http://dx.doi.org/10.3389/fmicb.2021.616979] [PMID: 33692766]
[153]
Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins, 2018, 10(11), 461.
[http://dx.doi.org/10.3390/toxins10110461] [PMID: 30413046]
[154]
Ning, H.Q.; Li, Y.Q.; Tian, Q.W.; Wang, Z.S.; Mo, H.Z. The apoptosis of staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm. Wiss. Technol., 2019, 99, 62-68.
[http://dx.doi.org/10.1016/j.lwt.2018.09.028]
[155]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[156]
Sheard, D.E.; O’Brien-Simpson, N.M.; Wade, J.D.; Separovic, F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pure Appl. Chem., 2019, 91(2), 199-209.
[http://dx.doi.org/10.1515/pac-2018-0707]
[157]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49(6), 1130-1138.
[http://dx.doi.org/10.1021/acs.accounts.6b00074] [PMID: 27187572]
[158]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[159]
Zhang, Q.Y.; Yan, Z. Bin; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res., 2021, 8, 1-25.
[160]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[161]
Juturu, V.; Wu, J.C. Microbial production of bacteriocins: Latest research development and applications. Biotechnol. Adv., 2018, 36(8), 2187-2200.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.007] [PMID: 30385277]
[162]
Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M.T. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol., 2018, 49, 23-28.
[http://dx.doi.org/10.1016/j.copbio.2017.07.011] [PMID: 28787641]
[163]
Ahmad, V.; Khan, M.S.; Mohammad, Q.; Jamal, S.; Alzohairy, M.A.; Al Karaawi, M.A.; Siddiqui, M.U. Antimicrobial potential of bacteriocins : In therapy, agriculture and food preservation nanomedicine & nanobiotechnology lab, department of biosciences, integral department of health information management, college of applied medical sciences, depart. In: Int. J. Antimicrob. Agents; , 2016.
[164]
Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microb. Cell Fact., 2014, 13(S1)(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1475-2859-13-S1-S3] [PMID: 25186038]
[165]
Aguilar-Pérez, C.; Gracia, B.; Rodrigues, L.; Vitoria, A.; Cebrián, R.; Deboosère, N.; Song, O.; Brodin, P.; Maqueda, M.; Aínsa, J.A. Synergy between Circular Bacteriocin AS-48 and Ethambutol against mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2018, 62(9), e00359-e18.
[http://dx.doi.org/10.1128/AAC.00359-18] [PMID: 29987141]
[166]
Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of mycobacterium avium by lactoferricin peptides: Improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother., 2014, 58(6), 3461-3467.
[http://dx.doi.org/10.1128/AAC.02728-13] [PMID: 24709266]
[167]
Silva, T.; Moreira, A.C.; Nazmi, K.; Moniz, T.; Vale, N.; Rangel, M.; Gomes, P.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Lactoferricin peptides increase macrophages’ capacity to kill mycobacterium avium. MSphere, 2017, 2(4), e00301-e00317.
[http://dx.doi.org/10.1128/mSphere.00301-17] [PMID: 28875176]
[168]
das Neves, R.C.; Trentini, M.M.; de Castro e Silva, J.; Simon, K.S.; Bocca, A.L.; Silva, L.P.; Mortari, M.R.; Kipnis, A.; Junqueira-Kipnis, A.P. Antimycobacterial activity of a new peptide polydim-i isolated from neotropical social wasp polybia dimorpha. PLoS One, 2016, 11(3), e0149729.
[http://dx.doi.org/10.1371/journal.pone.0149729]
[169]
Trentini, M.M.; das Neves, R.C.; Santos, B.P.O.; DaSilva, R.A.; Souza, A.C.B.; Mortari, M.R.; Schwartz, E.F.; Kipnis, A.; Junqueira-Kipnis, A.P. Non-disulfide-bridge peptide 5.5 from the scorpion hadrurus gertschi inhibits the growth of mycobacterium abscessus subsp. Massiliense. Front. Microbiol., 2017, 8, 1-11.
[http://dx.doi.org/10.3389/fmicb.2017.00273]
[170]
Marques-Neto, L.; Trentini, M.; das Neves, R.; Resende, D.; Procopio, V.; da Costa, A.; Kipnis, A.; Mortari, M.; Schwartz, E.; Junqueira-Kipnis, A. Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against mycobacterium massiliensis. Toxins, 2018, 10(6), 219.
[http://dx.doi.org/10.3390/toxins10060219] [PMID: 29848960]
[171]
Li, B.; Zhang, Y.; Guo, Q.; He, S.; Fan, J.; Xu, L.; Zhang, Z.; Wu, W.; Chu, H. Antibacterial peptide RP557 increases the antibiotic sensitivity of mycobacterium abscessus by inhibiting biofilm formation. Sci. Total Environ., 2022, 807(Pt 3), 151855.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151855] [PMID: 34813807]
[172]
Sudadech, P.; Roytrakul, S.; Kaewprasert, O.; Sirichoat, A.; Chetchotisakd, P.; Kanthawong, S.; Faksri, K. Assessment of in vitro activities of novel modified antimicrobial peptides against clarithromycin resistant mycobacterium abscessus. PLoS One, 2021, 16(11), e0260003.
[http://dx.doi.org/10.1371/journal.pone.0260003] [PMID: 34780520]
[173]
Rao, K.U.; Henderson, D.I.; Krishnan, N.; Puthia, M.; Glegola-Madejska, I.; Brive, L.; Bjarnemark, F.; Millqvist Fureby, A.; Hjort, K.; Andersson, D.I.; Tenland, E.; Sturegård, E.; Robertson, B.D.; Godaly, G. A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy. Sci. Rep., 2021, 11(1), 4201.
[http://dx.doi.org/10.1038/s41598-021-83755-3] [PMID: 33603037]
[174]
Koopmans, T.; Wood, T.M.; ’t Hart, P.; Kleijn, L.H.J.; Hendrickx, A.P.A.; Willems, R.J.L.; Breukink, E.; Martin, N.I. Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J. Am. Chem. Soc., 2015, 137(29), 9382-9389.
[http://dx.doi.org/10.1021/jacs.5b04501] [PMID: 26122963]
[175]
Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol., 2018, 48, 179-194.
[http://dx.doi.org/10.1016/j.ifset.2018.06.008]
[176]
Ali, Z.I.; Saudi, A.M.; Albrecht, R.; Talaat, A.M. The inhibitory effect of nisin on mycobacterium avium ssp. Paratuberculosis and its effect on mycobacterial cell wall. J. Dairy Sci., 2019, 102(6), 4935-4944.
[http://dx.doi.org/10.3168/jds.2018-16106] [PMID: 30981481]
[177]
Yagi, A.; Uchida, R.; Hamamoto, H.; Sekimizu, K.; Kimura, K.; Tomoda, H. Anti-mycobacterium activity of microbial peptides in a silkworm infection model with mycobacterium smegmatis. J. Antibiot., 2017, 70(5), 685-690.
[http://dx.doi.org/10.1038/ja.2017.23] [PMID: 28446822]
[178]
Chopra, B.; Dhingra, A.K.; Prasad, D.N. Modification in the natural bioactive molecule: Piperine; A continuing source for the drug development. Curr. Bioact. Compd., 2020, 16(6), 714-725.
[http://dx.doi.org/10.2174/1573407215666190318125023]
[179]
Zhu, S.; Su, Y.; Shams, S.; Feng, Y.; Tong, Y.; Zheng, G. Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: Current state of biosynthesis and perspectives for production. Appl. Microbiol. Biotechnol., 2019, 103(10), 3931-3940.
[http://dx.doi.org/10.1007/s00253-019-09771-6] [PMID: 30915503]
[180]
Geberetsadik, G.; Inaizumi, A.; Nishiyama, A.; Yamaguchi, T.; Hamamoto, H.; Panthee, S.; Tamaru, A.; Hayatsu, M.; Mizutani, Y.; Kaboso, S.A.; Hakamata, M.; Ilinov, A.; Ozeki, Y.; Tateishi, Y.; Sekimizu, K.; Matsumoto, S.; Lysocin, E. Lysocin E targeting menaquinone in the membrane of mycobacterium tuberculosis is a promising lead compound for antituberculosis drugs. Antimicrob. Agents Chemother., 2022, 66(9), e00171-e22.
[http://dx.doi.org/10.1128/aac.00171-22] [PMID: 35969044]
[181]
Gao, W.; Kim, J.Y.; Anderson, J.R.; Akopian, T.; Hong, S.; Jin, Y.Y.; Kandror, O.; Kim, J.W.; Lee, I.A.; Lee, S.Y.; McAlpine, J.B.; Mulugeta, S.; Sunoqrot, S.; Wang, Y.; Yang, S.H.; Yoon, T.M.; Goldberg, A.L.; Pauli, G.F.; Suh, J.W.; Franzblau, S.G.; Cho, S. The cyclic peptide ecumicin targeting ClpC1 is active against mycobacterium tuberculosis in vivo. Antimicrob. Agents Chemother., 2015, 59(2), 880-889.
[http://dx.doi.org/10.1128/AAC.04054-14] [PMID: 25421483]
[182]
Sullivan, J.R.; Yao, J.; Courtine, C.; Lupien, A.; Herrmann, J.; Müller, R.; Behr, M.A. Natural products lysobactin and sorangicin a show in vitro activity against mycobacterium abscessus complex. Microbiol. Spectr., 2022, 10(6), e02672-e22.
[http://dx.doi.org/10.1128/spectrum.02672-22] [PMID: 36342177]
[183]
Lee, W.; Schaefer, K.; Qiao, Y.; Srisuknimit, V.; Steinmetz, H.; Müller, R.; Kahne, D.; Walker, S. The mechanism of action of lysobactin. J. Am. Chem. Soc., 2016, 138(1), 100-103.
[http://dx.doi.org/10.1021/jacs.5b11807] [PMID: 26683668]
[184]
Lilic, M.; Chen, J.; Boyaci, H.; Braffman, N.; Hubin, E.A.; Herrmann, J.; Müller, R.; Mooney, R.; Landick, R.; Darst, S.A.; Campbell, E.A. The antibiotic sorangicin A inhibits promoter DNA unwinding in a mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30423-30432.
[http://dx.doi.org/10.1073/pnas.2013706117] [PMID: 33199626]
[185]
Hosoda, K.; Koyama, N.; Kanamoto, A.; Tomoda, H. discovery of nosiheptide, griseoviridin, and etamycin as potent anti-mycobacterial agents against mycobacterium avium complex. Molecules, 2019, 24(8), 1495.
[http://dx.doi.org/10.3390/molecules24081495] [PMID: 30995807]
[186]
Yu, X.; Zhu, R.; Geng, Z.; Kong, Y.; Wang, F.; Dong, L.; Zhao, L.; Xue, Y.; Ma, X.; Huang, H. Nosiheptide harbors potent in vitro and intracellular inhbitory activities against mycobacterium tuberculosis. Microbiol. Spectr., 2022, 10(6), e01444-e22.
[http://dx.doi.org/10.1128/spectrum.01444-22] [PMID: 36222690]
[187]
Fan, Y.; Chen, H.; Mu, N.; Wang, W.; Zhu, K.; Ruan, Z.; Wang, S. Nosiheptide analogues as potential antibacterial agents via dehydroalanine region modifications: Semi-synthesis, antimicrobial activity and molecular docking study. Bioorg. Med. Chem., 2021, 31, 115970.
[http://dx.doi.org/10.1016/j.bmc.2020.115970] [PMID: 33422909]
[188]
Alanjary, M.; Medema, M.H. Mining bacterial genomes to reveal secret synergy. J. Biol. Chem., 2018, 293(52), 19996-19997.
[http://dx.doi.org/10.1074/jbc.H118.006669] [PMID: 30593529]
[189]
Osterman, I.A.; Komarova, E.S.; Shiryaev, D.I.; Korniltsev, I.A.; Khven, I.M.; Lukyanov, D.A.; Tashlitsky, V.N.; Serebryakova, M.V.; Efremenkova, O.V.; Ivanenkov, Y.A.; Bogdanov, A.A.; Sergiev, P.V.; Dontsova, O.A. Sorting out antibiotics’ mechanisms of action: A double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother., 2016, 60(12), 7481-7489.
[http://dx.doi.org/10.1128/AAC.02117-16] [PMID: 27736765]
[190]
Kim, T.H.; Hanh, B.T.B.; Kim, G.; Lee, D.G.; Park, J.W.; Lee, S.E.; Kim, J.S.; Kim, B.S.; Ryoo, S.; Jo, E.K.; Jang, J. Thiostrepton: A novel therapeutic drug candidate for mycobacterium abscessus infection. Molecules, 2019, 24(24), 4511.
[http://dx.doi.org/10.3390/molecules24244511] [PMID: 31835481]
[191]
Bailly, C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur. J. Pharmacol., 2022, 914, 174661.
[http://dx.doi.org/10.1016/j.ejphar.2021.174661] [PMID: 34863996]
[192]
Choules, M.P.; Wolf, N.M.; Lee, H.; Anderson, J.R.; Grzelak, E.M.; Wang, Y.; Ma, R.; Gao, W.; McAlpine, J.B.; Jin, Y.Y.; Cheng, J.; Lee, H.; Suh, J.W.; Duc, N.M.; Paik, S.; Choe, J.H.; Jo, E.K.; Chang, C.L.; Lee, J.S.; Jaki, B.U.; Pauli, G.F.; Franzblau, S.G.; Cho, S. Rufomycin targets ClpC1 proteolysis in mycobacterium tuberculosis and M. Abscessus. Antimicrob. Agents Chemother., 2019, 63(3), e02204-e02218.
[http://dx.doi.org/10.1128/AAC.02204-18] [PMID: 30602512]
[193]
Lee, H.; Suh, J.W. Anti-tuberculosis lead molecules from natural products targeting mycobacterium tuberculosis ClpC1. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 205-212.
[http://dx.doi.org/10.1007/s10295-015-1709-3] [PMID: 26586403]
[194]
Zhou, B.; Shetye, G.; Yu, Y.; Santarsiero, B.D.; Klein, L.L.; Abad-Zapatero, C.; Wolf, N.M.; Cheng, J.; Jin, Y.; Lee, H.; Suh, J.W.; Lee, H.; Bisson, J.; McAlpine, J.B.; Chen, S.N.; Cho, S.H.; Franzblau, S.G.; Pauli, G.F. Antimycobacterial rufomycin analogues from streptomyces atratus strain MJM3502. J. Nat. Prod., 2020, 83(3), 657-667.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01095] [PMID: 32031795]
[195]
Kazmaier, U.; Junk, L. Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity. Mar. Drugs, 2021, 19(8), 446.
[http://dx.doi.org/10.3390/md19080446] [PMID: 34436284]
[196]
Hou, X.M.; Liang, T.M.; Guo, Z.Y.; Wang, C.Y.; Shao, C.L. Discovery, absolute assignments, and total synthesis of asperversiamides A–C and their potent activity against mycobacterium marinum. Chem. Commun., 2019, 55(8), 1104-1107.
[http://dx.doi.org/10.1039/C8CC09347D] [PMID: 30623956]
[197]
Aragaw, W.W.; Roubert, C.; Fontaine, E.; Lagrange, S.; Zimmerman, M.D.; Dartois, V.; Gengenbacher, M.; Dick, T. Cyclohexyl-griselimycin is active against mycobacterium abscessus in mice. Antimicrob. Agents Chemother., 2022, 66(1), e01400-e01421.
[http://dx.doi.org/10.1128/AAC.01400-21] [PMID: 34723632]
[198]
Kling, A.; Lukat, P.; Almeida, D.V.; Bauer, A.; Fontaine, E.; Sordello, S.; Zaburannyi, N.; Herrmann, J.; Wenzel, S.C.; König, C.; Ammerman, N.C.; Barrio, M.B.; Borchers, K.; Bordon-Pallier, F.; Brönstrup, M.; Courtemanche, G.; Gerlitz, M.; Geslin, M.; Hammann, P.; Heinz, D.W.; Hoffmann, H.; Klieber, S.; Kohlmann, M.; Kurz, M.; Lair, C.; Matter, H.; Nuermberger, E.; Tyagi, S.; Fraisse, L.; Grosset, J.H.; Lagrange, S.; Müller, R. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 2015, 348, 1106-1112.
[199]
Holzgrabe, U. New griselimycins for treatment of tuberculosis. Chem. Biol., 2015, 22(8), 981-982.
[http://dx.doi.org/10.1016/j.chembiol.2015.08.002] [PMID: 26295835]
[200]
Ganapathy, U.S.; Dartois, V.; Dick, T. Repositioning rifamycins for mycobacterium abscessus lung disease. Expert Opin. Drug Discov., 2019, 14(9), 867-878.
[http://dx.doi.org/10.1080/17460441.2019.1629414] [PMID: 31195849]
[201]
Ramos, D.; Matthiensen, A.; Colvara, W.; de Votto, A.; Trindade, G.; da Silva, P.; Yunes, J. Antimycobacterial and cytotoxicity activity of microcystins. J. Venom. Anim. Toxins Incl. Trop. Dis., 2015, 21(1), 9.
[http://dx.doi.org/10.1186/s40409-015-0009-8] [PMID: 25802510]
[202]
Ramis, I.; Vianna, J.; Reis, A.; von Groll, A.; Ramos, D.; Viveiros, M.; da Silva, P. Antimicrobial and efflux inhibitor activity of usnic acid against mycobacterium abscessus. Planta Med., 2018, 84(17), 1265-1270.
[http://dx.doi.org/10.1055/a-0639-5412] [PMID: 29913527]
[203]
Cirillo, D.; Borroni, E.; Festoso, I.; Monti, D.; Romeo, S.; Mazier, D.; Verotta, L. Synthesis and antimycobacterial activity of (+)‐usnic acid conjugates. Arch. Pharm., 2018, 351(12), 1800177.
[http://dx.doi.org/10.1002/ardp.201800177] [PMID: 30407647]
[204]
Ishida, K.; Shabuer, G.; Schieferdecker, S.; Pidot, S.J.; Stinear, T.P.; Knuepfer, U.; Cyrulies, M.; Hertweck, C. Oak‐associated negativicute equipped with ancestral aromatic polyketide synthase produces antimycobacterial dendrubins. Chemistry, 2020, 26(58), 13147-13151.
[http://dx.doi.org/10.1002/chem.202001939] [PMID: 32597507]
[205]
Srinivasan, M.; Shanmugam, K.; Kedike, B.; Narayanan, S.; Shanmugam, S.; Gopalasamudram Neelakantan, H. Trypethelone and phenalenone derivatives isolated from the mycobiont culture of Trypethelium eluteriae Spreng. and their anti-mycobacterial properties. Nat. Prod. Res., 2020, 34(23), 3320-3327.
[http://dx.doi.org/10.1080/14786419.2019.1566823] [PMID: 30798639]
[206]
Sun, Z.; Liang, Y.C.; Lu, C.; Lupien, A.; Xu, Z.; Berton, S. Discovery of Benzo [ c ] phenanthridine derivatives with potent activity against multidrug resistant mycobacterium tuberculosis. 2022, 1-25.
[207]
Hamoud, R.; Reichling, J.; Wink, M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J. Pharm. Pharmacol., 2015, 67(2), 264-273.
[http://dx.doi.org/10.1111/jphp.12326] [PMID: 25495516]
[208]
Jyoti, M.A.; Nam, K.W.; Jang, W.S.; Kim, Y.H.; Kim, S.K.; Lee, B.E.; Song, H.Y. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against mycobacterium tuberculosis. J. Infect. Chemother., 2016, 22(4), 200-208.
[http://dx.doi.org/10.1016/j.jiac.2015.11.014] [PMID: 26867795]
[209]
Jyoti, M.A.; Zerin, T.; Kim, T.H.; Hwang, T.S.; Jang, W.S.; Nam, K.W.; Song, H.Y. In vitro effect of ursolic acid on the inhibition of mycobacterium tuberculosis and its cell wall mycolic acid. Pulm. Pharmacol. Ther., 2015, 33, 17-24.
[http://dx.doi.org/10.1016/j.pupt.2015.05.005] [PMID: 26021818]
[210]
Nam, K.W.; Jang, W.S.; Jyoti, M.A.; Kim, S.; Lee, B.E.; Song, H.Y. In vitro activity of (-)-deoxypergularinine, on its own and in combination with anti-tubercular drugs, against resistant strains of mycobacterium tuberculosis. Phytomedicine, 2016, 23(5), 578-582.
[http://dx.doi.org/10.1016/j.phymed.2016.02.017] [PMID: 27064017]
[211]
Wang, C.J.; Yan, Q.L.; Ma, Y.F.; Sun, C.P.; Chen, C.M.; Tian, X.G.; Han, X.Y.; Wang, C.; Deng, S.; Ma, X.C. ent -abietane and tigliane diterpenoids from the roots of euphorbia fischeriana and their inhibitory effects against mycobacterium smegmatis. J. Nat. Prod., 2017, 80(5), 1248-1254.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00786] [PMID: 28383891]
[212]
Brackett, S.M.; Cox, K.E.; Barlock, S.L.; Huggins, W.M.; Ackart, D.F.; Bassaraba, R.J.; Melander, R.J.; Melander, C.; Meridianin, D. Meridianin D analogues possess antibiofilm activity against mycobacterium smegmatis. RSC Med. Chem., 2020, 11(1), 92-97.
[http://dx.doi.org/10.1039/C9MD00466A] [PMID: 33479607]
[213]
Zeiler, M.J.; Melander, R.J.; Melander, C. Second‐generation meridianin analogues inhibit the formation of mycobacterium smegmatis biofilms and sensitize polymyxin‐resistant gram‐negative bacteria to colistin. ChemMedChem, 2020, 15(17), 1672-1679.
[http://dx.doi.org/10.1002/cmdc.202000438] [PMID: 32662926]
[214]
Safwat, N.A.; Kashef, M.T.; Aziz, R.K.; Amer, K.F.; Ramadan, M.A. Quercetin 3-O-Glucoside Recovered from the Wild Egyptian Sahara Plant, Euphorbia Paralias L., Inhibits Glutamine Synthetase and Has Antimycobacterial Activity; Elsevier Ltd, 2018, Vol. 108, .
[215]
Ni, H.J.; Lv, S.Y.; Sheng, Y.T.; Wang, H.; Chu, X.H.; Zhang, H.W. Optimization of fermentation conditions and medium compositions for the production of chrysomycin a by a marine-derived strain Streptomyces sp. 891. Prep. Biochem. Biotechnol., 2021, 51(10), 998-1003.
[http://dx.doi.org/10.1080/10826068.2021.1885046] [PMID: 33600297]
[216]
Herzon, S.B.; Herzon, S.B. New leads for the treatment of multidrug resistant mycobacterium tuberculosis. ACS Cent. Sci., 2020, 6(6), 833-835.
[http://dx.doi.org/10.1021/acscentsci.0c00684] [PMID: 32607429]
[217]
Muralikrishnan, B.; Edison, L.K.; Dusthackeer, A.; Jijimole, G.R.; Ramachandran, R.; Madhavan, A.; Kumar, R.A.; Chrysomycin, A. Chrysomycin A inhibits the topoisomerase I of mycobacterium tuberculosis. J. Antibiot., 2022, 75(4), 226-235.
[http://dx.doi.org/10.1038/s41429-022-00503-z] [PMID: 35136191]
[218]
Sabdaningsih, A.; Liu, Y.; Mettal, U.; Heep, J.; Riyanti; Wang, L.; Cristianawati, O.; Nuryadi, H.; Triandala Sibero, M.; Marner, M.; Radjasa, O.K.; Sabdono, A.; Trianto, A.; Schäberle, T.F. A new citrinin derivative from the indonesian marine sponge-associated fungus penicillium citrinum. Mar. Drugs, 2020, 18(4), 227-238.
[http://dx.doi.org/10.3390/md18040227] [PMID: 32344725]
[219]
Sarkar, A.; Ghosh, S.; Shaw, R.; Patra, M.M.; Calcuttawala, F.; Mukherjee, N.; Das Gupta, S.K. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PLoS One, 2020, 15(2), e0228657.
[http://dx.doi.org/10.1371/journal.pone.0228657] [PMID: 32017790]
[220]
Elnaas, A.R.; Grice, D.; Han, J.; Feng, Y.; Capua, A.D.; Mak, T.; Laureanti, J.A.; Buchko, G.W.; Myler, P.J.; Cook, G.; Quinn, R.J.; Liu, M. Discovery of a natural product that binds to the mycobacterium tuberculosis protein Rv1466 using native mass spectrometry. Molecules, 2020, 25(10), 2384.
[http://dx.doi.org/10.3390/molecules25102384] [PMID: 32455540]
[221]
Ravindran, R.; Chakrapani, G.; Mitra, K.; Doble, M. Inhibitory activity of traditional plants against mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)—A cell division protein. PLoS One, 2020, 15(5), e0232482.
[http://dx.doi.org/10.1371/journal.pone.0232482] [PMID: 32357366]
[222]
Lv, H.; Wang, K.; Xue, Y.; Chen, J.; Su, H.; Zhang, J.; Wu, Y.; Jia, J.; Bi, H.; Wang, H.; Hong, K.; Li, X. Three new metabolites from the marine-derived fungus aspergillus sp. WHUF03110. Nat. Prod. Commun., 2021, 16(10), 1934578X2110550.
[http://dx.doi.org/10.1177/1934578X211055009]
[223]
Donoso, V.; Bacho, M.; Núñez, S.; Rovirosa, J.; San-Martín, A.; Leiva, S. Antimicrobial diterpenes from azorella species against gram-positive bacteria. Nat. Prod. Commun., 2015, 10(11), 1934578X1501001.
[http://dx.doi.org/10.1177/1934578X1501001127] [PMID: 26749825]
[224]
Bockman, M.R.; Engelhart, C.A.; Cramer, J.D.; Howe, M.D.; Mishra, N.K.; Zimmerman, M.; Larson, P.; Alvarez-Cabrera, N.; Park, S.W.; Boshoff, H.I.M.; Bean, J.M.; Young, V.G., Jr; Ferguson, D.M.; Dartois, V.; Jarrett, J.T.; Schnappinger, D.; Aldrich, C.C. Investigation of (S)-(−)-Acidomycin: A selective antimycobacterial natural product that inhibits biotin synthase. ACS Infect. Dis., 2019, 5(4), 598-617.
[http://dx.doi.org/10.1021/acsinfecdis.8b00345] [PMID: 30652474]
[225]
Omokhua-Uyi, A.G.; Madikizela, B.; Aro, A.O.; Abdalla, M.A.; Van Staden, J.; McGaw, L.J. Flavonoids of Chromolaena odorata (L.) R.M.King & H.Rob. as potential leads for treatment against tuberculosis. S. Afr. J. Bot., 2023, 158, 158-165.
[http://dx.doi.org/10.1016/j.sajb.2023.05.002] [PMID: 37206481]
[226]
Ramadwa, T.E.; Awouafack, M.D.; Sonopo, M.S.; Eloff, J.N. Antibacterial and Antimycobacterial Activity of Crude Extracts, Fractions, and Isolated Compounds From Leaves of Sneezewood, Ptaeroxylon Obliquum; Rutaceae, 2019.
[http://dx.doi.org/10.1177/1934578X19872927]
[227]
Hochfellner, C.; Evangelopoulos, D.; Zloh, M.; Wube, A.; Guzman, J.D.; McHugh, T.D.; Kunert, O.; Bhakta, S.; Bucar, F. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J. Appl. Microbiol., 2015, 118(4), 864-872.
[http://dx.doi.org/10.1111/jam.12753] [PMID: 25604161]
[228]
Pereira, A.O.; Avila, J.M.; do Carmo, G.; Siqueira, F.S.; Campos, M.M.A.; Back, D.F.; Morel, A.F.; Dalcol, I.I. Chemical composition, antimicrobial and antimycobacterial activities of Aristolochia triangularis Cham. from Brazil. Ind. Crops Prod., 2018, 121, 461-467.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.052]
[229]
de Almeida, A.L.; Caleffi-Ferracioli, K.R.; de L Scodro, R.B.; Baldin, V.P.; Montaholi, D.C.; Spricigo, L.F.; Nakamura-Vasconcelos, S.S.; Hegeto, L.A.; Sampiron, E.G.; Costacurta, G.F.; dos S Yamazaki, D.A.; F Gauze, G.; Siqueira, V.L.D.; Cardoso, R.F.; Cardoso, R.F. Eugenol and derivatives activity against mycobacterium tuberculosis, nontuberculous mycobacteria and other bacteria. Future Microbiol., 2019, 14(4), 331-344.
[http://dx.doi.org/10.2217/fmb-2018-0333] [PMID: 30757916]
[230]
Bamberger, D.; Jantzer, N.; Leidner, K.; Arend, J.; Efferth, T. Fighting mycobacterial infections by antibiotics, phytochemicals and vaccines. Microbes Infect., 2011, 13(7), 613-623.
[http://dx.doi.org/10.1016/j.micinf.2010.09.002] [PMID: 20832501]
[231]
Alvarenga, D.J.; Matias, L.M.F.; Oliveira, L.M.; Leão, L.P.M.O.; Hawkes, J.A.; Raimundo, B.V.B.; Castro, L.F.D.; Campos, M.M.A.; Siqueira, F.S.; Santos, T.; Carvalho, D.T. Exploring how structural changes to new Licarin A derivatives effects their bioactive properties against rapid growing mycobacteria and biofilm formation. Microb. Pathog., 2020, 144, 104203.
[http://dx.doi.org/10.1016/j.micpath.2020.104203] [PMID: 32304794]
[232]
Belardinelli, J.M.; Verma, D.; Li, W.; Avanzi, C.; Wiersma, C.J.; Williams, J.T.; Johnson, B.K.; Zimmerman, M.; Whittel, N.; Angala, B.; Wang, H.; Jones, V.; Dartois, V.; de Moura, V.C.N.; Gonzalez-Juarrero, M.; Pearce, C.; Schenkel, A.R.; Malcolm, K.C.; Nick, J.A.; Charman, S.A.; Wells, T.N.C.; Podell, B.K.; Vennerstrom, J.L.; Ordway, D.J.; Abramovitch, R.B.; Jackson, M. Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in mycobacterium abscessus. Sci. Transl. Med., 2022, 14(633), eabj3860.
[http://dx.doi.org/10.1126/scitranslmed.abj3860] [PMID: 35196022]
[233]
García-Davis, S.; Leal-López, K.; Molina-Torres, C.A.; Vera-Cabrera, L.; Díaz-Marrero, A.R.; Fernández, J.J.; Carranza-Rosales, P.; Viveros-Valdez, E. Antimycobacterial activity of laurinterol and aplysin from laurencia johnstonii. Mar. Drugs, 2020, 18(6), 287.
[http://dx.doi.org/10.3390/md18060287] [PMID: 32486286]
[234]
Aro, A.O.; Dzoyem, J.P.; Awouafack, M.D.; Selepe, M.A.; Eloff, J.N.; McGaw, L.J. Fractions and isolated compounds from Oxyanthus speciosus subsp. stenocarpus (Rubiaceae) have promising antimycobacterial and intracellular activity. BMC Complement. Altern. Med., 2019, 19(1), 108.
[http://dx.doi.org/10.1186/s12906-019-2520-x] [PMID: 31117999]
[235]
Alves, J.A.; Mantovani, A.L.L.; Martins, M.H.G.; Abrao, F.; Lucarini, R.; Crotti, A.E.M.; Martins, C.H.G. Antimycobacterial activity of some commercially available plant-derived essential oils. Chem. Nat. Compd., 2015, 51(2), 353-355.
[http://dx.doi.org/10.1007/s10600-015-1281-0]
[236]
Kazakova, O.; Lopatina, T.; Giniyatullina, G.; Mioc, M.; Soica, C. Antimycobacterial activity of azepanobetulin and its derivative: In vitro, in vivo, ADMET and docking studies. Bioorg. Chem., 2020, 104, 104209.
[http://dx.doi.org/10.1016/j.bioorg.2020.104209] [PMID: 32911190]
[237]
Karkare, S.; Chung, T.T.H.; Collin, F.; Mitchenall, L.A.; McKay, A.R.; Greive, S.J.; Meyer, J.J.M.; Lall, N.; Maxwell, A. The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J. Biol. Chem., 2013, 288(7), 5149-5156.
[http://dx.doi.org/10.1074/jbc.M112.419069] [PMID: 23275348]
[238]
Muzitano, M.F.; Biá Ventura, T.L.; da Silva Machado, F.L.; de Araujo, M.H.; de Souza Gestinari, L.M.; Kaiser, C.R.; Esteves, F.A.; Lasunskaia, E.B.; Soares, A.R. Nitric oxide production inhibition and anti-mycobacterial activity of extracts and halogenated sesquiterpenes from the Brazilian red alga laurencia dendroidea J. Agardh. Pharmacogn. Mag., 2015, 11(44)(Suppl. 4), 611.
[http://dx.doi.org/10.4103/0973-1296.172972] [PMID: 27013803]
[239]
Patel, Y.S.; Mistry, N.; Mehra, S. Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis, 2019, 115, 146-153.
[http://dx.doi.org/10.1016/j.tube.2019.03.004] [PMID: 30948170]
[240]
Tseng, C.Y.; Sun, M.F.; Li, T.C.; Lin, C.T. Effect of coptis chinensis on biofilm formation and antibiotic susceptibility in mycobacterium abscessus. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9754357] [PMID: 33224261]
[241]
Sirichoat, A.; Kham-ngam, I.; Kaewprasert, O.; Ananta, P.; Wisetsai, A.; Lekphrom, R.; Faksri, K. Assessment of antimycobacterial activities of pure compounds extracted from Thai medicinal plants against clarithromycin-resistant mycobacterium abscessus. PeerJ, 2021, 9, e12391.
[http://dx.doi.org/10.7717/peerj.12391] [PMID: 34760385]
[242]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[243]
Kumar, G.; Kiran Tudu, A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg. Med. Chem., 2023, 80, 117187.
[http://dx.doi.org/10.1016/j.bmc.2023.117187] [PMID: 36731248]
[244]
Gröblacher, B.; Kunert, O.; Bucar, F. Compounds of Alpinia katsumadai as potential efflux inhibitors in mycobacterium smegmatis. Bioorg. Med. Chem., 2012, 20(8), 2701-2706.
[http://dx.doi.org/10.1016/j.bmc.2012.02.039] [PMID: 22459211]
[245]
Solnier, J.; Martin, L.; Bhakta, S.; Bucar, F. Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and pathogenic intracellular mycobacterial species. Molecules, 2020, 25(3), 734.
[http://dx.doi.org/10.3390/molecules25030734] [PMID: 32046221]
[246]
Tran, H.T.; Solnier, J.; Pferschy-Wenzig, E.M.; Kunert, O.; Martin, L.; Bhakta, S.; Huynh, L.; Le, T.M.; Bauer, R.; Bucar, F. Antimicrobial and efflux pump inhibitory activity of carvotacetones from sphaeranthus africanus against mycobacteria. Antibiotics, 2020, 9(7), 390.
[http://dx.doi.org/10.3390/antibiotics9070390] [PMID: 32650510]
[247]
Šimunović, K.; Solnier, J.; Alperth, F.; Kunert, O.; Smole Možina, S.S.; Bucar, F. Efflux pump inhibition and resistance modulation in mycobacterium smegmatis by peucedanum ostruthium and its coumarins. Antibiotics, 2021, 10(9), 1075.
[http://dx.doi.org/10.3390/antibiotics10091075] [PMID: 34572657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy