Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Modulation of Triton X-100 Aqueous Micelle Interface by Ionic Liquid: A Molecular Level Interaction Studied by Time-resolved Fluorescence Spectroscopy

Author(s): Rajib Pramanik* and Sagar Srivastava

Volume 14, Issue 2, 2024

Published on: 26 January, 2024

Page: [116 - 132] Pages: 17

DOI: 10.2174/0118779468263953231022204147

Price: $65

conference banner
Abstract

Background: Self-assembly structure is an important area of research for understanding biological systems, owing to its resemblance to the membrane structure of the phospholipid bilayer. In a self-assembly medium, chemical reactions and chemical or physical processes are dramatically different than the bulk phase. Understanding this process in synthesizing self-assembly structures may allow us to explore various biological processes occurring in cell membranes.

Objective: The study aimed to understand water dynamics in the TX-100 micellar interface via steady state and a time-resolved fluorescence spectroscopy study. The objective was also to determine the two different ionic liquids (ILs), namely 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]) and 1-decyl-3-methyl imidazolium tetrafluoroborate ([dmim][BF4]), inducing surfactant aggregation changes at the molecular level. Also, the focus was on determining the hydration and its dynamics at the palisade layer of TX-100 micelle in the presence of two different ionic liquids.

Methods: Steady state and time-resolved fluorescence spectroscopy have been used to study TX-100 micellar systems. Employing time-resolved spectroscopy, two chemical dynamic processes, solvation dynamics and rotational relaxation dynamics, have been studied to investigate structural changes in TX100 by adding ILs. Solvation dynamics was studied by measuring the time-dependent Stokes shift of the fluorescent probe. From the Stokes shift, time-resolved emission spectra were constructed to quantify the solvation dynamics. Also, using the polarization properties of light, time-resolved anisotropy was constructed to explore the rotation relaxation of the probe molecule.

Results: The absorption and emission spectra of C-153 in TX-100 were red-shifted in the presence of both the ILs. Also, the C-153 experienced faster solvation dynamics and rotational relaxation with the addition of both ILs. In our previous study, we observed a significantly increased rate of solvation dynamics with the addition of [bmim][BF4] (J. Phys. Chem. B, 115, 6957-6963) [38]. However, with the addition of the same amount of [dmim][BF4], the IL rate of solvation enhancement was more pronounced than with [bmim][BF4]. The faster solvation and rotational relaxation have been found to be associated with the penetration of more free water at the TX100 micellar stern layer, leading to increased fluidity of the micellar interface.

Conclusion: Upon incorporating ILs in TX100 micelle, substantially faster solvation dynamics of water as well as rotational relaxation dynamics of C-153 have been observed. By decreasing surfactant aggregations, [bmim][BF4] ILs facilitated more water molecules approaching the TX-100 micellar phase. On the other hand, [dmim][BF4] ILs comprising mixed micelles induced even more free water molecules at the palisade layer, yielding faster solvation dynamics in comparison to pure TX-100 micelle or TX100 micelle + [bmim][BF4] ILs systems. Time-resolved anisotropy study has also supported the finding and strengthened the solvation dynamics observation.

Keywords: RTILs, micelle, solvation, palisade layer, fluidity, aggregation, anisotropy.

Next »
Graphical Abstract
[1]
(a) Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci., 2019, 20(9), 2167.
[http://dx.doi.org/10.3390/ijms20092167] [PMID: 31052427];
(b) Lipowsky, R.; Sackmann, E. Structure and dynamics of membranes-from cell to vesicles; Elsevier Science: Amsterdam, 1995.
[2]
(a) Johnston, A.P.R. Life under the microscope: Quantifying live cell interactions to improve nanoscale drug delivery. ACS Sens., 2017, 2(1), 4-9.
[http://dx.doi.org/10.1021/acssensors.6b00725] [PMID: 28722440];
(b) Euliss, L.E.; DuPont, J.A.; Gratton, S.; DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev., 2006, 35(11), 1095-1104.
[http://dx.doi.org/10.1039/b600913c] [PMID: 17057838];
(c) Wang, T.Y.; Tsao, H.K.; Sheng, Y.J. Perforated vesicles of ABA triblock copolymers with ON/OFF-switchable nanopores. Macromolecules, 2020, 53(23), 10582-10590.
[http://dx.doi.org/10.1021/acs.macromol.0c01550];
(d) Dergunov, S.A.; Richter, A.G.; Kim, M.D.; Pingali, S.V.; Urban, V.S.; Pinkhassik, E. Deciphering and controlling structural and functional parameters of the shells in vesicle-templated polymer nanocapsules. Langmuir, 2019, 35(40), 13020-13030.
[http://dx.doi.org/10.1021/acs.langmuir.9b01495] [PMID: 31403799];
(e) de Oliveira, F.A.; Batista, C.C.S.; Černoch, P.; Sincari, V.; Jäger, A.; Jäger, E.; Giacomelli, F.C. Role of membrane features on the permeability behavior of polymersomes and the potential impacts on drug encapsulation and release. Biomacromolecules, 2023, 24(5), 2291-2300.
[http://dx.doi.org/10.1021/acs.biomac.3c00162] [PMID: 37103908];
(f) Lu, C.; Cao, J.; Cheng, Y.; Jin, Y.; Qu, Y.; Xu, J. Fluorescence turn-on NapTp in CTAB micelles for efficient detecting ferric ions in aqueous system. Sens. Actuators B Chem., 2018, 255, 3102-3107.
[http://dx.doi.org/10.1016/j.snb.2017.09.135];
(g) Xing, L.B.; Yu, S.; Wang, X.J.; Wang, G.X.; Chen, B.; Zhang, L.P.; Tung, C.H.; Wu, L.Z. Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(ii) terpyridyl complex with a ferrocene unit in water. Chem. Commun., 2012, 48(88), 10886-10888.
[http://dx.doi.org/10.1039/c2cc35960j] [PMID: 23032803];
(h) Weingarten, A.S.; Kazantsev, R.V.; Palmer, L.C.; McClendon, M.; Koltonow, A.R.; Samuel, A.P.S.; Kiebala, D.J.; Wasielewski, M.R.; Stupp, S.I. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem., 2014, 6(11), 964-970.
[http://dx.doi.org/10.1038/nchem.2075] [PMID: 25343600];
(i) Potier, J.; Menuel, S.; Lyskawa, J.; Fournier, D.; Stoffelbach, F.; Monflier, E.; Woisel, P.; Hapiot, F. Thermoresponsive self-assembled cyclodextrin-end-decorated PNIPAM for aqueous catalysis. Chem. Commun., 2015, 51(12), 2328-2330.
[http://dx.doi.org/10.1039/C4CC09052G] [PMID: 25562619];
(j) Giust, S.; La Sorella, G.; Sperni, L.; Strukul, G.; Scarso, A. Substrate selective amide coupling driven by encapsulation of a coupling agent within a selfassembled hexameric capsule. Chem. Commun., 2015, 51(9), 1658-1661.
[http://dx.doi.org/10.1039/C4CC08833F] [PMID: 25501252];
(k) Kanwa, N.; De, S.K.; Maity, A.; Chakraborty, A. Interaction of aliphatic amino acids with zwitterionic and charged lipid membranes: hydration and dehydration phenomena. Phys. Chem. Chem. Phys., 2020, 22(6), 3234-3244.
[http://dx.doi.org/10.1039/C9CP06188F] [PMID: 31994545];
(l) Kanti De, S.; Kanwa, N.; Ahamed, M.; Chakraborty, A. Spectroscopic evidence for hydration and dehydration of lipid bilayers upon interaction with metal ions: a new physical insight. Phys. Chem. Chem. Phys., 2018, 20(21), 14796-14807.
[http://dx.doi.org/10.1039/C8CP01774C] [PMID: 29781031]
[3]
Quang, B.A.T.; Lenne, P.F. Membrane microdomains: From seeing to understanding. Front. Plant Sci., 2014, 18, 5-18.
[http://dx.doi.org/10.3389/fpls.2014.00018]
[4]
(a) Shohda, K.; Takahashi, K.; Suyama, A. A method of gentle hydration to prepare oil-free giant unilamellar vesicles that can confine enzymatic reactions. Biochem. Biophys. Rep., 2015, 3, 76-82.
[http://dx.doi.org/10.1016/j.bbrep.2015.07.005] [PMID: 29124169];
(b) Gong, F.; Du, N.; Hou, W. Vesicle formation of single-tailed amphiphilic alkyltrimethylammonium bromides in water induced by dehydration-rehydration. Soft Matter, 2022, 18(10), 2072-2081.
[http://dx.doi.org/10.1039/D1SM01753E] [PMID: 35199818]
[5]
Lu, C.; Hu, C.; Ritt, C.L.; Hua, X.; Sun, J.; Xia, H.; Liu, Y.; Li, D.W.; Ma, B.; Elimelech, M.; Qu, J. In situ characterization of dehydration during ion transport in polymeric nanochannels. J. Am. Chem. Soc., 2021, 143(35), 14242-14252.
[http://dx.doi.org/10.1021/jacs.1c05765] [PMID: 34431669]
[6]
Vanegas, J.M.; Pratt, L.R.; Muralidharan, A.; Rempe, S.B. Hydration mimicry by membrane ion channels. Annu. Rev. Phys. Chem., 2020, 71, 461-484.
[http://dx.doi.org/10.1146/annurev-physchem-012320-015457]
[7]
(a) Chattopadhyay, M.; Krok, E.; Orlikowska, H.; Schwille, P.; Franquelim, H.G.; Piatkowski, L. Hydration layer of only a few molecules controls lipid mobility in biomimetic membranes. J. Am. Chem. Soc., 2021, 143(36), 14551-14562.
[http://dx.doi.org/10.1021/jacs.1c04314] [PMID: 34342967];
(b) Nibali, V.C.; Khouzami, K.; Wanderlingh, U.; Branca, C.; D'Angelo, G. Study of the interaction of water with phospholipid bilayers by FTIR Spectroscopy. Physical, mathematical, and Natural Sciences, 2017.
[http://dx.doi.org/10.1478/AAPP.952A8];
(c) Fisette, O.; Päslack, C.; Barnes, R.; Isas, J.M.; Langen, R.; Heyden, M.; Han, S.; Schäfer, L.V. Hydration dynamics of a peripheral membrane protein. J. Am. Chem. Soc., 2016, 138(36), 11526-11535.
[http://dx.doi.org/10.1021/jacs.6b07005] [PMID: 27548572];
(d) Wood, K.; Plazanet, M.; Gabel, F.; Kessler, B.; Oesterhelt, D.; Tobias, D.J.; Zaccai, G.; Weik, M. Coupling of protein and hydration-water dynamics in biological membranes. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 18049-18054.
[http://dx.doi.org/10.1073/pnas.0706566104] [PMID: 17986611]
[8]
(a) Mahmoud, A.H.; Masters, M.R.; Yang, Y.; Lill, M.A. Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. Commun. Chem., 2020, 3(1), 19.
[http://dx.doi.org/10.1038/s42004-020-0261-x] [PMID: 36703428];
(b) Spitaleri, A.; Zia, S.R.; Di Micco, P.; Al-Lazikani, B.; Soler, M.A.; Rocchia, W. Tuning local hydration enables a deeper understanding of protein–ligand binding: The PP1-Src kinase case. J. Phys. Chem. Lett., 2021, 12(1), 49-58.
[http://dx.doi.org/10.1021/acs.jpclett.0c03075] [PMID: 33300337]
[9]
(a) Häussinger, D. The role of cellular hydration in the regulation of cell function. Biochem. J., 1996, 313(3), 697-710.
[http://dx.doi.org/10.1042/bj3130697] [PMID: 8611144];
(b) Balasubramanian, S.K.; Wolkers, W.F.; Bischof, J.C. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells. Biochim. Biophys. Acta Biomembr., 2009, 1788(5), 945-953.
[http://dx.doi.org/10.1016/j.bbamem.2009.02.009] [PMID: 19233120];
(c) Schliess, F.; Häussinger, D. Cell hydration and insulin signalling. Cell. Physiol. Biochem., 2000, 10(5-6), 403-408.
[http://dx.doi.org/10.1159/000016378] [PMID: 11125222]
[10]
Katherine Philpott, M.; Stanciu, C.E.; Kwon, Y.J.; Bustamante, E.E.; Greenspoon, S.A.; Ehrhardt, C.J. Analysis of cellular autofluorescence in touch samples by flow cytometry: Implications for front end separation of trace mixture evidence. Anal. Bioanal. Chem., 2017, 409(17), 4167-4179.
[http://dx.doi.org/10.1007/s00216-017-0364-0] [PMID: 28516277]
[11]
Miller, S.L.; Wiebenga-Sanford, B.P.; Rithner, C.D.; Levinger, N.E.; Levinger, N.E. Nanoconfinement raises the energy barrier to hydrogen atom exchange between water and glucose. J. Phys. Chem. B, 2021, 125(13), 3364-3373.
[http://dx.doi.org/10.1021/acs.jpcb.0c10681] [PMID: 33784460]
[12]
Correa, N.M.; Silber, J.J.; Riter, R.E.; Levinger, N.E. Nonaqueous polar solvents in reverse micelle systems. Chem. Rev., 2012, 112(8), 4569-4602.
[http://dx.doi.org/10.1021/cr200254q] [PMID: 22697434]
[13]
Vicente, F.A.; Malpiedi, L.P.; e Silva, F.A.; Pessoa, A., Jr; Coutinho, J.A.P.; Ventura, S.P.M. Design of novel aqueous micellar two-phase systems using ionic liquids as co-surfactants for the selective extraction of (bio)molecules. Separ. Purif. Tech., 2014, 135, 259-267.
[http://dx.doi.org/10.1016/j.seppur.2014.06.045]
[14]
Silva, M.S.C.; Santos-Ebinuma, V.C.; Lopes, A.M.; Rangel-Yagui, C.O. Dextran sulfate/Triton X two-phase micellar systems as an alternative first purification step for clavulanic acid. Fluid Phase Equilib., 2015, 399, 80-86.
[http://dx.doi.org/10.1016/j.fluid.2015.04.026]
[15]
(a) Hao, L.S.; Hu, P.; Nan, Y.Q. Salt effect on the rheological properties of the aqueous mixed cationic and anionic surfactant systems. Colloids Surf. A Physicochem. Eng. Asp., 2010, 361(1-3), 187-195.
[http://dx.doi.org/10.1016/j.colsurfa.2010.03.035];
(b) Zhang, L.; Kang, W.; Xu, D.; Feng, H.; Zhang, P.; Li, Z.; Lu, Y.; Wu, H. The rheological characteristics for the mixtures of cationic surfactant and anionic–nonionic surfactants: the role of ethylene oxide moieties. RSC Advances, 2017, 7(22), 13032-13040.
[http://dx.doi.org/10.1039/C6RA28071D]
[16]
Gutowski, K.E.; Broker, G.A.; Willauer, H.D.; Huddleston, J.G.; Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc., 2003, 125(22), 6632-6633.
[http://dx.doi.org/10.1021/ja0351802] [PMID: 12769563]
[17]
Somers, A.; Howlett, P.; MacFarlane, D.; Forsyth, M. A review of ionic liquid lubricants. Lubricants, 2013, 1(1), 3-21.
[http://dx.doi.org/10.3390/lubricants1010003]
[18]
Ojeda, C.B.; Rojas, F.S. Separation and preconcentration by cloud point extraction procedures for determination of ions: Recent trends and applications. Mikrochim. Acta, 2012, 177(1-2), 1-21.
[http://dx.doi.org/10.1007/s00604-011-0717-x]
[19]
Rodríguez-Escontrela, I.; Rodríguez-Palmeiro, I.; Rodríguez, O.; Arce, A.; Soto, A. Characterization and phase behavior of the surfactant ionic liquid tributylmethylphosphonium dodecylsulfate for enhanced oil recovery. Fluid Phase Equilib., 2016, 417, 87-95.
[http://dx.doi.org/10.1016/j.fluid.2016.02.021]
[20]
(a) Javadian, S.; Ruhi, V.; Heydari, A.; Asadzadeh Shahir, A.; Yousefi, A.; Akbari, J. Self-assembled CTAB nanostructures in aqueous/ionic liquid systems: Effects of hydrogen bonding. Ind. Eng. Chem. Res., 2013, 52(12), 4517-4526.
[http://dx.doi.org/10.1021/ie302411t];
(b) Dupont, J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc., 2004, 15(3), 341-350.
[http://dx.doi.org/10.1590/S0103-50532004000300002] [http://dx.doi.org/10.1590/S0103-50532004000300002]
[21]
Fonseca, G.S.; Machado, G.; Teixeira, S.R.; Fecher, G.H.; Morais, J.; Alves, M.C.M.; Dupont, J. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Interface Sci., 2006, 301(1), 193-204.
[http://dx.doi.org/10.1016/j.jcis.2006.04.073] [PMID: 16780858]
[22]
Moderassi, A.; Sifaoui, V.; Mielcarz, M.; Domanska, U.; Rogalski, M. Influence of molecular structure on the aggregation of imidazolium ionic liquids in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2007, 302, 181-205.
[http://dx.doi.org/10.1016/j.colsurfa.2007.02.020]
[23]
(a) e, D.; A, J. Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid Polym. Sci., 2002, 280(11), 1009-1014.
[http://dx.doi.org/10.1007/s00396-002-0723-y];
(b) Neves, A.C.S.; Valente, A.J.M.; Burrows, H.D.; Ribeiro, A.C.F.; Lobo, V.M.M. Effect of terbium(III) chloride on the micellization properties of sodium decyl- and dodecyl-sulfate solutions. J. Colloid Interface Sci., 2007, 306(1), 166-174.
[http://dx.doi.org/10.1016/j.jcis.2006.10.061] [PMID: 17107684]
[24]
(a) Behera, K.; Pandey, M.D.; Porel, M.; Pandey, S. Unique role of hydrophilic ionic liquid in modifying properties of aqueous Triton X-100. J. Chem. Phys., 2007, 127(18), 184501.
[http://dx.doi.org/10.1063/1.2785178] [PMID: 18020643];
(b) Guha, A.; Pandey, S. Mixed micelle formation by sodium dodecylsulfate and dodecyltrimethyl-ammonium bromide in aqueous ionic liquid media. J. Mol. Liq., 2022, 371, 121085.
[http://dx.doi.org/10.1016/j.molliq.2022.121085];
(c) Phani Kumar, B.V.N.; Reddy, R.R.; Pan, A.; Aswal, V.K.; Tsuchiya, K.; Prameela, G.K.S.; Abe, M.; Mandal, A.B.; Moulik, S.P.; Moulik, S.P. Physicochemical understanding of self-aggregation and microstructure of a surface-active ionic liquid [C 4 mim] [C 8 OSO 3] mixed with a reverse pluronic 10R5 (PO 8 EO 22 PO 8). ACS Omega, 2018, 3(5), 5155-5164.
[http://dx.doi.org/10.1021/acsomega.8b00267] [PMID: 31458730];
(d) More, U.; Vaid, Z.; Bhamoria, P.; Kumar, A.; Malek, N.I. Effect of [Cnmim][Br] based ionic liquids on the aggregation behavior of tetradecyl-trimethylammonium bromide in aqueous medium. J. Solution Chem., 2015, 44(3-4), 850-874.
[http://dx.doi.org/10.1007/s10953-015-0318-0]
[25]
Fürstenberg, A.; Vauthey, E. Ultrafast excited-state dynamics in biological environments. Chimia, 2007, 61(10), 617-620.
[http://dx.doi.org/10.2533/chimia.2007.617]
[26]
Sarkar, N.; Datta, A.; Das, S.; Bhattacharyya, K. Solvation dynamics of coumarin 480 in micelles. J. Phys. Chem., 1996, 100(38), 15483-15486.
[http://dx.doi.org/10.1021/jp960630g]
[27]
Bhattacharyya, K.; Bagchi, B. Slow dynamics of constrained water in complex geometries. J. Phys. Chem. A, 2000, 104(46), 10603-10613.
[http://dx.doi.org/10.1021/jp001878f]
[28]
(a) Nandi, N.; Bhattacharyya, K.; Bagchi, B. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev., 2000, 100(6), 2013-2046.
[http://dx.doi.org/10.1021/cr980127v] [PMID: 11749282];
(b) Mukherjee, S.; Mondal, S.; Acharya, S.; Bagchi, B. DNA solvation dynamics. J. Phys. Chem. B, 2018, 122(49), 11743-11761.
[http://dx.doi.org/10.1021/acs.jpcb.8b08140] [PMID: 30277394];
(c) Parisse, G.; Narzi, D.; Belviso, B.D.; Capriati, V.; Caliandro, R.; Trotta, M.; Guidoni, L. Unveiling the influence of hydrated deep eutectic solvents on the dynamics of water-soluble proteins. J. Phys. Chem. B., 2023, 127(29), 6487-6499.
[http://dx.doi.org/10.1021/acs.jpcb.3c00935]
[29]
Samanta, P.; Halder, P.; Bahadur, P.; Dutta Choudhury, S.; Pal, H. Effect of ionic liquids as cosurfactants on photoinduced electron transfer in tetronic Micelles. J. Phys. Chem. B, 2018, 122(44), 10190-10201.
[http://dx.doi.org/10.1021/acs.jpcb.8b08766] [PMID: 30351120]
[30]
Banerjee, P.; Mondal, D.; Ghosh, M.; Mukherjee, D.; Nandi, P.K.; Maiti, T.K.; Sarkar, N. Selective self-assembly of 5-Fluorouracil through nonlinear solvent response modulates membrane dynamics. Langmuir, 2020, 36(10), 2707-2719.
[http://dx.doi.org/10.1021/acs.langmuir.9b03544] [PMID: 32097563]
[31]
(a) Ma, Y.; Liang, T.; Qiao, S.; Liu, X.; Lang, Z. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Science, 2023.
[http://dx.doi.org/10.34133/ultrafastscience.0024];
(b) Lang, Z.; Qiao, S.; Ma, Y. Fabry–Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light. Advanced Manufacturing., 2023, 4, 23.
[32]
(a) Pal, S.; Balasubramanian, S.; Bagchi, B. Temperature dependence of water dynamics at an aqueous micellar surface: Atomistic molecular dynamics simulation studies of a complex system. J. Chem. Phys., 2002, 117(6), 2852-2859.
[http://dx.doi.org/10.1063/1.1491871];
(b) Pal, S.; Balasubramanian, S.; Bagchi, B. Identity, energy, and environment of interfacial water molecules in a micellar solution. J. Phys. Chem. B, 2003, 107(22), 5194-5202.
[http://dx.doi.org/10.1021/jp022349+] [http://dx.doi.org/10.1021/jp022349+]
[33]
(a) Pal, S.; Balasubramanian, S.; Bagchi, B. Diffusion and viscosity in a supercooled polydisperse system. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2003, 67, 061502-061511.
[http://dx.doi.org/10.1103/PhysRevE.67.061502] [PMID: 16241228];
(b) Balasubramanian, S.; Pal, S.; Bagchi, B. Hydrogen-bond dynamics near a micellar surface: Origin of the universal slow relaxation at complex aqueous interfaces. Phys. Rev. Lett., 2002, 89(11), 115505-115508.
[http://dx.doi.org/10.1103/PhysRevLett.89.115505] [PMID: 12225151]
[34]
Đorđevic, D.; Beckwith, J.S.; Yarema, M.; Rosspeintner, A.; Yazdani, N.; Leuthold, J.; Vauthey, E.; Wood, V. Machine learning for analysis of time-resolved luminescence dat. ACS Photonics, 2018, 5, 4888-4895.
[http://dx.doi.org/10.1021/acsphotonics.8b01047]
[35]
Maroncelli, M.; Fleming, G.R. Comparison of time-resolved fluorescence Stokes shift measurements to a molecular theory of solvation dynamics. J. Chem. Phys., 1988, 89(2), 875-881.
[http://dx.doi.org/10.1063/1.455210]
[36]
Sonu, S.; Kumari, S.; Saha, S.K. Solvation dynamics and rotational relaxation of coumarin 153 in mixed micelles of Triton X-100 and cationic gemini surfactants: Effect of composition and spacer chain length of gemini surfactants. Phys. Chem. Chem. Phys., 2016, 18(3), 1551-1563.
[http://dx.doi.org/10.1039/C5CP03835A] [PMID: 26750436]
[37]
Sonu; Kumari, S.; Saha, S.K. Effect of polymethylene spacer of cationic gemini surfactants on solvation dynamics and rotational relaxation of coumarin 153 in aqueous micelles. J. Phys. Chem. B, 2015, 119(30), 9751-9763.
[http://dx.doi.org/10.1021/acs.jpcb.5b03081] [PMID: 26107156]
[38]
Kumbhakar, M.; Goel, T.; Mukherjee, T.; Pal, H. Nature of the water molecules in the palisade layer of a triton X-100 micelle in the presence of added salts: A solvation dynamics study. J. Phys. Chem. B, 2005, 109(29), 14168-14174.
[http://dx.doi.org/10.1021/jp0520291] [PMID: 16852779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy