Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke

Author(s): Yuan Qi*, Yujie Xu, Huailu Wang, Qiujia Wang, Meijie Li, Bo Han and Haijie Liu

Volume 24, Issue 2, 2024

Published on: 25 January, 2024

Page: [117 - 128] Pages: 12

DOI: 10.2174/0118715249277597231226064144

Price: $65

conference banner
Abstract

Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.

Keywords: Stroke, rehabilitation, brain alterations, motor disability, structural connectivity, functional connectivity.

Graphical Abstract
[1]
Buch, E.R.; Liew, S.L.; Cohen, L.G. Plasticity of sensorimotor networks. Neuroscientist, 2017, 23(2), 185-196.
[http://dx.doi.org/10.1177/1073858416638641] [PMID: 26985069]
[2]
Bütefisch, C.M.; Netz, J.; Wessling, M.; Seitz, R.J.; Hömberg, V. Remote changes in cortical excitability after stroke. Brain, 2003, 126(2), 470-481.
[http://dx.doi.org/10.1093/brain/awg044] [PMID: 12538413]
[3]
Jiang, L.; Xu, H.; Yu, C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plast., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/924192] [PMID: 23738150]
[4]
Kwakkel, G.; Kollen, B.; Twisk, J. Impact of time on improvement of outcome after stroke. Stroke, 2006, 37(9), 2348-2353.
[http://dx.doi.org/10.1161/01.STR.0000238594.91938.1e] [PMID: 16931787]
[5]
Cheng, H.J.; Ng, K.K.; Qian, X.; Ji, F.; Lu, Z.K.; Teo, W.P.; Hong, X.; Nasrallah, F.A.; Ang, K.K.; Chuang, K.H.; Guan, C.; Yu, H.; Chew, E.; Zhou, J.H. Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci. Rep., 2021, 11(1), 8442.
[http://dx.doi.org/10.1038/s41598-021-87789-5] [PMID: 33875691]
[6]
Carter, A.R.; Astafiev, S.V.; Lang, C.E.; Connor, L.T.; Rengachary, J.; Strube, M.J.; Pope, D.L.W.; Shulman, G.L.; Corbetta, M. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann. Neurol., 2010, 67(3), 365-375.
[http://dx.doi.org/10.1002/ana.21905] [PMID: 20373348]
[7]
van Meer, M.P.A.; van der Marel, K.; Wang, K.; Otte, W.M.; el Bouazati, S.; Roeling, T.A.P.; Viergever, M.A. Berkelbach van der, S.J.W.; Dijkhuizen, R.M. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J. Neurosci., 2010, 30(11), 3964-3972.
[http://dx.doi.org/10.1523/JNEUROSCI.5709-09.2010] [PMID: 20237267]
[8]
van Meer, M.P.A.; van der Marel, K.; Otte, W.M. Berkelbach van der, S.J.W.; Dijkhuizen, R.M. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: A combined resting-state functional MRI and manganese-enhanced MRI study. J. Cereb. Blood Flow Metab., 2010, 30(10), 1707-1711.
[http://dx.doi.org/10.1038/jcbfm.2010.124] [PMID: 20664609]
[9]
Ward, N.S.; Newton, J.M.; Swayne, O.B.C.; Lee, L.; Frackowiak, R.S.J.; Thompson, A.J.; Greenwood, R.J.; Rothwell, J.C. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur. J. Neurosci., 2007, 25(6), 1865-1873.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05434.x] [PMID: 17432972]
[10]
Dijkhuizen, R.M.; Singhal, A.B.; Mandeville, J.B.; Wu, O.; Halpern, E.F.; Finklestein, S.P.; Rosen, B.R.; Lo, E.H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: A functional magnetic resonance imaging study. J. Neurosci., 2003, 23(2), 510-517.
[http://dx.doi.org/10.1523/JNEUROSCI.23-02-00510.2003] [PMID: 12533611]
[11]
Dijkhuizen, R.M.; Nicolay, K. Magnetic resonance imaging in experimental models of brain disorders. J. Cereb. Blood Flow Metab., 2003, 23(12), 1383-1402.
[http://dx.doi.org/10.1097/01.WCB.0000100341.78607.EB] [PMID: 14663334]
[12]
Farr, T.D.; Wegener, S. Use of magnetic resonance imaging to predict outcome after stroke: a review of experimental and clinical evidence. J. Cereb. Blood Flow Metab., 2010, 30(4), 703-717.
[http://dx.doi.org/10.1038/jcbfm.2010.5] [PMID: 20087362]
[13]
Jiang, Q.; Zhang, Z.G.; Ding, G.L.; Silver, B.; Zhang, L.; Meng, H.; Lu, M.; Pourabdillah-Nejed-D, S.; Wang, L.; Savant-Bhonsale, S.; Li, L.; Bagher-Ebadian, H.; Hu, J.; Arbab, A.S.; Vanguri, P.; Ewing, J.R.; Ledbetter, K.A.; Chopp, M. MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage, 2006, 32(3), 1080-1089.
[http://dx.doi.org/10.1016/j.neuroimage.2006.05.025] [PMID: 16860575]
[14]
Weber, R.; Ramos-Cabrer, P.; Hoehn, M. Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J. Cereb. Blood Flow Metab., 2006, 26(5), 591-604.
[http://dx.doi.org/10.1038/sj.jcbfm.9600241] [PMID: 16292254]
[15]
D’Esposito, M.; Deouell, L.Y.; Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci., 2003, 4(11), 863-872.
[http://dx.doi.org/10.1038/nrn1246] [PMID: 14595398]
[16]
Corbetta, M.; Kincade, M.J.; Lewis, C.; Snyder, A.Z.; Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat. Neurosci., 2005, 8(11), 1603-1610.
[http://dx.doi.org/10.1038/nn1574] [PMID: 16234807]
[17]
Ward, N.S.; Brown, M.M.; Thompson, A.J.; Frackowiak, R.S. Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain, 2003, 126(11), 2476-2496.
[http://dx.doi.org/10.1093/brain/awg245] [PMID: 12937084]
[18]
Chollet, F.; Di Piero, V.; Wise, R.J.S.; Brooks, D.J.; Dolan, R.J.; Frackowiak, R.S.J. The functional anatomy of motor recovery after stroke in humans: A study with positron emission tomography. Ann. Neurol., 1991, 29(1), 63-71.
[http://dx.doi.org/10.1002/ana.410290112] [PMID: 1996881]
[19]
Grefkes, C.; Nowak, D.A.; Eickhoff, S.B.; Dafotakis, M.; Küst, J.; Karbe, H.; Fink, G.R. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol., 2008, 63(2), 236-246.
[http://dx.doi.org/10.1002/ana.21228] [PMID: 17896791]
[20]
Weiller, C.; Chollet, F.; Friston, K.J.; Wise, R.J.S.; Frackowiak, R.S.J. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol., 1992, 31(5), 463-472.
[http://dx.doi.org/10.1002/ana.410310502] [PMID: 1596081]
[21]
Friston, K. Functional integration and inference in the brain. Prog. Neurobiol., 2002, 68(2), 113-143.
[http://dx.doi.org/10.1016/S0301-0082(02)00076-X] [PMID: 12450490]
[22]
Carter, A.R.; Patel, K.R.; Astafiev, S.V.; Snyder, A.Z.; Rengachary, J.; Strube, M.J.; Pope, A.; Shimony, J.S.; Lang, C.E.; Shulman, G.L.; Corbetta, M. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil. Neural Repair, 2012, 26(1), 7-19.
[http://dx.doi.org/10.1177/1545968311411054] [PMID: 21803932]
[23]
Carter, A.R.; Shulman, G.L.; Corbetta, M. Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage, 2012, 62(4), 2271-2280.
[http://dx.doi.org/10.1016/j.neuroimage.2012.02.070] [PMID: 22414990]
[24]
Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; Di Lazzaro, V. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat. Rev. Neurol., 2014, 10(10), 597-608.
[http://dx.doi.org/10.1038/nrneurol.2014.162] [PMID: 25201238]
[25]
Brodtmann, A.; Pardoe, H.; Li, Q.; Lichter, R.; Ostergaard, L.; Cumming, T. Changes in regional brain volume three months after stroke. J. Neurol. Sci., 2012, 322(1-2), 122-128.
[http://dx.doi.org/10.1016/j.jns.2012.07.019] [PMID: 22858417]
[26]
Fan, F.; Zhu, C.; Chen, H.; Qin, W.; Ji, X.; Wang, L.; Zhang, Y.; Zhu, L.; Yu, C. Dynamic brain structural changes after left hemisphere subcortical stroke. Hum. Brain Mapp., 2013, 34(8), 1872-1881.
[http://dx.doi.org/10.1002/hbm.22034] [PMID: 22431281]
[27]
Gauthier, L.V.; Taub, E.; Perkins, C.; Ortmann, M.; Mark, V.W.; Uswatte, G. Remodeling the brain. Stroke, 2008, 39(5), 1520-1525.
[http://dx.doi.org/10.1161/STROKEAHA.107.502229] [PMID: 18323492]
[28]
Carmichael, S.T.; Archibeque, I.; Luke, L.; Nolan, T.; Momiy, J.; Li, S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol., 2005, 193(2), 291-311.
[http://dx.doi.org/10.1016/j.expneurol.2005.01.004] [PMID: 15869933]
[29]
Sims, N.R.; Yew, W.P. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem. Int., 2017, 107, 88-103.
[http://dx.doi.org/10.1016/j.neuint.2016.12.016] [PMID: 28057555]
[30]
van der Zijden, J.P.; van der Toorn, A.; van der Marel, K.; Dijkhuizen, R.M. Longitudinal in vivo MRI of alterations in perilesional tissue after transient ischemic stroke in rats. Exp. Neurol., 2008, 212(1), 207-212.
[http://dx.doi.org/10.1016/j.expneurol.2008.03.027] [PMID: 18501349]
[31]
Ding, G.; Jiang, Q.; Li, L.; Zhang, L.; Zhang, Z.G.; Ledbetter, K.A.; Panda, S.; Davarani, S.P.N.; Athiraman, H.; Li, Q.; Ewing, J.R.; Chopp, M. Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J. Cereb. Blood Flow Metab., 2008, 28(8), 1440-1448.
[http://dx.doi.org/10.1038/jcbfm.2008.33] [PMID: 18418368]
[32]
Fields, R.D.; Woo, D.H.; Basser, P.J. Glial regulation of the neuronal connectome through local and long-distant communication. Neuron, 2015, 86(2), 374-386.
[http://dx.doi.org/10.1016/j.neuron.2015.01.014] [PMID: 25905811]
[33]
Foulon, C.; Cerliani, L.; Kinkingnéhun, S.; Levy, R.; Rosso, C.; Urbanski, M.; Volle, E.; Thiebaut de Schotten, M. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience, 2018, 7(3), 1-17.
[http://dx.doi.org/10.1093/gigascience/giy004] [PMID: 29432527]
[34]
Larivière, S.; Ward, N.S.; Boudrias, M.H. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. Neuroimage Clin., 2018, 19, 883-891.
[http://dx.doi.org/10.1016/j.nicl.2018.06.010] [PMID: 29946512]
[35]
Ejaz, N.; Xu, J.; Branscheidt, M.; Hertler, B.; Schambra, H.; Widmer, M.; Faria, A.V.; Harran, M.D.; Cortes, J.C.; Kim, N.; Celnik, P.A.; Kitago, T.; Luft, A.R.; Krakauer, J.W.; Diedrichsen, J. Evidence for a subcortical origin of mirror movements after stroke: A longitudinal study. Brain, 2018, 141(3), 837-847.
[http://dx.doi.org/10.1093/brain/awx384] [PMID: 29394326]
[36]
Damoiseaux, J.S. Effects of aging on functional and structural brain connectivity. Neuroimage, 2017, 160, 32-40.
[http://dx.doi.org/10.1016/j.neuroimage.2017.01.077] [PMID: 28159687]
[37]
van den Heuvel, M.P.; Sporns, O.; Collin, G.; Scheewe, T.; Mandl, R.C.W.; Cahn, W.; Goñi, J.; Hulshoff Pol, H.E.; Kahn, R.S. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 2013, 70(8), 783-792.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.1328] [PMID: 23739835]
[38]
Caracciolo, L.; Marosi, M.; Mazzitelli, J.; Latifi, S.; Sano, Y.; Galvan, L.; Kawaguchi, R.; Holley, S.; Levine, M.S.; Coppola, G.; Portera-Cailliau, C.; Silva, A.J.; Carmichael, S.T. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun., 2018, 9(1), 2250.
[http://dx.doi.org/10.1038/s41467-018-04445-9] [PMID: 29884780]
[39]
Borich, M.R.; Brown, K.E.; Boyd, L.A. Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke. J. Neurol. Phys. Ther., 2014, 38(3), 151-160.
[http://dx.doi.org/10.1097/NPT.0b013e3182a3d353] [PMID: 23934017]
[40]
Rehme, A.K.; Eickhoff, S.B.; Wang, L.E.; Fink, G.R.; Grefkes, C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage, 2011, 55(3), 1147-1158.
[http://dx.doi.org/10.1016/j.neuroimage.2011.01.014] [PMID: 21238594]
[41]
Boyd, L.A.; Hayward, K.S.; Ward, N.S.; Stinear, C.M.; Rosso, C.; Fisher, R.J.; Carter, A.R.; Leff, A.P.; Copland, D.A.; Carey, L.M.; Cohen, L.G.; Basso, D.M.; Maguire, J.M.; Cramer, S.C. Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabil. Neural Repair, 2017, 31(10-11), 864-876.
[http://dx.doi.org/10.1177/1545968317732680] [PMID: 29233071]
[42]
Akkal, D.; Dum, R.P.; Strick, P.L. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J. Neurosci., 2007, 27(40), 10659-10673.
[http://dx.doi.org/10.1523/JNEUROSCI.3134-07.2007] [PMID: 17913900]
[43]
Wang, L.; Yu, C.; Chen, H.; Qin, W.; He, Y.; Fan, F.; Zhang, Y.; Wang, M.; Li, K.; Zang, Y.; Woodward, T.S.; Zhu, C. Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010, 133(4), 1224-1238.
[http://dx.doi.org/10.1093/brain/awq043] [PMID: 20354002]
[44]
Weber, R.; Ramos-Cabrer, P.; Justicia, C.; Wiedermann, D.; Strecker, C.; Sprenger, C.; Hoehn, M. Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J. Neurosci., 2008, 28(5), 1022-1029.
[http://dx.doi.org/10.1523/JNEUROSCI.4147-07.2008] [PMID: 18234880]
[45]
Schulz, R.; Koch, P.; Zimerman, M.; Wessel, M.; Bönstrup, M.; Thomalla, G.; Cheng, B.; Gerloff, C.; Hummel, F.C. Parietofrontal motor pathways and their association with motor function after stroke. Brain, 2015, 138(7), 1949-1960.
[http://dx.doi.org/10.1093/brain/awv100] [PMID: 25935722]
[46]
Rehme, A.K.; Fink, G.R.; von Cramon, D.Y.; Grefkes, C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb. Cortex, 2011, 21(4), 756-768.
[http://dx.doi.org/10.1093/cercor/bhq140] [PMID: 20801897]
[47]
Cheng, L.; Wu, Z.; Sun, J.; Fu, Y.; Wang, X.; Yang, G.Y.; Miao, F.; Tong, S. Reorganization of motor execution networks during sub-acute phase after stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 2015, 23(4), 713-723.
[http://dx.doi.org/10.1109/TNSRE.2015.2401978] [PMID: 26151748]
[48]
Park, C.; Chang, W.H.; Ohn, S.H.; Kim, S.T.; Bang, O.Y.; Pascual-Leone, A.; Kim, Y.H. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 2011, 42(5), 1357-1362.
[http://dx.doi.org/10.1161/STROKEAHA.110.596155] [PMID: 21441147]
[49]
Vallone, F.; Lai, S.; Spalletti, C.; Panarese, A.; Alia, C.; Micera, S.; Caleo, M.; Di Garbo, A. Post-stroke longitudinal alterations of inter-hemispheric correlation and hemispheric dominance in mouse pre-motor cortex. PLoS One, 2016, 11(1), e0146858.
[http://dx.doi.org/10.1371/journal.pone.0146858] [PMID: 26752066]
[50]
Takenobu, Y.; Hayashi, T.; Moriwaki, H.; Nagatsuka, K.; Naritomi, H.; Fukuyama, H. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke. Neuroimage Clin., 2014, 4, 201-208.
[http://dx.doi.org/10.1016/j.nicl.2013.12.003] [PMID: 24432247]
[51]
Dancause, N.; Barbay, S.; Frost, S.B.; Plautz, E.J.; Chen, D.; Zoubina, E.V.; Stowe, A.M.; Nudo, R.J. Extensive cortical rewiring after brain injury. J. Neurosci., 2005, 25(44), 10167-10179.
[http://dx.doi.org/10.1523/JNEUROSCI.3256-05.2005] [PMID: 16267224]
[52]
Loubinoux, I.; Dechaumont-Palacin, S.; Castel-Lacanal, E.; De Boissezon, X.; Marque, P.; Pariente, J.; Albucher, J.F.; Berry, I.; Chollet, F. Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb. Cortex, 2007, 17(12), 2980-2987.
[http://dx.doi.org/10.1093/cercor/bhm023] [PMID: 17389628]
[53]
Harrison, T.C.; Silasi, G.; Boyd, J.D.; Murphy, T.H. Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice. Stroke, 2013, 44(8), 2300-2306.
[http://dx.doi.org/10.1161/STROKEAHA.113.001272] [PMID: 23743973]
[54]
Frías, I.; Starrs, F.; Gisiger, T.; Minuk, J.; Thiel, A.; Paquette, C. Interhemispheric connectivity of primary sensory cortex is associated with motor impairment after stroke. Sci. Rep., 2018, 8(1), 12601.
[http://dx.doi.org/10.1038/s41598-018-29751-6] [PMID: 30135496]
[55]
Grefkes, C.; Fink, G.R. Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain, 2011, 134(5), 1264-1276.
[http://dx.doi.org/10.1093/brain/awr033] [PMID: 21414995]
[56]
Jones, T.A.; Kleim, J.A.; Greenough, W.T. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: A quantitative electron microscopic examination. Brain Res., 1996, 733(1), 142-148.
[http://dx.doi.org/10.1016/0006-8993(96)00792-5] [PMID: 8891261]
[57]
Calautti, C.; Leroy, F.; Guincestre, J.Y.; Baron, J.C. Dynamics of motor network overactivation after striatocapsular stroke: A longitudinal PET study using a fixed-performance paradigm. Stroke, 2001, 32(11), 2534-2542.
[http://dx.doi.org/10.1161/hs1101.097401] [PMID: 11692013]
[58]
De Vico Fallani, F.; Pichiorri, F.; Morone, G.; Molinari, M.; Babiloni, F.; Cincotti, F.; Mattia, D. Multiscale topological properties of functional brain networks during motor imagery after stroke. Neuroimage, 2013, 83, 438-449.
[http://dx.doi.org/10.1016/j.neuroimage.2013.06.039] [PMID: 23791916]
[59]
Alstott, J.; Breakspear, M.; Hagmann, P.; Cammoun, L.; Sporns, O. Modeling the impact of lesions in the human brain. PLOS Comput. Biol., 2009, 5(6), e1000408.
[http://dx.doi.org/10.1371/journal.pcbi.1000408] [PMID: 19521503]
[60]
Hannanu, F.F.; Zeffiro, T.A.; Lamalle, L.; Heck, O.; Renard, F.; Thuriot, A.; Krainik, A.; Hommel, M.; Detante, O.; Jaillard, A.; Garambois, K.; Barbieux-Guillot, M.; Favre-Wiki, I.; Grand, S.; Le Bas, J.F.; Moisan, A.; Richard, M.J.; De Fraipont, F.; Gere, J.; Marcel, S.; Vadot, W.; Rodier, G.; Perennou, D.; Chrispin, A.; Davoine, P.; Naegele, B.; Antoine, P.; Tropres, I.; Renard, F. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke. Neuroimage Clin., 2017, 14, 518-529.
[http://dx.doi.org/10.1016/j.nicl.2017.01.023] [PMID: 28317947]
[61]
Abela, E.; Seiler, A.; Missimer, J.H.; Federspiel, A.; Hess, C.W.; Sturzenegger, M.; Weder, B.J.; Wiest, R. Grey matter volumetric changes related to recovery from hand paresis after cortical sensorimotor stroke. Brain Struct. Funct., 2015, 220(5), 2533-2550.
[http://dx.doi.org/10.1007/s00429-014-0804-y] [PMID: 24906703]
[62]
Shin, S.; Lee, Y.; Chang, W.H.; Sohn, M.K.; Lee, J.; Kim, D.Y.; Shin, Y.I.; Oh, G.J.; Lee, Y.S.; Joo, M.C.; Lee, S.Y.; Song, M.K.; Han, J.; Ahn, J.; Kim, Y.H. Multifaceted assessment of functional outcomes in survivors of first-time stroke. JAMA Netw. Open, 2022, 5(9), e2233094.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.33094] [PMID: 36149652]
[63]
Rehme, A.K.; Grefkes, C. Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans. J. Physiol., 2013, 591(1), 17-31.
[http://dx.doi.org/10.1113/jphysiol.2012.243469] [PMID: 23090951]
[64]
Carmichael, S.T. Plasticity of cortical projections after stroke. Neuroscientist, 2003, 9(1), 64-75.
[http://dx.doi.org/10.1177/1073858402239592] [PMID: 12580341]
[65]
Cabibel, V.; Hordacre, B.; Perrey, S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: The cross-activation phenomenon. J. Neurophysiol., 2020, 123(5), 2090-2098.
[http://dx.doi.org/10.1152/jn.00064.2020] [PMID: 32319836]
[66]
Gläscher, J.; Tranel, D.; Paul, L.K.; Rudrauf, D.; Rorden, C.; Hornaday, A.; Grabowski, T.; Damasio, H.; Adolphs, R. Lesion mapping of cognitive abilities linked to intelligence. Neuron, 2009, 61(5), 681-691.
[http://dx.doi.org/10.1016/j.neuron.2009.01.026] [PMID: 19285465]
[67]
Gleichgerrcht, E.; Kocher, M.; Nesland, T.; Rorden, C.; Fridriksson, J.; Bonilha, L. Preservation of structural brain network hubs is associated with less severe post-stroke aphasia. Restor. Neurol. Neurosci., 2015, 34(1), 19-28.
[http://dx.doi.org/10.3233/RNN-150511] [PMID: 26599472]
[68]
Barnett, L.; Seth, A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods, 2014, 223, 50-68.
[http://dx.doi.org/10.1016/j.jneumeth.2013.10.018] [PMID: 24200508]
[69]
Nudo, R.J.; McNeal, D. Plasticity of cerebral functions. Handb. Clin. Neurol., 2013, 110, 13-21.
[http://dx.doi.org/10.1016/B978-0-444-52901-5.00002-2] [PMID: 23312627]
[70]
Andrew James, G.; Lu, Z.L.; VanMeter, J.W.; Sathian, K.; Hu, X.P.; Butler, A.J. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top. Stroke Rehabil., 2009, 16(4), 270-281.
[http://dx.doi.org/10.1310/tsr1604-270] [PMID: 19740732]
[71]
Lu, C.F.; Liu, Y.C.; Yang, Y.R.; Wu, Y.T.; Wang, R.Y. Maintaining gait performance by cortical activation during dual-task interference: A functional near-infrared spectroscopy study. PLoS One, 2015, 10(6), e0129390.
[http://dx.doi.org/10.1371/journal.pone.0129390] [PMID: 26079605]
[72]
Goyal, M.S.; Vlassenko, A.G.; Blazey, T.M.; Su, Y.; Couture, L.E.; Durbin, T.J.; Bateman, R.J.; Benzinger, T.L.S.; Morris, J.C.; Raichle, M.E. Loss of brain aerobic glycolysis in normal human aging. Cell Metab., 2017, 26(2), 353-360.e3.
[http://dx.doi.org/10.1016/j.cmet.2017.07.010] [PMID: 28768174]
[73]
Schaechter, J.D.; Perdue, K.L. Enhanced cortical activation in the contralesional hemisphere of chronic stroke patients in response to motor skill challenge. Cereb. Cortex, 2008, 18(3), 638-647.
[http://dx.doi.org/10.1093/cercor/bhm096] [PMID: 17602141]
[74]
Porro, C.A.; Francescato, M.P.; Cettolo, V.; Diamond, M.E.; Baraldi, P.; Zuiani, C.; Bazzocchi, M.; di Prampero, P.E. Primary motor and sensory cortex activation during motor performance and motor imagery: A functional magnetic resonance imaging study. J. Neurosci., 1996, 16(23), 7688-7698.
[http://dx.doi.org/10.1523/JNEUROSCI.16-23-07688.1996] [PMID: 8922425]
[75]
Chew, E.; Teo, W.P.; Tang, N.; Ang, K.K.; Ng, Y.S.; Zhou, J.H.; Teh, I.; Phua, K.S.; Zhao, L.; Guan, C. Using transcranial direct current stimulation to augment the effect of motor imagery-assisted brain-computer interface training in chronic stroke patients—cortical reorganization considerations. Front. Neurol., 2020, 11, 948.
[http://dx.doi.org/10.3389/fneur.2020.00948] [PMID: 32973672]
[76]
Hu, M.; Cheng, H.J.; Ji, F.; Chong, J.S.X.; Lu, Z.; Huang, W.; Ang, K.K.; Phua, K.S.; Chuang, K.H.; Jiang, X.; Chew, E.; Guan, C.; Zhou, J.H. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: A pilot study. Front. Hum. Neurosci., 2021, 15, 692304.
[http://dx.doi.org/10.3389/fnhum.2021.692304] [PMID: 34335210]
[77]
Dodd, K.C.; Nair, V.A.; Prabhakaran, V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery. Front. Hum. Neurosci., 2017, 11, 469.
[http://dx.doi.org/10.3389/fnhum.2017.00469] [PMID: 28983244]
[78]
Wu, J.; Quinlan, E.B.; Dodakian, L.; McKenzie, A.; Kathuria, N.; Zhou, R.J.; Augsburger, R.; See, J.; Le, V.H.; Srinivasan, R.; Cramer, S.C. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain, 2015, 138(8), 2359-2369.
[http://dx.doi.org/10.1093/brain/awv156] [PMID: 26070983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy