Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Design of Cyclobut-3-Ene-1,2 Dione Derivatives as Anti-tubercular Agents

Author(s): N. Ramalakshmi*, K. Bhuvaneshwaran, A. Prabakaran, N.J. Thulasiraman, M. Bhavani, R. Aysvaryah and S. Arunkumar

Volume 20, Issue 2, 2024

Published on: 25 January, 2024

Page: [132 - 149] Pages: 18

DOI: 10.2174/0115734080266495231208045622

Price: $65

Abstract

Introduction: Recent studies have shown modified cyclobutene derivatives as potent anti- tubercular agents, and the discovery of drugs against strains of Mycobacterium tuberculosis is still a crucial challenge in the modern world.

Objective: The objective of the present study is to design and perform molecular docking studies and in-silico analysis of some novel cyclobut-3-ene-1,2 Dione derivatives with the aim of creating new, potential Mtb ATP synthase inhibitors.

Materials and Methods: The structures of 24 compounds of diamino-substituted cyclobut-3-ene-1,2 Dione derivatives against Mtb ATP synthase were drawn using ChemSketch. Further, molecular docking and in-silico studies for the prediction of drug-likeness and pharmacokinetic parameters were carried out.

Results: The docking studies of the novel compounds were done, and they had a better docking score with a good binding affinity towards the protein molecule. The synthesized compounds also comply with the in-silico prediction of drug-likeness and pharmacokinetic parameters and have shown good activity against Mtb ATP synthase.

Conclusion: The current study shows that the cyclobut-3-ene-1,2 Dione derivatives can serve as a better lead molecule against Mtb ATP synthase and can be involved in further drug discovery.

Keywords: Cyclobut-3-ene-1, 2 dione derivative, Mtb ATP synthase, pyridazine, molecular docking studies, in-silico studies, 1c17.

Graphical Abstract
[1]
Appleton DR, Pearce AN, Copp BR. anti-Tuberculosis natural products: Synthesis and biological evaluation of pyridoacridine alkaloids related to ascididemin. Tetrahedron 2010; 66(27-28): 4977-86.
[http://dx.doi.org/10.1016/j.tet.2010.05.033]
[2]
Banerjee DR, Biswas R, Das AK, Basak A. Design, synthesis and characterization of dual inhibitors against new targets FabG4 and HtdX of Mycobacterium tuberculosis. Eur J Med Chem 2015; 100: 223-34.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.007] [PMID: 26092447]
[3]
Brown JR, North EJ, Hurdle JG, et al. The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg Med Chem 2011; 19(18): 5585-95.
[http://dx.doi.org/10.1016/j.bmc.2011.07.034] [PMID: 21840723]
[4]
Cappoen D, Jacobs J, Nguyen Van T, et al. Straightforward palladium-mediated synthesis and biological evaluation of benzo[j]phenanthridine-7,12-diones as anti-tuberculosis agents. Eur J Med Chem 2012; 48: 57-68.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.033] [PMID: 22182928]
[5]
Fu J, He Z, Fu H, et al. Synthesis and evaluation of inhibitors of Mycobacterium tuberculosis UGM using bioisosteric replacement. Bioorg Med Chem 2022; 69(116896): 116896.
[http://dx.doi.org/10.1016/j.bmc.2022.116896] [PMID: 35777270]
[6]
Ganihigama DU, Sureram S, Sangher S, et al. Antimycobacterial activity of natural products and synthetic agents: Pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. Eur J Med Chem 2015; 89: 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.026] [PMID: 25462220]
[7]
Hiwarale DP, Chandane WB, Deshmukh SM, et al. Green synthesis, antimycobacterial evaluation and molecular docking studies of novel 2,3-dihydro-1H-pyrazol-4-ylnaphthalene-1,4-diones. J Mol Struct 2023; 1286(135556): 135556.
[http://dx.doi.org/10.1016/j.molstruc.2023.135556]
[8]
Joseph J, Nagashri K, Janaki GB. Novel metal based anti-tuberculosis agent: Synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem 2012; 49: 151-63.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.006] [PMID: 22321994]
[9]
Kabir MS, Namjoshi OA, Verma R, et al. A new class of potential anti-tuberculosis agents: Synthesis and preliminary evaluation of novel acrylic acid ethyl ester derivatives. Bioorg Med Chem 2010; 18(12): 4178-86.
[http://dx.doi.org/10.1016/j.bmc.2010.05.016] [PMID: 20537903]
[10]
Karthik KK, Seenivasan PS, Kumar V, Mohan DT. Synthesis of quinoline coupled[1,2,3]-triazoles as a promising class of anti-tuberculosis agents. Carbohydr Res 2011; 346(14): 2084-90.
[http://dx.doi.org/10.1016/j.carres.2011.06.028] [PMID: 21767828]
[11]
Naidoo K, Perumal R. Advances in tuberculosis control during the past decade. Lancet Respir Med 2023; 11(4): 311-3.
[http://dx.doi.org/10.1016/S2213-2600(23)00090-5] [PMID: 36966793]
[12]
Daniel TM. The history of tuberculosis. Respir Med 2006; 100(11): 1862-70.
[http://dx.doi.org/10.1016/j.rmed.2006.08.006] [PMID: 16949809]
[13]
Liu Y, Zhong W, Li S. Syntheses and studies of hydantoin derivatives as potential anti-tuberculosis inhibitors. Chin Chem Lett 2012; 23(2): 133-6.
[http://dx.doi.org/10.1016/j.cclet.2011.11.017]
[14]
Mahajan NS, Dhawale SC. Linked pyridinyl-thiadiazoles: Design and synthesis as potential candidate for treatment of XDR and MDR tuberculosis. Eur J Med Chem 2015; 102: 243-8.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.039] [PMID: 26280920]
[15]
Matviiuk T, Rodriguez F, Saffon N, et al. Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Eur J Med Chem 2013; 70: 37-48.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.041] [PMID: 24140915]
[16]
Muscia GC, Buldain GY, Asís SE. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur J Med Chem 2014; 73: 243-9.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[17]
World Health organization Global Tuberculosis Report Available from https://www.who.int/publications/i/item/9789240013131 2020
[18]
Onajole OK, Govender K, Govender P, et al. Pentacyclo-undecane derived cyclic tetra-amines: Synthesis and evaluation as potent anti-tuberculosis agents. Eur J Med Chem 2009; 44(11): 4297-305.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.015] [PMID: 19679378]
[19]
Patel SR, Gangwal R, Sangamwar AT, Jain R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur J Med Chem 2014; 85: 255-67.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[20]
Seung kJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 2015; 5(9): a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863]
[21]
Patel SR, Gangwal R, Sangamwar AT, Jain R. Synthesis, biological evaluation and 3D QSAR study of 2,4-disubstituted quinolines as anti-tuberculosis agents. Eur J Med Chem 2015; 93: 511-22.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.034] [PMID: 25747550]
[22]
Salunke SB, Azad AK, Kapuriya NP, et al. Design and synthesis of novel anti-tuberculosis agents from the celecoxib pharmacophore. Bioorg Med Chem 2015; 23(9): 1935-43.
[http://dx.doi.org/10.1016/j.bmc.2015.03.041] [PMID: 25818768]
[23]
Tiruveedhula VVNPB, Witzigmann CM, Verma R, et al. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. tuberculosis. Bioorg Med Chem 2013; 21(24): 7830-40.
[http://dx.doi.org/10.1016/j.bmc.2013.10.011] [PMID: 24200931]
[24]
Zhang H, Chen Y, Zhang Y, et al. Identification of anti-Mycobacterium tuberculosis agents targeting the interaction of bacterial division proteins FtsZ and SepFe. Acta Pharm Sin B 2023; 13(5): 2056-70.
[http://dx.doi.org/10.1016/j.apsb.2023.01.022] [PMID: 37250168]
[25]
Keri RS, Reddy DS, Kumari S, et al. Design, synthesis, single-crystal X-ray and docking studies of imidazopyridine analogues as potent anti-TB agents. J Mol Struct 2024; 1295: 136540.
[http://dx.doi.org/10.1016/j.molstruc.2023.136540]
[26]
Fan C, Chen J, Xu Z, Yin P, Wu C, Sun T. Synthesis, crystal structure,anti-tuberculosis activity and toxicity prediction of N-(4-bromophenyl)-3-(5-(4-chloro-3-nitrophenyl)-1,3,4-oxadiazol-2-yl)benzenesulfonamide. J Mol Struct 2024; 1297: 136901.
[http://dx.doi.org/10.1016/j.molstruc.2023.136901]
[27]
Farrell KD, Gao Y, Hughes DA, et al. 3-Methoxy-2-phenylimidazo[1,2-b]pyridazines highly active against Mycobacterium tuberculosis and Mycobacterium marinum. Eur J Med Chem 2023; 259(115637): 115637.
[http://dx.doi.org/10.1016/j.ejmech.2023.115637] [PMID: 37524009]
[28]
George J, Rathika Nath G, Sheena Mary Y, Shyma Mary Y, Al-Otaibi JS, Rajesh K. Synthesis, crystal structure, molecular dynamics, docking and in-vitro studies of cyclododecanonethiosemicarbazone, a promising anti tuberculosis agent. Results in Chemistry 2023; 5(100889): 100889.
[http://dx.doi.org/10.1016/j.rechem.2023.100889]
[29]
Gollnick H, Barber J, Wilkinson RJ, Newton S, Garg A. IL-27 inhibits anti- Mycobacterium tuberculosis innate immune activity of primary human macrophages. Tuberculosis 2023; 139(102326): 102326.
[http://dx.doi.org/10.1016/j.tube.2023.102326] [PMID: 36863206]
[30]
Hearn MJ, Pugh CD, Cynamon MH. Synthesis of functionalized sulfonamides as antitubercular agents. Phosphorus Sulfur Silicon Relat Elem 2023; 198(9): 733-51.
[http://dx.doi.org/10.1080/10426507.2023.2196079]
[31]
Munnaluri RK, Chevula J, Patnam N, Yamini L, Manga V. One-pot synthesis, spectral characterization, biological evaluation, molecular docking studies and in silico ADME/Tox profiling of new 2,4,5 triaryl imidazole derivatives as anti tubercular agents. Indian J Tuberc 2023; 70(4): 451-9.
[http://dx.doi.org/10.1016/j.ijtb.2023.01.005] [PMID: 37968051]
[32]
Paz JD, de Moura Sperotto DN, Ramos AS, et al. Novel 4-aminoquinolines: Synthesis, inhibition of the Mycobacterium tuberculosis enoyl-acyl carrier protein reductase, antitubercular activity, SAR, and preclinical evaluation. Eur J Med Chem 2023; 245(Pt 1): 114908.
[http://dx.doi.org/10.1016/j.ejmech.2022.114908] [PMID: 36435016]
[33]
Priya MRK, Balasubramanian M, Nirmal CR, Dusthakeer A, Iyer PR. Determination of anti-tuberculosis activity of biosynthesized gold nanocompounds against M. tuberculosis H37RV. Indian J Tuberc 2023; 70(3): 329-38.
[http://dx.doi.org/10.1016/j.ijtb.2022.09.002] [PMID: 37562909]
[34]
Rasgania J, Gavadia R, Varma-Basil M, et al. Design and synthesis of isoniazid-based pyrazolines as potential inhibitors of Mycobacterium tuberculosis with promising radical scavenging action: In-vitro and in-silico evaluations. J Mol Struct 2024; 1295(136657): 136657.
[http://dx.doi.org/10.1016/j.molstruc.2023.136657]
[35]
Shinde A, Thakare PP, Nandurkar Y, Bhoye M, Chavan A, Mhaske PC. Synthesis of 2-(6-substituted quinolin-4-yl)-1-(4-aryl-1H-1,2,3-triazol-1-yl) propan-2-ol as potential antifungal and antitubercular agents. Eur J Med Chem 2023; 7(100102): 100102.
[http://dx.doi.org/10.1016/j.ejmcr.2023.100102]
[36]
Dhumal T. Synthesis of new amide linked biphenoloxy 1,2,3-triazoles as antitubercular and antimicrobial agents. Polycycl Aromat Compd 2023; 1-13.
[http://dx.doi.org/10.1080/10406638.2023.2225671]
[37]
Vasudevan N, Motiwala Z, Ramesh R, et al. Synthesis, biological evaluation and docking studies of silicon incorporated diarylpyrroles as MmpL3 inhibitors: An effective strategy towards development of potent anti-tubercular agents. Eur J Med Chem 2023; 259(115633): 115633.
[http://dx.doi.org/10.1016/j.ejmech.2023.115633] [PMID: 37524010]
[38]
Central TB Division. India TB Report 2022 2023. Available from: https://tbcindia.gov.in/index1.php?lang=1&level=1&sublinkid=5613&lid=3658
[39]
Li P, Wang B, Li G, et al. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur J Med Chem 2020; 206: 112538.
[http://dx.doi.org/10.1016/j.ejmech.2020.112538] [PMID: 32927218]
[40]
Zhou Y, Shao M, Wang W, et al. Discovery of 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as new cytochrome bd oxidase inhibitors for tuberculosis therapy. Eur J Med Chem 2023; 245(Pt 1): 114896.
[http://dx.doi.org/10.1016/j.ejmech.2022.114896] [PMID: 36370551]
[41]
Lakshmanan M, Xavier AS. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis. J Young Pharm 2013; 5(4): 112-5.
[http://dx.doi.org/10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[42]
Gramatica P, Cassani S, Chirico N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 2014; 35(13): 1036-44.
[http://dx.doi.org/10.1002/jcc.23576] [PMID: 24599647]
[43]
Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011; 32(7): 1466-74.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[44]
Huang Z. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent. Bioorg Med Chem Lett 2022; 71: 128824.
[http://dx.doi.org/10.1016/j.bmcl.2022.128824]
[45]
Xu Zhi, Zhao S, Zaosheng Lv, et al. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur J Med Chem 2019; 162: 266-76.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025]
[46]
Gao C, Le C, Zhi X, et al. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 2019; 163: 404-12.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001]
[47]
Natarajan R, Puratchikody A, Muralidharan V, Doble M, Subramani A. 2D QSAR analysis of substituted quinoxalines for their antitubercular and antileptospiral activities. Curr Computeraided Drug Des 2019; 15(2): 182-92.
[http://dx.doi.org/10.2174/1573409914666181011145922]
[48]
Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC Advances 2021; 11(60): 38079-93.
[http://dx.doi.org/10.1039/D1RA07377J] [PMID: 35498092]
[49]
Chirico N, Sangion A, Gramatica P, Bertato L, Casartelli I, Papa E. QSARINS-Chem standalone version: A new platform-independent software to profile chemicals for physico-chemical properties, fate, and toxicity. J Comput Chem 2021; 42(20): 1452-60.
[http://dx.doi.org/10.1002/jcc.26551] [PMID: 33973667]
[50]
Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics 2008; 24(1): 14.
[http://dx.doi.org/10.1002/0471250953.bi0814s24] [PMID: 19085980]
[51]
Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: Applications of autodock. J Mol Recognit 1996; 9(1): 1-5.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6] [PMID: 8723313]
[52]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015; 1263: 243-50.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[53]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[54]
Lange C, Barry CE III, Horsburgh CR Jr. Treatments of multidrug-resistant tuberculosis: Light at the end of the tunnel. Am J Respir Crit Care Med 2022; 205(10): 1142-4.
[http://dx.doi.org/10.1164/rccm.202202-0393ED] [PMID: 35320062]
[55]
Mardianingrum R, Sri RNE, Suhardiana E, Ruswanto R. Docking and molecular dynamic study of isoniazid derivatives as anti-tuberculosis drug candidate. Chem Data Collect 2021; 32: 100647.
[http://dx.doi.org/10.1016/j.cdc.2021.100647]
[56]
Anindra SAK. Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238: 114454.
[http://dx.doi.org/10.1016/j.ejmech.2022.114454]
[57]
Alcaraz M, Sharma B, Roquet-Banères F, et al. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur J Med Chem 2022; 239: 114531.
[http://dx.doi.org/10.1016/j.ejmech.2022.114531]
[58]
Subramani AK, Sivaperuman A, Natarajan R, Bhandare RR, Shaik AB. QSAR and molecular docking studies of pyrimidine-coumarin-triazole conjugates as prospective anti-breast cancer agents. Molecules 2022; 27(6): 1845.
[http://dx.doi.org/10.3390/molecules27061845] [PMID: 35335208]
[59]
Priya R. Biuković G, Manimekalai MSS, Lim J, Rao SPS, Grüber G. Solution structure of subunit γ (γ1-204) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of γ165-178, representing a novel TB drug target. J Bioenerg Biomembr 2013; 45(1-2): 121-9.
[http://dx.doi.org/10.1007/s10863-012-9486-4] [PMID: 23104121]
[60]
Desale VJ, Mali SN, Thorat BR. Yamgar, Ramesh S. Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzobenzohydrazides. Curr Comput Aided Drug Des 2021; 17(4): 493-503.
[http://dx.doi.org/10.2174/1573409916666200615141047]
[61]
Tilal E, Malik SM, Magdi AM. Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg Chem 2019; 88: 102969.
[http://dx.doi.org/10.1016/j.bioorg.2019.102969]
[62]
Alessandra CP, Marcus VNS, Maria CSL, et al. Synthesis, potent anti-TB activity against M. tuberculosis ATTC 27294, crystal structures and complex formation of selected 2-arylidenehydrazinylbenzothiazole derivatives. J Mol Struct 2019; 1178: 655-68.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.030]
[63]
Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature 2011; 469(7331): 483-90.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[64]
Sarathy JP, Gruber G, Dick T. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline. Antibiotics 2019; 8(4): 261.
[http://dx.doi.org/10.3390/antibiotics8040261] [PMID: 31835707]
[65]
Khoshnood S, Goudarzi M, Taki E, et al. Bedaquiline: Current status and future perspectives. J Glob Antimicrob Resist 2021; 25: 48-59.
[http://dx.doi.org/10.1016/j.jgar.2021.02.017] [PMID: 33684606]
[66]
Traoré AN, Rikhotso MC, Banda NT, et al. Effectiveness of the novel anti-TB bedaquiline against drug-resistant TB in Africa: A systematic review of the literature. Pathogens 2022; 11(6): 636.
[http://dx.doi.org/10.3390/pathogens11060636] [PMID: 35745490]
[67]
Xu J, Converse PJ, Upton AM, Mdluli K, Fotouhi N, Nuermberger EL. Comparative efficacy of the novel diarylquinoline tbaj-587 and bedaquiline against a resistant Rv0678 mutant in a mouse model of tuberculosis. Antimicrob Agents Chemother 2021; 65(4): e02418-20.
[http://dx.doi.org/10.1128/AAC.02418-20] [PMID: 33526488]
[68]
Scior T, Meneses MI, Garcés ESJ, Domeyer D, Laufer S. Antitubercular isoniazid and drug resistance of mycobacterium tuberculosis — a review. Arch Pharm 2002; 335(11-12): 511-25.
[http://dx.doi.org/10.1002/ardp.200290005] [PMID: 12596216]
[69]
Goldman AL, Braman SS. Isoniazid: A review with emphasis on adverse effects. Chest 1972; 62(1): 71-7.
[http://dx.doi.org/10.1378/chest.62.1.71] [PMID: 4339326]
[70]
Sulis G, Pai M. Isoniazid-resistant tuberculosis: A problem we can no longer ignore. PLoS Med 2020; 17(1): e1003023.
[http://dx.doi.org/10.1371/journal.pmed.1003023] [PMID: 31961857]
[71]
Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y. Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013; 57(2): 893-900.
[http://dx.doi.org/10.1128/AAC.01024-12] [PMID: 23208715]
[72]
Aït Moussa L, El Bouazzi O, Serragui S, Soussi Tanani D, Soulaymani A, Soulaymani R. Rifampicin and isoniazid plasma concentrations in relation to adverse reactions in tuberculosis patients: A retrospective analysis. Ther Adv Drug Saf 2016; 7(6): 239-47.
[http://dx.doi.org/10.1177/2042098616667704] [PMID: 27904742]
[73]
Van Deun A, Bola V, Lebeke R, et al. Acquired rifampicin resistance during first TB treatment: magnitude, relative importance, risk factors and keys to control in low-income settings. JAC-Antimicrobial Resistance 2022; 4(2): dlac037.
[http://dx.doi.org/10.1093/jacamr/dlac037] [PMID: 35415609]
[74]
Tantry SJ, Markad SD, Shinde V, et al. Discovery of imidazo[1,2- a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 2017; 60(4): 1379-99.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy